
Due Date: 21 December 2012, Friday NAME:.....................................................
Please leave your homework in my mailbox until 17:30.
Ali Sinan Sertöz STUDENT NO:.....................................................

Math 503 Complex Analysis – Exam 09

1 2 3 4 5 TOTAL

30 50 20 0 0 100

Please do not write anything inside the above boxes!

Check that there is 1 question on your exam booklet. Write your name on top of every page. Show your work
in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Find an entire function f(z) whose zero set is {n + in ∈ C | n ∈ Z}. (Give the most elementary
example.)

Solution:

Let a0 = 0, and a2n−1 = n, a2n = −n for n = 1, 2, . . . . This defines the sequence

0, 1,−1, 2,−2, ..., n,−n, . . . .

Observe that
∞∑
n=1

(
r

|an|

)1+pn

=
∞∑
n=1

(
r√
2n

)1+pn

converges for all r > 0 if pn = 1 for all n = 1, 2, . . . . Therefore

f(z) = z
∞∏
n=1

E1

(
z

an

)
= z

∞∏
n=1

(
1− z

n+ in

)
ez/(n+in) ·

(
1 +

z

n+ in

)
e−z/(n+in)

is such a function. Simplifying further we find

f(z) = z
∞∏
n=1

(
1− z2

(n+ in)2

)
= z

∞∏
n=1

(
1 +

iz2

2n2

)
.
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Q-2) Show that cos πz =
∞∏
n=1

(
1− 4z2

(2n− 1)2

)
.

Solution: If you want to this from scratch, here is how it goes:
The zeros of cos πz are precisely the half integers (2n+ 1)/2, n ∈ Z. Since

∞∑
n=−∞

(
r

(2n+ 1)/2

)1+pn

converges for all r > 0 when pn = 1 for all n, we can write

cosπz = eg(z)
∞∏

n=−∞

E1

(
z

(2n+ 1)/2

)
= eg(z)

∞∏
n=−∞

(
1− z

(2n+ 1)/2

)
ez/((2n+1)/2),

for some entire function g. Noting that for n = 1, 2, . . . ,

2(−n) + 1

2
= −2(n− 1) + 1

2
,

we can rewrite cos πz as

cos πz = eg(z)
∞∏
n=1

(
1− 2z

−2n+ 1

)(
1− 2z

2n− 1

)
= eg(z)

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
.

Note that by setting z = 0, we immediately see that g(0) = 0.

Setting f(z) = cos πz, we see that

f ′(z)

f(z)
= −π tanπz = g′(z)−

∞∑
n=1

2z(
2k−1
2

)2 − z2
.

By the Mittag-Leffler expansion theorem, we have

tan z = 2z
∞∑
k=1

1(
2k−1
2

π
)2 − z2

.

This forces
g′(z) = 0,

hence g(z) is constant. Since we found g(0) = 0, we see that g(z) ≡ 0. This finally gives

cosπz =
∞∏
n=1

(
1− 4z2

(2n− 1)2

)
,

as required.

Here is a solution which uses the infinite product formula for the sine function:

cosπz =
sin 2πz

2 sin πz

=
2πz

∏∞
n=1

(
1− (2z)2

n2

)
2πz

∏∞
k=1

(
1− z2

k2

)
=

∏∞
k=1

(
1− (2z)2

(2k)2

)∏∞
k=1

(
1− (2z)2

(2k−1)2

)
∏∞

k=1

(
1− z2

k2

)
=

∞∏
k=1

(
1− (2z)2

(2k − 1)2

)
as expected.
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Q-3) Let an = 2n− 1 for n = 1, 2, . . . . Show that

π = 2
∞∏
n=1

(
2n

an

2n

an+1

)
.

Solution:

Using the infinite product expansion of sinπz, put z = 1/2 and observe that

1 = sin π
1

2
= π

1

2

∞∏
n=1

(
1− (1/2)2

n2

)
=

π

2

∞∏
n=1

(an
2n

an+1

2n

)
,

which is equivalent to what we want to prove. This result is known as Wallis’ formula.


