\qquad

Math 503 Complex Analysis - Exam 09

1	2	3	4	5	TOTAL
30	50	20	0	0	100

Please do not write anything inside the above boxes!
Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Find an entire function $f(z)$ whose zero set is $\{n+i n \in \mathbb{C} \mid n \in \mathbb{Z}\}$. (Give the most elementary example.)

Solution:

Let $a_{0}=0$, and $a_{2 n-1}=n, a_{2 n}=-n$ for $n=1,2, \ldots$ This defines the sequence

$$
0,1,-1,2,-2, \ldots, n,-n, \ldots
$$

Observe that

$$
\sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{1+p_{n}}=\sum_{n=1}^{\infty}\left(\frac{r}{\sqrt{2} n}\right)^{1+p_{n}}
$$

converges for all $r>0$ if $p_{n}=1$ for all $n=1,2, \ldots$ Therefore

$$
f(z)=z \prod_{n=1}^{\infty} E_{1}\left(\frac{z}{a_{n}}\right)=z \prod_{n=1}^{\infty}\left(1-\frac{z}{n+i n}\right) e^{z /(n+i n)} \cdot\left(1+\frac{z}{n+i n}\right) e^{-z /(n+i n)}
$$

is such a function. Simplifying further we find

$$
f(z)=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{(n+i n)^{2}}\right)=z \prod_{n=1}^{\infty}\left(1+\frac{i z^{2}}{2 n^{2}}\right) .
$$

Q-2) Show that $\cos \pi z=\prod_{n=1}^{\infty}\left(1-\frac{4 z^{2}}{(2 n-1)^{2}}\right)$.
Solution: If you want to this from scratch, here is how it goes:
The zeros of $\cos \pi z$ are precisely the half integers $(2 n+1) / 2, n \in \mathbb{Z}$. Since

$$
\sum_{n=-\infty}^{\infty}\left(\frac{r}{(2 n+1) / 2}\right)^{1+p_{n}}
$$

converges for all $r>0$ when $p_{n}=1$ for all n, we can write

$$
\cos \pi z=e^{g(z)} \prod_{n=-\infty}^{\infty} E_{1}\left(\frac{z}{(2 n+1) / 2}\right)=e^{g(z)} \prod_{n=-\infty}^{\infty}\left(1-\frac{z}{(2 n+1) / 2}\right) e^{z /((2 n+1) / 2)}
$$

for some entire function g. Noting that for $n=1,2, \ldots$,

$$
\frac{2(-n)+1}{2}=-\frac{2(n-1)+1}{2}
$$

we can rewrite $\cos \pi z$ as

$$
\cos \pi z=e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{2 z}{-2 n+1}\right)\left(1-\frac{2 z}{2 n-1}\right)=e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{4 z^{2}}{(2 n-1)^{2}}\right)
$$

Note that by setting $z=0$, we immediately see that $g(0)=0$.
Setting $f(z)=\cos \pi z$, we see that

$$
\frac{f^{\prime}(z)}{f(z)}=-\pi \tan \pi z=g^{\prime}(z)-\sum_{n=1}^{\infty} \frac{2 z}{\left(\frac{2 k-1}{2}\right)^{2}-z^{2}}
$$

By the Mittag-Leffler expansion theorem, we have

$$
\tan z=2 z \sum_{k=1}^{\infty} \frac{1}{\left(\frac{2 k-1}{2} \pi\right)^{2}-z^{2}}
$$

This forces

$$
g^{\prime}(z)=0,
$$

hence $g(z)$ is constant. Since we found $g(0)=0$, we see that $g(z) \equiv 0$. This finally gives

$$
\cos \pi z=\prod_{n=1}^{\infty}\left(1-\frac{4 z^{2}}{(2 n-1)^{2}}\right)
$$

as required.
Here is a solution which uses the infinite product formula for the sine function:

$$
\begin{aligned}
\cos \pi z & =\frac{\sin 2 \pi z}{2 \sin \pi z} \\
& =\frac{2 \pi z \prod_{n=1}^{\infty}\left(1-\frac{(2 z)^{2}}{n^{2}}\right)}{2 \pi z \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)} \\
& =\frac{\prod_{k=1}^{\infty}\left(1-\frac{(2 z)^{2}}{(2 k)^{2}}\right) \prod_{k=1}^{\infty}\left(1-\frac{(2 z)^{2}}{(2 k-1)^{2}}\right)}{\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)} \\
& =\prod_{k=1}^{\infty}\left(1-\frac{(2 z)^{2}}{(2 k-1)^{2}}\right)
\end{aligned}
$$

as expected.

Q-3) Let $a_{n}=2 n-1$ for $n=1,2, \ldots$ Show that

$$
\pi=2 \prod_{n=1}^{\infty}\left(\frac{2 n}{a_{n}} \frac{2 n}{a_{n+1}}\right)
$$

Solution:

Using the infinite product expansion of $\sin \pi z$, put $z=1 / 2$ and observe that

$$
1=\sin \pi \frac{1}{2}=\pi \frac{1}{2} \prod_{n=1}^{\infty}\left(1-\frac{(1 / 2)^{2}}{n^{2}}\right)=\frac{\pi}{2} \prod_{n=1}^{\infty}\left(\frac{a_{n}}{2 n} \frac{a_{n+1}}{2 n}\right)
$$

which is equivalent to what we want to prove. This result is known as Wallis' formula.

