Due Date: 28 December 2012, Friday

NAME:....

Please leave your homework in my mailbox until 17:30. Ali Sinan Sertöz STU

STUDENT NO:.....

Math 503 Complex Analysis – Exam 11

1	2	3	4	5	TOTAL
100	0	0	0	0	100

Please do not write anything inside the above boxes!

Check that there is **1** question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $G = \{z \in \mathbb{C} \mid \text{Re } z > 0\}$, and let F(z) be analytic on G satisfying the following conditions.

- i. F(z+1) = zF(z) for $z \in G$.
- ii. |F(z)| is bounded for $1 \le \operatorname{Re} z \le 2$.
- iii. F(1) = 1.

Show that $F(z) = \Gamma(z)$ for all $z \in \mathbb{C}$, where Γ is the complex Gamma function.

Solution: First note that, using similar arguments as for the Gamma function, F(z) can be extended as a meromorphic function to all of the complex plane with simple poles at the non-positive integers with residues equal to $\frac{(-1)^n}{n!}$ at z = -n for $n \in \mathbb{N}$.

Define the function

$$\phi(z) = F(z) - \Gamma(z), \ z \in \mathbb{C}.$$

Clearly ϕ is now an entire function.

Next recall that $|\Gamma(z)|$ is bounded in every finite strip $0 < a \le \text{Re } z \le b$. Using this, we conclude that $|\phi(z)|$ is bounded on the strip $1 \le \text{Re } z \le 2$. Now using the functional equation $\phi(z+1) = z\phi(z)$, and the fact that $\phi(1) = 0$, we see that $|\phi(z)|$ is bounded on the strip $0 \le \text{Re } z \le 1$.

Finally define a new function

$$g(z) = \phi(z)\phi(1-z), \ z \in \mathbb{C}.$$

Clearly, g(z) is analytic and is bounded on the strip $0 \le \text{Re } z \le 1$. Using the functional equation for ϕ twice, we get easily that

$$g(z+1) = -g(z),$$

which implies both that |g(z)| is bounded in the strip $0 \le \text{Re } z \le 2$, and that it is periodic of period 2;

$$g(z+2) = -g(z+1) = g(z).$$

Hence by Liouville's theorem g(z) is constant. But since $\phi(1) = 0$, we must also have g(0) = 0, and hence $g(z) \equiv 0$. This forces $\phi(z) \equiv 0$, which in turn gives

$$F(z) = \Gamma(z),$$

as claimed.