\qquad

Math 503 Complex Analysis - Exam 11

1	2	3	4	5	TOTAL
100	0	0	0	0	100

Please do not write anything inside the above boxes!
Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $G=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$, and let $F(z)$ be analytic on G satisfying the following conditions.
i. $F(z+1)=z F(z)$ for $z \in G$.
ii. $|F(z)|$ is bounded for $1 \leq \operatorname{Re} z \leq 2$.
iii. $F(1)=1$.

Show that $F(z)=\Gamma(z)$ for all $z \in \mathbb{C}$, where Γ is the complex Gamma function.
Solution: First note that, using similar arguments as for the Gamma function, $F(z)$ can be extended as a meromorphic function to all of the complex plane with simple poles at the non-positive integers with residues equal to $\frac{(-1)^{n}}{n!}$ at $z=-n$ for $n \in \mathbb{N}$.

Define the function

$$
\phi(z)=F(z)-\Gamma(z), \quad z \in \mathbb{C} .
$$

Clearly ϕ is now an entire function.
Next recall that $|\Gamma(z)|$ is bounded in every finite strip $0<a \leq \operatorname{Re} z \leq b$. Using this, we conclude that $|\phi(z)|$ is bounded on the strip $1 \leq \operatorname{Re} z \leq 2$. Now using the functional equation $\phi(z+1)=z \phi(z)$, and the fact that $\phi(1)=0$, we see that $|\phi(z)|$ is bounded on the strip $0 \leq \operatorname{Re} z \leq 1$.

Finally define a new function

$$
g(z)=\phi(z) \phi(1-z), \quad z \in \mathbb{C}
$$

Clearly, $g(z)$ is analytic and is bounded on the strip $0 \leq \operatorname{Re} z \leq 1$. Using the functional equation for ϕ twice, we get easily that

$$
g(z+1)=-g(z),
$$

which implies both that $|g(z)|$ is bounded in the strip $0 \leq \operatorname{Re} z \leq 2$, and that it is periodic of period 2 ,

$$
g(z+2)=-g(z+1)=g(z) .
$$

Hence by Liouville's theorem $g(z)$ is constant. But since $\phi(1)=0$, we must also have $g(0)=0$, and hence $g(z) \equiv 0$. This forces $\phi(z) \equiv 0$, which in turn gives

$$
F(z)=\Gamma(z)
$$

as claimed.

