Due Date: 8 January 2015, Thursday

Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Prove that $\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{z}}$ for $\operatorname{Re} z>1$, where $\Lambda(n)=\log p$ if $n=p^{m}$ for some prime p and $m \geq 1 ;$ and $\Lambda(n)=0$ otherwise.

Solution:

We use Euler's Theorem 8.17 on page 193: If $\operatorname{Re} z>1$, then

$$
\zeta(z)=\prod_{n=1}^{\infty}\left(\frac{1}{1-p_{n}^{-z}}\right)
$$

where $\left\{p_{n}\right\}$ is the sequence of prime numbers.
Taking logarithm of both sides we get

$$
\log \zeta(z)=-\sum_{n=1}^{\infty} \log \left(1-p_{n}^{-z}\right)
$$

and taking derivatives we get

$$
\begin{aligned}
\frac{\zeta^{\prime}(z)}{\zeta(z)} & =-\sum_{n=1}^{\infty}\left(\log p_{n}\right) \frac{p_{n}^{-z}}{1-p_{n}^{-z}} \\
& =-\sum_{n=1}^{\infty}\left(\log p_{n}\right)\left[p_{n}^{-z}+p_{n}^{-2 z}+\cdots+p_{n}^{-m z}+\cdots\right] \\
& =-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\log p_{n}}{p_{n}^{m z}} \\
& =-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{z}}
\end{aligned}
$$

as required.

NAME:
STUDENT NO:
Q-2) Show that $\Gamma^{\prime}(1)=-\gamma$, where $\gamma=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-\log n\right]$ is the Euler constant.

Solution:

Use the definition $\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}$, and write the logarithmic derivative of $\Gamma(z)$ to obtain

$$
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\gamma-\frac{1}{z}+\sum_{n=1}^{\infty} \frac{z}{n(n+z)}
$$

as obtained on page 179 using Exercise 5.10 of page 174 (which in turn is a direct application of Theorem 2.1 of page 151.) Now putting in $z=1$ and recalling that $\Gamma(1)=1$ gives the result. (You have to recall from calculus that

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

using the technique of telescoping series.)

NAME:

STUDENT NO:

Q-3) Show that $\pi=2 \prod_{n=1}^{\infty} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}$.

Solution:

Using the Weierstrass product formula for sine function

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

put $z=1 / 2$ and simplify.

NAME:
STUDENT NO:
Q-4) Let f be an entire function and let $a, b \in \mathbb{C}$ such that $|a|<R$ and $|b|<R$. If $\gamma_{R}(t)=R e^{i t}$ with $0 \leq t \leq 2 \pi$, evaluate $\int_{\gamma_{R}} \frac{f(z)}{(z-a)(z-b)} d z$. Use this result to give another proof of Liouville's Theorem.

Solution:

Letting $F(z)=\frac{f(z)}{(z-a)(z-b)}$ we see that

$$
\int_{\gamma_{R}} \frac{f(z)}{(z-a)(z-b)} d z=2 \pi i(\operatorname{Res}(F, a)+\operatorname{Res}(F, b))=2 \pi i \frac{f(a)-f(b)}{a-b} .
$$

Now take any $z_{0} \in \mathbb{C}$. Set $b=z_{0}$ and $a=z_{0}+\Delta$ where $|\Delta|<1$. Choose $R>0$ such that $|a|<R / 2$ and $|b|<R / 2$. Then for any $z \in \gamma_{R}$ we have

$$
|z-a|>\frac{R}{2} \quad \text { and } \quad|z-b|>\frac{R}{2} .
$$

Now assume that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. We then have

$$
2 \pi\left|\frac{f\left(z_{0}+\Delta\right)-f\left(z_{0}\right)}{\Delta}\right|=\left|\int_{\gamma_{R}} \frac{f(z)}{\left(z-z_{0}-\Delta\right)\left(z-z_{0}\right)} d z\right| \leq \frac{2 \pi R M}{R^{2} / 4}
$$

We thus have for all $\Delta \in \mathbb{C}$ with $|\Delta|<1$ and for all sufficiently large $R>0$,

$$
\left|\frac{f\left(z_{0}+\Delta\right)-f\left(z_{0}\right)}{\Delta}\right| \leq \frac{4 M}{R} .
$$

Taking limits as $\Delta \rightarrow 0$ and $R \rightarrow \infty$ we find that

$$
f^{\prime}\left(z_{0}\right)=0 \text { for all } z_{0} \in \mathbb{C}
$$

which implies that f is constant.
Observe that the above discussion shows that

$$
\left|\frac{f(a)-f(b)}{a-b}\right| \leq \frac{4 M}{R}
$$

for all large R. Now taking R to infinity shows that $f(a)=f(b)$, hence f is constant.
Similarly, if we take $a=b$, we find that

$$
\int_{\gamma_{R}} \frac{f(z)}{(z-a)^{2}} d z=2 \pi i \operatorname{Res}(F, a)=2 \pi i f^{\prime}(a)
$$

Now we can similarly show that $f^{\prime}(a)=0$ when f is bounded, which again shows that f is constant.

