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Math 503 Complex Analysis – Take-Home Final Exam – Solutions
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Please do not write anything inside the above boxes!

Check that there are 4 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.



NAME: STUDENT NO:

Q-1) Prove that
ζ ′(z)

ζ(z)
= −

∞∑
n=1

Λ(n)

nz
for Re z > 1, where Λ(n) = log p if n = pm for some prime p and

m ≥ 1; and Λ(n) = 0 otherwise.

Solution:

We use Euler’s Theorem 8.17 on page 193: If Re z > 1, then

ζ(z) =
∞∏
n=1

(
1

1− p−zn

)
where {pn} is the sequence of prime numbers.

Taking logarithm of both sides we get

log ζ(z) = −
∞∑
n=1

log(1− p−zn ),

and taking derivatives we get

ζ ′(z)

ζ(z)
= −

∞∑
n=1

(log pn)
p−zn

1− p−zn

= −
∞∑
n=1

(log pn)[p−zn + p−2zn + · · ·+ p−mzn + · · · ]

= −
∞∑
n=1

∞∑
m=1

log pn
pmzn

= −
∞∑
n=1

Λ(n)

nz

as required.
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Q-2) Show that Γ′(1) = −γ, where γ = lim
n→∞

[(
1 +

1

2
+ · · ·+ 1

n

)
− log n

]
is the Euler constant.

Solution:

Use the definition Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n, and write the logarithmic derivative of Γ(z) to

obtain
Γ′(z)

Γ(z)
= −γ − 1

z
+
∞∑
n=1

z

n(n+ z)

as obtained on page 179 using Exercise 5.10 of page 174 (which in turn is a direct application of
Theorem 2.1 of page 151.) Now putting in z = 1 and recalling that Γ(1) = 1 gives the result. (You
have to recall from calculus that

∞∑
n=1

1

n(n+ 1)
= 1,

using the technique of telescoping series.)
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Q-3) Show that π = 2
∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
.

Solution:

Using the Weierstrass product formula for sine function

sin πz = πz

∞∏
n=1

(
1− z2

n2

)
,

put z = 1/2 and simplify.
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Q-4) Let f be an entire function and let a, b ∈ C such that |a| < R and |b| < R. If γR(t) = Reit with

0 ≤ t ≤ 2π, evaluate
∫
γR

f(z)

(z − a)(z − b)
dz. Use this result to give another proof of Liouville’s

Theorem.

Solution:

Letting F (z) =
f(z)

(z − a)(z − b)
we see that

∫
γR

f(z)

(z − a)(z − b)
dz = 2πi (Res(F, a) + Res(F, b)) = 2πi

f(a)− f(b)

a− b
.

Now take any z0 ∈ C. Set b = z0 and a = z0 + ∆ where |∆| < 1. Choose R > 0 such that |a| < R/2
and |b| < R/2. Then for any z ∈ γR we have

|z − a| > R

2
and |z − b| > R

2
.

Now assume that |f(z)| ≤M for all z ∈ C. We then have

2π

∣∣∣∣f(z0 + ∆)− f(z0)

∆

∣∣∣∣ =

∣∣∣∣∫
γR

f(z)

(z − z0 −∆)(z − z0)
dz

∣∣∣∣ ≤ 2πRM

R2/4
.

We thus have for all ∆ ∈ C with |∆| < 1 and for all sufficiently large R > 0,∣∣∣∣f(z0 + ∆)− f(z0)

∆

∣∣∣∣ ≤ 4M

R
.

Taking limits as ∆→ 0 and R→∞ we find that

f ′(z0) = 0 for all z0 ∈ C,

which implies that f is constant.

Observe that the above discussion shows that∣∣∣∣f(a)− f(b)

a− b

∣∣∣∣ ≤ 4M

R

for all large R. Now taking R to infinity shows that f(a) = f(b), hence f is constant.

Similarly, if we take a = b, we find that∫
γR

f(z)

(z − a)2
dz = 2πi Res(F, a) = 2πi f ′(a).

Now we can similarly show that f ′(a) = 0 when f is bounded, which again shows that f is constant.


