\qquad

Math 503 Complex Analysis - Homework 1

1	2	3	4	5	TOTAL
40	60	0	0	0	100

Please do not write anything inside the above boxes!
Check that there are 2 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Starting from the following basic facts that we proved in class

$$
\begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta \text { for } \theta \in \mathbb{R}, \\
\sin z & =\sin x \cosh y+i \cos x \sinh y, \quad \text { and } \\
\cos z & =\cos x \cosh y-i \sin x \sinh y, \quad \text { for } x, y \in \mathbb{R}
\end{aligned}
$$

show that

$$
e^{i z}=\cos z+i \sin z, \quad \text { for } z \in \mathbb{C}
$$

Also show that for any $z_{1}, z_{2} \in \mathbb{C}$, we have the addition rules

$$
\begin{aligned}
& \sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\sin z_{2} \cos z_{1} \\
& \cos \left(z_{1}+z_{2}\right)=\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}
\end{aligned}
$$

Solution:

Q-2) Consider the function

$$
z \mapsto w=z+\frac{1}{z}, \quad \text { for } \quad z \in \mathbb{C}, z \neq 0 .
$$

Describe the mapping properties of this map. In other words define a Riemann surface S such that the map is one-to-one and onto S.

In particular find a contour C in the z-plane such that (a) it goes around the point $z=1$ once and totally lies in the right hand plane $\operatorname{Re} z>0$, and (b) its image can be easily described under the above map. Then describe its image. How many times does it go around the branch point $w=2$?

Solution:

