\qquad

Math 503 Complex Analysis - Homework 2 - Solutions

1	2	3	4	5	TOTAL
50	50	0	0	0	100

Please do not write anything inside the above boxes!
Check that there are 2 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $S=S_{(a, b, c)}$ be the unit sphere in \mathbb{R}^{3} centered at (a, b, c) with $c>-1$. Let $\alpha=a+i b$. Find a rigid motion T of S such that

$$
P_{T(S)} \circ T \circ P_{S}^{-1}(z)=\frac{1}{z-\alpha}
$$

where P_{S} denotes the stereographic projection to \mathbb{C} from the North pole of the sphere S, and similarly for $P_{T(S)}$.

Solution:

Here we use (x, y, t) as the Cartesian coordinates in \mathbb{R}^{3}, and by $P_{\vec{p}}$ we mean the stereographic projection to the complex plane $t=0$ from the North pole of the unit sphere centered at \vec{p}. In particular we have

$$
P_{(a, b, c)}(x, y, t)=\left(\frac{(1+c) x-a t}{1+c-t}, \frac{(1+c) y-b t}{1+c-t}\right),
$$

where $(x, y, t) \in S_{(a, b, c)}$, and $S_{(a, b, c)}$ is the unit sphere centered at (a, b, c).
Start with the unit sphere whose center is at (a, b, c). Move it to the origin, rotate around x-axis by π radians, move the center down to $(0,0,-c /(1+c))$. The resulting rigid motion corresponds to

$$
\frac{1}{z-\alpha} \quad \text { where } \quad \alpha=a+i b .
$$

Writing

$$
P_{(a, b, c)}^{-1}(X, Y)=\left(x_{0}, y_{0}, t_{0}\right),
$$

we have

$$
\frac{1}{z-\alpha}=P_{\left(0,0,-\frac{c}{1+c}\right)}\left(x_{0}-a,-y_{0}+b,-t_{0}+\frac{c^{2}}{1+c}\right) .
$$

Q-2) Start with the unit sphere S centered at $(0,0, k)$ with $k>-1$. Let $r>0$ be a real number. Find a rigid motion T of S such that

$$
P_{T(S)} \circ T \circ P_{S}^{-1}(z)=r z .
$$

Solution:

We use the notation of the previous solution.
Move the sphere S along the t-axis by s. The overall effect is

$$
P_{(0,0, k+s)}\left(P_{(0,0, k)}^{-1}(X, Y)+(0,0, s)\right)=\frac{1+k+s}{1+k}(X, Y) .
$$

We therefore solve for s from the equation

$$
r=\frac{1+k+s}{1+k}
$$

which gives

$$
s=(k+1)(r-1) .
$$

