NAME:.... Due Date: 24 November 2014, Monday – Class time

Ali Sinan Sertöz

STUDENT NO:

1	2	3	4	5	TOTAL
50	25	25	0	0	100

Math 503 Complex Analysis – Homework 3 – Solutions

Please do not write anything inside the above boxes!

Check that there are **3** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) For any $a \in D = \{|z| < 1\}$, we define

$$\phi_a(z) = \frac{z-a}{1-\bar{a}z}, \text{ for } z \in D.$$

We know that $\phi_a(D) = D$. Show that for any $a, b \in D$, there exists $c \in D$ such that

$$\phi_a \circ \phi_b = \lambda \phi_c$$

where λ is a complex number with $|\lambda| = 1$. (Make sure to check that |c| < 1.)

Moreover let $\alpha \in \partial D$, i.e. $|\alpha| = 1$. Show that there exist $d \in D$ and $\beta \in \partial D$ such that

$$\phi_a(\alpha\phi_b(z)) = \beta\phi_d(z)$$
 for all $z \in D$

(Again check that |d| < 1 and $|\beta| = 1$.)

Solution:

Straightforward calculation gives $c = \frac{a+b}{1+a\overline{b}} = \phi_{-b}(a) \in D$, and $\lambda = \frac{1+a\overline{b}}{1+\overline{a}b}$.

For the second part, again straightforward calculation gives $\beta = \frac{\alpha + a\bar{b}}{1 + \alpha\bar{a}b} = \phi_{-a\bar{b}}(\alpha) \in \partial D$, and $d = \bar{\alpha} \frac{a + \alpha b}{1 + \bar{\alpha}\bar{b}a} = \bar{\alpha} \phi_{-\alpha b}(a) \in D$.

STUDENT NO:

Q-2) [Conway, p133, Exercise 7] Suppose that f is analytic in a region containing the closure of $D = \{|z| < 1\}$. Assume that |f(z)| < 1 for $z \in D$. Assume further that f has a simple zero at $\frac{1}{4}((1+i))$ and a double zero at $\frac{1}{2}$. Can $f(0) = \frac{1}{2}$?

Solution:

Since $|\frac{1}{4}(1+i)| = \frac{\sqrt{2}}{4} \approx 0.35 < 1$, and since f maps this point to 0, we conclude that f maps D to D. Hence we have

$$f(z) = (z - \frac{1}{4}(1+i))(z - \frac{1}{2})^2 h(z),$$

for some analytic function h whose domain includes D. The data about f implies that h does not vanish at either $\frac{1}{4}(1+i)$ or at $\frac{1}{2}$. For |z| = 1, we have |f(z)| = 1, so it follows that

$$|h(z)| = \frac{1}{|z - \frac{1}{4}(1+i)| |z - \frac{1}{2}|^2}, \text{ for } |z| = 1.$$

We have to find the minimum value of $|z - \frac{1}{4}(1+i)| |z - \frac{1}{2}|^2$ when $z = e^{i\theta}$. Rewriting this product as

$$P(\theta) = \sqrt{(\cos \theta - \frac{1}{4})^2 + (\sin \theta - \frac{1}{4})^2} \left((\cos \theta - \frac{1}{2})^2 + \sin^2 \theta \right), \text{ for } \theta \in [0, 2\pi),$$

we find that

$$P'(\theta) = -\frac{1}{4} \frac{-23\,\sin\left(t\right) + 12\,\sin\left(t\right)\cos\left(t\right) + 8 - 12\,\left(\cos\left(t\right)\right)^2 + 5\,\cos\left(t\right)}{\sqrt{-8\,\cos\left(t\right) + 18 - 8\,\sin\left(t\right)}}$$

We find that $P'(\theta) = 0$ when $\theta_1 = 0.09896934220$ or when $\theta_2 = 3.380102351$. It follows that

 $P(\theta_1) = 0.1937932780 < 0.194$ and $P(\theta_2) = 2.921310938.$

Hence we have that $P(\theta) > 0.192$ for all $z = e^{i\theta}$. This gives

$$|h(z) < \frac{1}{0.192}$$
 for $z = e^{i\theta}$.

By the maximum modulus principle, this upper bound also bounds |h(z)| for all $z \in D$. Finally we have

$$f(0)| = \left|\frac{1}{4}(1+i)\right| \left|-\frac{1}{2}\right|^2 |h(z)| < \frac{\sqrt{2}}{4} \frac{1}{4} \frac{1}{0.192} \approx 0.46 < \frac{1}{2}$$

Hence f(0) cannot be 1/2.

NAME:

NAME:

STUDENT NO:

Q-3) [Conway, p133, Exercise 8] Is there an analytic function f on $D = \{|z| < 1\}$ such that |f(z)| < 1 for |z| < 1, $f(0) = \frac{1}{2}$, and $f'(0) = \frac{3}{4}$? If so, find such an f. Is it unique?

Solution:

If $f(a) = \alpha$, then $|f'(a)| \le \frac{1 - |\alpha|^2}{1 - |a|^2}$, see Conway page 132, equation 2.3. Here a = 0 and $\alpha = 1/2$. Putting these values into the above inequality, we see that we must have

$$|f'(0)| \le \frac{3}{4}$$

We already have f'(0) = 3/4 so equality holds. In that case, there exists a number c with |c| = 1 such that $f(z) = \phi_{-\alpha}(c\phi_a(z))$, see Conway page 132, equation 2.4. Here a = 0 and $\alpha = 1/2$. This gives

$$f(z) = \frac{cz + (1/2)}{1 + (1/2)cz} = \frac{2cz + 1}{2 + cz}.$$

It follows that

$$f'(z) = \frac{3c}{(2+cz)^2}.$$

Now we see that f'(0) = 3c/2. But it is given that f'(0) = 3/4, which forces c = 1. Thus such a function exists and is unique. In fact

$$f(z) = \frac{2z+1}{z+2}.$$