\qquad

Math 503 Complex Analysis - Homework 3 - Solutions

1	2	3	4	5	TOTAL
50	25	25	0	0	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{3}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) For any $a \in D=\{|z|<1\}$, we define

$$
\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}, \quad \text { for } \quad z \in D
$$

We know that $\phi_{a}(D)=D$. Show that for any $a, b \in D$, there exists $c \in D$ such that

$$
\phi_{a} \circ \phi_{b}=\lambda \phi_{c},
$$

where λ is a complex number with $|\lambda|=1$. (Make sure to check that $|c|<1$.)
Moreover let $\alpha \in \partial D$, i.e. $|\alpha|=1$. Show that there exist $d \in D$ and $\beta \in \partial D$ such that

$$
\phi_{a}\left(\alpha \phi_{b}(z)\right)=\beta \phi_{d}(z) \text { for all } z \in D .
$$

(Again check that $|d|<1$ and $|\beta|=1$.)

Solution:

Straightforward calculation gives $c=\frac{a+b}{1+a \bar{b}}=\phi_{-b}(a) \in D$, and $\lambda=\frac{1+a \bar{b}}{1+\bar{a} b}$.
For the second part, again straightforward calculation gives $\beta=\frac{\alpha+a \bar{b}}{1+\alpha \bar{a} b}=\phi_{-a \bar{b}}(\alpha) \in \partial D$, and $d=\bar{\alpha} \frac{a+\alpha b}{1+\bar{\alpha} \bar{b} a}=\bar{\alpha} \phi_{-\alpha b}(a) \in D$.

NAME:

STUDENT NO:

Q-2) [Conway, p133, Exercise 7] Suppose that f is analytic in a region containing the closure of $D=$ $\{|z|<1\}$. Assume that $|f(z)|<1$ for $z \in D$. Assume further that f has a simple zero at $\frac{1}{4}((1+i)$ and a double zero at $\frac{1}{2}$. Can $f(0)=\frac{1}{2}$?

Solution:

Since $\left|\frac{1}{4}(1+i)\right|=\frac{\sqrt{2}}{4} \approx 0.35<1$, and since f maps this point to 0 , we conclude that f maps D to D. Hence we have

$$
f(z)=\left(z-\frac{1}{4}(1+i)\right)\left(z-\frac{1}{2}\right)^{2} h(z)
$$

for some analytic function h whose domain includes D. The data about f implies that h does not vanish at either $\frac{1}{4}(1+i)$ or at $\frac{1}{2}$. For $|z|=1$, we have $|f(z)|=1$, so it follows that

$$
|h(z)|=\frac{1}{\left|z-\frac{1}{4}(1+i)\right|\left|z-\frac{1}{2}\right|^{2}}, \text { for }|z|=1
$$

We have to find the minimum value of $\left|z-\frac{1}{4}(1+i)\right|\left|z-\frac{1}{2}\right|^{2}$ when $z=e^{i \theta}$. Rewriting this product as

$$
\left.P(\theta)=\sqrt{\left(\cos \theta-\frac{1}{4}\right)^{2}+\left(\sin \theta-\frac{1}{4}\right)^{2}}\left(\left(\cos \theta-\frac{1}{2}\right)^{2}+\sin ^{2} \theta\right)\right), \text { for } \theta \in[0,2 \pi),
$$

we find that

$$
P^{\prime}(\theta)=-\frac{1}{4} \frac{-23 \sin (t)+12 \sin (t) \cos (t)+8-12(\cos (t))^{2}+5 \cos (t)}{\sqrt{-8 \cos (t)+18-8 \sin (t)}} .
$$

We find that $P^{\prime}(\theta)=0$ when $\theta_{1}=0.09896934220$ or when $\theta_{2}=3.380102351$. It follows that

$$
P\left(\theta_{1}\right)=0.1937932780<0.194 \text { and } P\left(\theta_{2}\right)=2.921310938
$$

Hence we have that $P(\theta)>0.192$ for all $z=e^{i \theta}$. This gives

$$
\left\lvert\, h(z)<\frac{1}{0.192}\right. \text { for } z=e^{i \theta}
$$

By the maximum modulus principle, this upper bound also bounds $|h(z)|$ for all $z \in D$. Finally we have

$$
|f(0)|=\left|\frac{1}{4}(1+i)\right|\left|-\frac{1}{2}\right|^{2}|h(z)|<\frac{\sqrt{2}}{4} \frac{1}{4} \frac{1}{0.192} \approx 0.46<\frac{1}{2} .
$$

Hence $f(0)$ cannot be $1 / 2$.

Q-3) [Conway, p133, Exercise 8] Is there an analytic function f on $D=\{|z|<1\}$ such that $|f(z)|<1$ for $|z|<1, f(0)=\frac{1}{2}$, and $f^{\prime}(0)=\frac{3}{4}$? If so, find such an f. Is it unique?

Solution:

If $f(a)=\alpha$, then $\left|f^{\prime}(a)\right| \leq \frac{1-|\alpha|^{2}}{1-|a|^{2}}$, see Conway page 132, equation 2.3. Here $a=0$ and $\alpha=1 / 2$.
Putting these values into the above inequality, we see that we must have

$$
\left|f^{\prime}(0)\right| \leq \frac{3}{4} .
$$

We already have $f^{\prime}(0)=3 / 4$ so equality holds. In that case, there exists a number c with $|c|=1$ such that $f(z)=\phi_{-\alpha}\left(c \phi_{a}(z)\right)$, see Conway page 132, equation 2.4. Here $a=0$ and $\alpha=1 / 2$. This gives

$$
f(z)=\frac{c z+(1 / 2)}{1+(1 / 2) c z}=\frac{2 c z+1}{2+c z} .
$$

It follows that

$$
f^{\prime}(z)=\frac{3 c}{(2+c z)^{2}} .
$$

Now we see that $f^{\prime}(0)=3 c / 2$. But it is given that $f^{\prime}(0)=3 / 4$, which forces $c=1$. Thus such a function exists and is unique. In fact

$$
f(z)=\frac{2 z+1}{z+2} .
$$

