\qquad

Ali Sinan Sertöz

STUDENT NO:

Math 503 Complex Analysis - Homework 3

1	2	3	4	5	TOTAL
50	25	25	0	0	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{3}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) For any $a \in D=\{|z|<1\}$, we define

$$
\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}, \quad \text { for } \quad z \in D
$$

We know that $\phi_{a}(D)=D$. Show that for any $a, b \in D$, there exists $c \in D$ such that

$$
\phi_{a} \circ \phi_{b}=\lambda \phi_{c},
$$

where λ is a complex number with $|\lambda|=1$. (Make sure to check that $|c|<1$.)
Moreover let $\alpha \in \partial D$, i.e. $|\alpha|=1$. Show that there exist $d \in D$ and $\beta \in \partial D$ such that

$$
\phi_{a}\left(\alpha \phi_{b}(z)\right)=\beta \phi_{d}(z) \text { for all } z \in D
$$

(Again check that $|d|<1$ and $|\beta|=1$.)

Solution:

STUDENT NO:

Q-2) [Conway, p133, Exercise 7] Suppose that f is analytic in a region containing the closure of $D=$ $\{|z|<1\}$. Assume that $|f(z)|<1$ for $z \in D$. Assume further that f has a simple zero at $\frac{1}{4}((1+i)$ and a double zero at $\frac{1}{2}$. Can $f(0)=\frac{1}{2}$?

Solution:

STUDENT NO:

Q-3) [Conway, p133, Exercise 8] Is there an analytic function f on $D=\{|z|<1\}$ such that $|f(z)|<1$ for $|z|<1, f(0)=\frac{1}{2}$, and $f^{\prime}(0)=\frac{3}{4}$? If so, find such an f. Is it unique?

Solution:

