NAME:.... Due Date: 24 November 2014, Monday – Class time

Ali Sinan Sertöz

STUDENT NO:

1	2	3	4	5	TOTAL
50	25	25	0	0	100

Math 503 Complex Analysis – Homework 3

Please do not write anything inside the above boxes!

Check that there are **3** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) For any $a \in D = \{|z| < 1\}$, we define

$$\phi_a(z) = \frac{z-a}{1-\bar{a}z}, \text{ for } z \in D.$$

We know that $\phi_a(D) = D$. Show that for any $a, b \in D$, there exists $c \in D$ such that

$$\phi_a \circ \phi_b = \lambda \phi_c$$

where λ is a complex number with $|\lambda| = 1$. (Make sure to check that |c| < 1.)

Moreover let $\alpha \in \partial D$, i.e. $|\alpha| = 1$. Show that there exist $d \in D$ and $\beta \in \partial D$ such that

$$\phi_a(\alpha \phi_b(z)) = \beta \phi_d(z)$$
 for all $z \in D$.

(Again check that |d| < 1 and $|\beta| = 1$.)

Solution:

NAME:

Q-2) [Conway, p133, Exercise 7] Suppose that f is analytic in a region containing the closure of $D = \{|z| < 1\}$. Assume that |f(z)| < 1 for $z \in D$. Assume further that f has a simple zero at $\frac{1}{4}((1+i))$ and a double zero at $\frac{1}{2}$. Can $f(0) = \frac{1}{2}$?

Solution:

NAME:

STUDENT NO:

Q-3) [Conway, p133, Exercise 8] Is there an analytic function f on $D = \{|z| < 1\}$ such that |f(z)| < 1 for |z| < 1, $f(0) = \frac{1}{2}$, and $f'(0) = \frac{3}{4}$? If so, find such an f. Is it unique?

Solution: