Due Date: 1 December 2014, Monday - Class time
NAME: \qquad
Ali Sinan Sertöz
STUDENT NO: \qquad

Math 503 Complex Analysis - Homework 4 - Solutions

1	2	3	4	5	TOTAL
100	0	0	0	0	100
Please do not write anything inside the above boxes!					

Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) [Conway, page 133, Exercise 5] Let f be analytic in $D=\{z| | z \mid<1\}$ and suppose that $|f(z)| \leq M$ for all z in D.
(a) If $f\left(z_{k}\right)=0$ for $1 \leq k \leq n$ show that

$$
|f(z)| \leq M \prod_{k=1}^{n} \frac{\left|z-z_{k}\right|}{\left|1-\bar{z}_{k} z\right|}
$$

for $|z|<1$.
(b) If $f\left(z_{k}\right)=0$ for $1 \leq k \leq n$, each $z_{k} \neq 0$, and $f(0)=M\left(z_{1} z_{2} \cdots z_{n}\right)$, find a formula for f.

Solution:

Set

$$
\phi(z)=\phi_{z_{1}}(z) \cdots \phi_{z_{n}}(z),
$$

where $\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}$. It follows that ϕ is analytic on D and that $\phi(D) \subseteq D$. Then

$$
h(z)=\frac{f(z)}{\phi(z)}
$$

is analytic on D. We claim that $|h(z)| \leq M$ for all $z \in D$. Assume not. Then there exists a point $z_{0} \in D$ such that

$$
\left|h\left(z_{0}\right)\right|=N>M .
$$

Now for any r with $\left|z_{0}\right|<r<1$ define

$$
\nu_{r}=\min _{|z|=r}|\phi(z)| .
$$

Since $|\phi(z)|=1$ for all $z \in \partial D$, we have by the maximum modulus principle that

$$
\lim _{r \rightarrow 1^{-}} \nu_{r}=1
$$

Again by the maximum modulus principle we have, for $\left|z_{0}\right|<r<1$,

$$
\max _{|z|=r}|h(z)| \geq N=\left|h\left(z_{0}\right)\right| .
$$

Combining these we have, for any z with $|z|=r$ with $\left|z_{0}\right|<r<1$,

$$
M \geq|f(z)|=|\phi(z)||h(z)| \geq \nu_{r}|h(z)|
$$

This gives

$$
M \geq \nu_{r}|h(z)| \text { for }|z|=r .
$$

Taking the maximum of both sides for $|z|=r$ we have

$$
M \geq \nu_{r} \max _{|z|=r}|h(z)| \geq \nu_{r} N
$$

This gives

$$
M \geq \nu_{r} N
$$

and taking the limit of both sides as r goes to 1 , we get

$$
M \geq N
$$

which contradicts the assumption $N>M$ which we had above. This proves that

$$
|h(z)| \leq M \quad \text { for all } z \in D
$$

The rest is now trivial. From $f(z)=\phi(z) h(z)$ we get

$$
|f(z)| \leq M \prod_{k=1}^{n} \frac{\left|z-z_{k}\right|}{\left|1-\bar{z}_{k} z\right|}
$$

for $|z|<1$, as required in part (a).
For part (b) note that

$$
\phi(0)=(-1)^{n}\left(z_{1} \cdots z_{n}\right) \quad \text { and hence } \quad h(0)=(-1)^{n} M,
$$

following the assumption about $f(0)$. But this gives $|h(0)|=M$, which says that the maximum value of the modulus is attained at an interior point. Then by the maximum modulus principle, h must be constant.

$$
h(z)=h(0)=(-1)^{n} M
$$

Since $h=f / \phi$, we have

$$
f(z)=(-1)^{n} M \phi(z)=(-1)^{n} M \prod_{k=1}^{n} \frac{z-z_{k}}{1-\overline{z_{k} z}} .
$$

