\qquad
\qquad

Math 503 Complex Analysis - Homework 4

1	2	3	4	5	TOTAL
100	0	0	0	0	100
Please do not write anything inside the above boxes!					

Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) [Conway, page 133, Exercise 5] Let f be analytic in $D=\{z| | z \mid<1\}$ and suppose that $|f(z)| \leq M$ for all z in D.
(a) If $f\left(z_{k}\right)=0$ for $1 \leq k \leq n$ show that

$$
|f(z)| \leq M \prod_{k=1}^{n} \frac{\left|z-z_{k}\right|}{\left|1-\bar{z}_{k} z\right|}
$$

for $|z|<1$.
(b) If $f\left(z_{k}\right)=0$ for $1 \leq k \leq n$, each $z_{k} \neq 0$, and $f(0)=M\left(z_{1} z_{2} \cdots z_{n}\right)$, find a formula for f.

Solution:

