\qquad

Math 503 Complex Analysis - Homework 5 - Solutions

1	2	3	4	5	TOTAL
100	0	0	0	0	100
Please do not write anything inside the above boxes!					

Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Prove the following formula for $\operatorname{Re} z>0$.

$$
\Gamma(z) \frac{\sin \theta z}{n\left(a^{2}+b^{2}\right)^{z / 2}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \sin \left(b t^{n}\right) d t
$$

where n is a positive integer, a and b are real numbers with $(a, b) \neq(0,0)$, and $\tan \theta=b / a$. When $a=0$, we take $\theta= \pm \pi / 2$ such that $\theta b>0$.
[Hint: Start with $\Gamma(z)=\int_{0}^{\infty} e^{-s} s^{z-1} d s$ and make the substitution $s=(a+i b) t^{n}$.]
Using this formula evaluate

$$
\int_{0}^{\infty} \sin t^{n} d t
$$

Solution:

Letting $s=(a+i b) t^{n}$ we get $d s=n(a+i b) t^{n-1} d t$. This gives

$$
\Gamma(z)=\int_{0}^{\infty} e^{-s} s^{z-1} d s=n(a+i b)^{z} \int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} e^{-i b t^{n}} d t
$$

Using Euler formula

$$
e^{-i b t^{n}}=\cos \left(b t^{n}\right)-i \sin \left(b t^{n}\right)
$$

we obtain

$$
\begin{equation*}
\frac{\Gamma(z)}{n(a+i b)^{z}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \cos \left(b t^{n}\right) d t-i \int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \sin \left(b t^{n}\right) d t \tag{A}
\end{equation*}
$$

Similarly, starting with the substitution $s=(a-i b) t^{n}$, we get

$$
\begin{equation*}
\frac{\Gamma(z)}{n(a-i b)^{z}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \cos \left(b t^{n}\right) d t+i \int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \sin \left(b t^{n}\right) d t \tag{B}
\end{equation*}
$$

Let $(a+i b)=r e^{i \theta}$ where $r=\sqrt{a^{2}+b^{2}}$ and θ is as above. Then we have

$$
\frac{1}{(a+i b)^{z}}=\frac{e^{-i \theta z}}{r^{z}}=\frac{\cos (\theta z)}{r^{z}}-i \frac{\sin (\theta z)}{r^{z}} .
$$

Similarly

$$
\frac{1}{(a-i b)^{z}}=\frac{e^{i \theta z}}{r^{z}}=\frac{\cos (\theta z)}{r^{z}}+i \frac{\sin (\theta z)}{r^{z}} .
$$

Finally, adding both sides of equations (A) and (B), we get

$$
\Gamma(z) \frac{\cos \theta z}{n\left(a^{2}+b^{2}\right)^{z / 2}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \cos \left(b t^{n}\right) d t
$$

And subtracting equation (A) from equation (B) we get

$$
\Gamma(z) \frac{\sin \theta z}{n\left(a^{2}+b^{2}\right)^{z / 2}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \sin \left(b t^{n}\right) d t
$$

In this last equation set $a=0$ and $b=1$. Then $\theta=\pi / 2$. Also set $z=1 / n$. We get

$$
\Gamma(1 / n) \frac{\sin (\pi /(2 n))}{n}=\int_{0}^{\infty} \sin \left(t^{n}\right) d t
$$

