\qquad

Ali Sinan Sertöz

STUDENT NO: \qquad

Math 503 Complex Analysis - Homework 5

1	2	3	4	5	TOTAL
100	0	0	0	0	100
Please do not write anything inside the above boxes!					

Check that there is $\mathbf{1}$ question on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

STUDENT NO:

Q-1) Prove the following formula for $\operatorname{Re} z>0$.

$$
\Gamma(z) \frac{\sin \theta z}{n\left(a^{2}+b^{2}\right)^{z / 2}}=\int_{0}^{\infty} e^{-a t^{n}} t^{n z-1} \sin \left(b t^{n}\right) d t
$$

where n is a positive integer, a and b are real numbers with $(a, b) \neq(0,0)$, and $\tan \theta=b / a$. When $a=0$, we take $\theta= \pm \pi / 2$ such that $\theta b>0$.
[Hint: Start with $\Gamma(z)=\int_{0}^{\infty} e^{-s} s^{z-1} d s$ and make the substitution $s=(a+i b) t^{n}$.]
Using this formula evaluate

$$
\int_{0}^{\infty} \sin t^{n} d t
$$

Solution:

