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Check that there are 2 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.



NAME: STUDENT NO:

Q-1) For a fixed integer n > 0 and a fixed real number α > 0, find all entire functions f satisfying
|f(z)| ≤ α|z|n for all z ∈ C.

Solution:

Let h(z) = f(z)/zn. This is an analytic function on the plane with a singularity at z = 0. The fact
that |h(z)| ≤ α, for all z ∈ C, shows that
(a) z = 0 is a removable singularity for h, hence h is entire and
(b) by Liouville’s theorem h is constant.
Let this constant be α′ ∈ C. Then f(z) = α′zn and since |f(z)| ≤ α|z|n, we must have |α′| ≤ α.
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Q-2) Note that cotan z is a meromorphic function with a simple pole at each z = πn, where n ∈ Z.
Therefore its Laurent series

cotan z =
b1
z
+
∞∑
n=0

anz
n

converges for |z| < π. Determine the coefficients b1, a0, a1, . . . , an, . . . .
The standard and easiest way to do this to use the following facts:
(a) eiz = cos z + i sin z, for all z ∈ C, and

(b)
z

ez − 1
=

∞∑
n=0

Bn

n!
zn, for |z| < 2π, where Bn are Bernoulli numbers with the convention that

B0 = 1 and B1 = −
1

2
.

Solution:

First observe that using (a) above we can write

cotan z =
cos z

sin z
= i

eiz + e−iz

eiz − e−iz
= i

e2iz + 1

e2iz − 1
= i

(
1 +

2

e2iz − 1

)
= i

(
1 +

1

iz

2iz

e2iz − 1

)
.

Next, using (b) above we can further write

cotan z == i

(
1 +

1

iz

2iz

e2iz − 1

)
== i

(
1 +

1

iz

∞∑
m=0

Bm

m!
(2iz)m,

)

which now converges for |z| < π. Simplifying this, and noting that B2n+1 = 0 for n ≥ 1, we get
finally

cotan z =
1

z
+
∞∑
n=1

(−1)n4
nB2n

(2n)!
z2n−1 =

1

z
− 1

3
z − 1

45
z3 − 2

945
z5 − 1

4725
z7 − 2

93555
z9 − · · · .

Note that all the upcoming signs are negative since B2n = (−1)n−1|B2n| for n ≥ 1.
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Q-3) Let U be a non-empty, open and connected subset of C, and let f be a holomorphic map on U .
Assume that there is a point z0 ∈ U such that |f(z0)| ≥ |f(z)| for all z ∈ U .

1. Using Cauchy Integral Formula, show that |f(z)| = c, a constant, for all z ∈ U .

2. Using Cauchy-Riemann equations, show that f is constant, assuming that |f(z)| is constant.

3. Using the Open Mapping Theorem, show that f is constant, assuming that |f(z)| is constant.

Solution:

Let r > 0 be such that Br(z0) ⊂ U . The Cauchy Integral Formula gives us

f(z0) =
1

2πi

∫
|z|=r

f(z)

z − z0
dz =

1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

Taking absolute values of both sides, we get

|f(z0)| ≤ |f(z0 + reiθ)| ≤ |f(z0)|,
where the last inequality is the given fact about f(z0). But this forces |f(z)| to be constant throughout
Br(z0). Now let z1 be any other point of U and let γ be a path connecting z0 to z1. We repeat the
above argument for every point on γ and conclude that |f(z0)| = |f(z1)|. This shows that |f(z)| = c,
constant, for all z ∈ U .

If c = 0, then clearly f = 0 and is constant, so there is nothing to prove. Assume c 6= 0.

Let f(z) = u(x, y) + iv(x, y), where u and v are real functions. We found that

u2 + v2 = c2.

Taking partial derivatives of both sides with respect to x and y separately, we find

uux + v vx = 0 and uuy + v vy = 0.

Using Cauchy-Riemann equations to replace vx and vy with −uy and ux respectively, we get

uux − v uy = 0 and uuy + v ux = 0. (∗)
Multiply the first equation by u, the second by v, and add side by side to obtain

(u2 + v2)ux = 0,

which implies that ux = 0 since c 6= 0. Next again starting from equation (∗), multiply the first
equation by v, the second by u and subtract to obtain

(u2 + v2)uy = 0,

which implies that uy = 0. Hence we get u = k, a constant. Now Cauchy-Riemann equations give
that vx = vy = 0, so v = k′ is also constant. This finally shows that f(z) = k + ik′ is constant.

If we however use a strong theorem such as the Open Mapping Theorem, we can prove that f is
constant much more easily. Since |f(z)| = c, the image of U under f is the closed set u2 + v2 = c2.
This is possible only if f is constant.
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Q-4) For any α ∈ R, define the integral

Iα =

∫ ∞
0

log(1 + x2)

x1+α
dx.

Show that Iα exists if and only if 0 < α < 2, and in that case we have

Iα =
π

α
cosec(

π

2
α).

Solution:

The singularities of the integrand are essential singularities. We try integration by parts with the hope
of getting a better integrand.

u = log(1 + x2) dv =
dx

x1+α

du =
2x dx

1 + x2
v = − 1

αxα
,

so we get ∫ ∞
0

log(1 + x2)

x1+α
dx = − 1

α

(
log(1 + x2)

xα

∣∣∣∣∞
0

)
+

2

α

∫ ∞
0

x1−α

1 + x2
dx.

Therefore the existence of Iα first of all requires the existence of the limits
(

log(1+x2)
xα

∣∣∣∞
0

)
. By using

L’Hospital’s rule we find that

(
log(1 + x2)

xα

∣∣∣∣∞
0

)
=


0 if 0 < α < 2,

−1 if α = 2,

∞ otherwise.
.

When α = 2, we see that∫
1

x(1 + x2)
dx =

∫ (
1

x
− x

1 + x2

)
dx =

1

2
ln

(
x2

1 + x2

)
+ C.

Calculating the limits, we see that

lim
x→∞

ln

(
x2

1 + x2

)
= 0, but lim

x→0+
ln

(
x2

1 + x2

)
= −∞.

Therefore I2 does not exist.

We now assume 0 < α < 2, and check if Iα exists for these values of α. Note that for these values of
α, we have

Iα =
2

α

∫ ∞
0

x1−α

1 + x2
dx. (∗∗)

To evaluate this integral first consider the function f(z) =
z1−α

1 + z2
, and the following contour.



Here 0 < ρ < 1 < R, and Cρ, CR are circles centered at the origin with radii ρ and R, respectively.
L1 is the line parametrized by z = x, with x ∈ (ρ,R), and−L2 is the line parametrized by z = xe2πi,
with x ∈ (ρ,R). The e2πi factor in L2 comes from the fact that we turn around the origin once and
the logarithm function keeps a record of this. Integer powers of z will not notice this turn but z1−α

will certainly incorporate non-trivially the turning factor e2πi, when α 6= 1, as we will see below.

Let γρ,R = L1 + CR + L2 + Cρ be the indented path in the figure. We will calculate
∫
γρ,R

f(z)dz in

two different ways and equate them with the hope of recovering Iα somewhere during the process.
First we observe that∫

γρ,R

f(z)dz =

∫
L1

f(z)dz +

∫
CR

f(z)dz +

∫
L2

f(z)dz +

∫
Cρ

f(z)dz.

When we take the limit of both sides as ρ→ 0 and R→∞ we will recover Iα on the right hand side,

and it will be equated to the other calculation of
∫
γρ,R

f(z)dz as done below.

∫
γρ,R

f(z)dz = (2πi)( sum of residues of f(z) inside the loop ).

Now we start to calculate the integrals on the circles. For this purpose let K > 0 be any real number
withK 6= 1, and let CK be the circle centered at the origin with radiusK. The modulus of the integral
of f around CK can be bounded as follows.∣∣∣∣∫

CK

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
|z|=K

z1−α

1 + z2
dz

∣∣∣∣ ≤ 2πK
K1−α

|1−K2|
= 2π

K2−α

|1−K2|
.



At this point observe that

lim
K→0

K2−α

|1−K2|
= 0 since 2− α > 0,

and

lim
K→∞

K2−α

|1−K2|
= 0 since 2− α < 2.

Therefore we have
lim
ρ→0

∫
Cρ

f(z)dz = 0, and lim
R→∞

∫
CR

f(z)dz = 0.

We now calculate the integrals on L1 and L2. On L1, we have z = x and x ∈ [ρ,R], so∫
L1

f(z) dz =

∫ R

ρ

x1−α

1 + x2
dx.

On −L2, we have z = xe2πi, with x ∈ [ρ,R], so we have

f(z) dz =
(xe2πi)1−α

1 + (xe2πi)2
d(xe2πi) = e−2πiα

x1−α

1 + x2
dx.

Hence we have ∫
L2

f(z) dz = −
∫
L2

f(z) dz = −e−2πiα
∫ R

ρ

x1−α

1 + x2
dx.

This leads to the equality

lim
ρ→0
R→∞

∫
γρ,R

f(z) dz =
α

2

(
1− e−2πiα

)
Iα, (∗ ∗ ∗)

where we used equation (∗∗).

Now we calculate residues. We use the branch of the log function compatible with our region inside
the loop γρ,R. This means that we write z in polar coordinates as z = reiθ with θ ∈ [0, 2π]. In
particular we have

log i =
π

2
i, and log(−i) = 3π

2
i.

We then have

Res

(
z1−α

1 + x2
, z = i

)
=

z1−α

2z

∣∣∣∣
z=i

=
z−α

2

∣∣∣∣
z=i

=
1

2
i−α =

1

2
e−α log i =

1

2
e−α

π
2
i

=
1

2
cos

π

2
α− i1

2
sin

π

2
α,

Res

(
z1−α

1 + x2
, z = −i

)
=

z1−α

2z

∣∣∣∣
z=−i

=
z−α

2

∣∣∣∣
z=−i

=
1

2
(−i)−α =

1

2
e−α log(−i) =

1

2
e−α

3π
2
i

=
1

2
cos

3π

2
α− i1

2
sin

3π

2
α.

Therefore

(2πi)(sum of residues) = π(sin
π

2
α + sin

3π

2
α) + iπ(cos

π

2
α + cos

3π

2
α).



This gives ∫
γρ,R

f(z) dz = π(sin
π

2
α + sin

3π

2
α) + iπ(cos

π

2
α + cos

3π

2
α).

Note that the right hand side is independent of ρ and r, so taking limits of both sides as ρ → 0 and
R→∞, and using equation (∗ ∗ ∗), we get

α

2

(
1− e−2πiα

)
Iα = π(sin

π

2
α + sin

3π

2
α) + iπ(cos

π

2
α + cos

3π

2
α).

Since 1− e−2πiα = (1− cos 2πα) + i(sin 2πα), we have

α

2
(1− cos 2πα)Iα = π(sin

π

2
α + sin

3π

2
α) (A)

and
α

2
(sin 2πα)Iα = π(cos

π

2
α + cos

3π

2
α). (B)

When α 6= 1
2
, 1, 3

2
, then we can divide by sin 2πα in equation (B) and get

Iα =
2π

α

cos π
2
α + cos 3π

2
α

sin 2πα

=
2π

α

cos πα cos π
2
α

sin πα cos πα

=
2π

α

cos π
2
α

sin πα

=
2π

α

cos π
2
α

2 sin π
2
α cos π

2
α

=
π

α
cosec

π

2
α.

Notice that the above cancelations were possible since α 6= 1
2
, 1, 3

2
.

Now suppose α = 1
2

or α = 3
2
. Equation (A) gives immediately that

Iα =
π

α

√
2.

Note however that
cosec

π

2
α =
√
2 when α =

1

2
or

3

2
.

When α = 1, we go back to equation (∗∗), to obtain

I1 = 2

∫ ∞
0

x

1 + x2
dx = 2

(
arctanx

∣∣∣∞
0

)
= π.

Again notice that
cosec

π

2
α = 1 when α = 1 .

Hence our final formula is
Iα =

π

α
cosec

π

2
α, for 0 < α < 2.


