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Ali Sinan Sertoz STUDENT NO ..o

Math 503 Complex Analysis — Take-Home Midterm Exam 1 — Solutions
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Please do not write anything inside the above boxes!

Check that there are 2 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.




NAME: STUDENT NO:

Q-1) For a fixed integer n > 0 and a fixed real number @ > 0, find all entire functions f satisfying
1f(2)] < alz|™forall z € C.

Solution:

Let h(z) = f(z)/z". This is an analytic function on the plane with a singularity at z = 0. The fact
that |h(z)| < a, for all z € C, shows that

(a) z = 0 is a removable singularity for A, hence h is entire and

(b) by Liouville’s theorem h is constant.

Let this constant be o/ € C. Then f(z) = /2" and since | f(2)| < «|z|™, we must have |o/| < a.
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Q-2) Note that cotan z is a meromorphic function with a simple pole at each z = 7n, where n € Z.
Therefore its Laurent series

b~ .
cotan z = ; + Z anz
converges for |z| < 7. Determine the coefficients by, ag, ay, ..., ap,. ...
The standard and easiest way to do this to use the following facts:
(a) e"* = cosz +isin z, forall z € C, and
o0

1= —T 2", for |z| < 27, where B,, are Bernoulli numbers with the convention that
n!

n=0
By=1land By = —-
Solution:

First observe that using (a) above we can write

cosz . eF4e ™ ePF4p1l 2 , 1 2z
cotan z = — =1 =1 — =1 |1+ — =1 (14 —— .

sin z eir — g~z etz — 1

Next, using (b) above we can further write

, 1 2iz , 1 <=Bm .
cotan z == 1 (1—1—;6%2_1) ==1 <1+EZ_!(2ZZ) ,>

which now converges for |z| < w. Simplifying this, and noting that By,,; = 0 for n > 1, we get
finally

cotan z =

45° 0457 4725 ° 93555

NI'—‘

i 4n32n a1 _ L1 1, 2 . 1 . 2
-—cZ
— z 3

Note that all the upcoming signs are negative since By, = (—1)"7!|By,| forn > 1.
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Q-3) Let U be a non-empty, open and connected subset of C, and let f be a holomorphic map on U.
Assume that there is a point zy € U such that | f(z)| > |f(z)| forall z € U.

1. Using Cauchy Integral Formula, show that | f(z)| = ¢, a constant, for all z € U.
2. Using Cauchy-Riemann equations, show that f is constant, assuming that | f(z)| is constant.

3. Using the Open Mapping Theorem, show that f is constant, assuming that | f(z)| is constant.

Solution:

Let » > 0 be such that B, (z9) C U. The Cauchy Integral Formula gives us

1 f(z) 1 /27r 16
feo) =g [ o b =gy [ fGore®
Taking absolute values of both sides, we get

[f(20)] < [f (20 + 7€) < | £ (20,

where the last inequality is the given fact about f(z,). But this forces | f(z)]| to be constant throughout
B,.(zp). Now let z; be any other point of U and let v be a path connecting 2, to z;. We repeat the
above argument for every point on « and conclude that | f(29)| = | f(21)|. This shows that | f(2)| = ¢,
constant, for all z € U.

If ¢ = 0, then clearly f = 0 and is constant, so there is nothing to prove. Assume ¢ # 0.

Let f(2) = u(z,y) + iv(x, y), where u and v are real functions. We found that
u? + v =2
Taking partial derivatives of both sides with respect to = and y separately, we find
Uy +vv; = 0and uu, +vov, = 0.

Using Cauchy-Riemann equations to replace v, and v, with —u, and u, respectively, we get

uuy; —vuy, =0 and wuy, +vu, =0. (%)
Multiply the first equation by u, the second by v, and add side by side to obtain
(u? +v*) u, =0,

which implies that u, = 0 since ¢ # 0. Next again starting from equation (x), multiply the first
equation by v, the second by u and subtract to obtain

(u® 4+ v*) u, = 0,

which implies that u,, = 0. Hence we get u = k, a constant. Now Cauchy-Riemann equations give
that v, = v, = 0, so v = k' is also constant. This finally shows that f(z) = k + ik’ is constant.

If we however use a strong theorem such as the Open Mapping Theorem, we can prove that f is
constant much more easily. Since |f(z)| = ¢, the image of U under f is the closed set u? + v? = 2.
This is possible only if f is constant.



NAME: STUDENT NO:

Q-4) For any o € R, define the integral

0 2
[a:/ log(ll——i—x)dw.
0 rite

Show that [, exists if and only if 0 < o < 2, and in that case we have

I, = T cosec(Z Q).
o'

Solution:

The singularities of the integrand are essential singularities. We try integration by parts with the hope
of getting a better integrand.

dx
_ 2 _
u = log(1 + z%) dv—xHa
2x dx 1
du = —— v=— :
1+ a2 ar®

so we get

/°° log(1 + z?) D — 1 (log(l + 2?)
0

x1+a % xro

> 2 [ gplm@
+ = 5 dx.
0 alo 1+x
log(1+2?) OO) By usin
= |y ) y g

Therefore the existence of [, first of all requires the existence of the limits (
L’Hospital’s rule we find that

0 if0 < a<?2,

): -1 ifa=2,

<log(1 +2?)

xa

oo otherwise.

When o = 2, we see that

1 1 x 1 z?
———dr = - — de=-In|—— .
/a:(1+x2) g /(m 1—|—x2) ’ 2n<1—|—x2>+0

Calculating the limits, we see that

x? 22
:vlg&ln(l—i—x?) =0, but xlg&ln(l_i_ﬂ) S

Therefore I, does not exist.

We now assume 0 < « < 2, and check if I, exists for these values of «.. Note that for these values of

o, we have )
2 [o@) —Q
I, = —/ < dx. ()
a o 1+ a2

11—«

To evaluate this integral first consider the function f(z) = 5» and the following contour.

142



‘8;'& = Lq"ﬁ.’ca\% RAL ar Cif

¢

L6
We wse that branch A log where z=0e with
04 OLLT , 3nd @gg;&.m—dﬁ‘-

Here 0 < p < 1 < R, and C,, Ck, are circles centered at the origin with radii p and R, respectively.
Ly is the line parametrized by z = x, with z € (p, R), and — L, is the line parametrized by z = ze*™,
with z € (p, R). The €™ factor in L, comes from the fact that we turn around the origin once and
the logarithm function keeps a record of this. Integer powers of z will not notice this turn but 2!~

will certainly incorporate non-trivially the turning factor ™, when a # 1, as we will see below.

Let v, r = L1 + Cr + Ly + C, be the indented path in the figure. We will calculate f(2)dz in
Ypo,R
two different ways and equate them with the hope of recovering I, somewhere during the process.

First we observe that
/ fde= [ fde+ [ f@de+ [ fede+ [ ).
Yp,R Ly Cr Lo C,

When we take the limit of both sides as p — 0 and R — oo we will recover /,, on the right hand side,

and it will be equated to the other calculation of f(2)dz as done below.
Ypo,R

/ f(2)dz = (2mi)( sum of residues of f(z) inside the loop ).
To.R

P

Now we start to calculate the integrals on the circles. For this purpose let /A > 0 be any real number
with K # 1, and let C' be the circle centered at the origin with radius K. The modulus of the integral
of f around C'x can be bounded as follows.

/ Zl—a q Kl—a K2—o¢
= — az
el 1+ 22

=2 .
ATyl

< 2K
= TR

f(z)dz
Ck




At this point observe that

2—a
Il{lgl()m:() since 2 — «a > 0,
and
2—a
lim ——— =0 since 2 —a < 2.

Therefore we have

lim/ f(2)dz =0, and lim/ f(z)dz =0.
C, Cr

p—0 R—o0

We now calculate the integrals on L; and Ly. On Ly, we have z = z and x € [p, R], so

R xlfa
f(z)dz = / dx.
L1 o 1+ x2
On — Lo, we have z = ze*™, with z € [p, R], so we have
(x627ri)1—oc o . xl—a
d — . ™ — T d .
f(z)dz 1 + (ze?m)? (we™) 1+ 22 v
Hence we have
s R ml—a y
fx)dz=— [ f(z)dz=—e" ma/ x.
Lo Lo P 1 + 1'2
This leads to the equality
lim f(z)dz = @ (1- e 2 1, Gk * %)
p—0 2
R—o0 ” TR

where we used equation ().

Now we calculate residues. We use the branch of the log function compatible with our region inside
the loop 7, zr. This means that we write z in polar coordinates as z = re with § € [0,2n]. In
particular we have

3
logi = gi, and log(—1) = g i.
We then have
Zl_a : 21—01 z7 1 -—q —alogt —aZi
Res <m,z = 7,) = 5 . = T . = 5 7 e g e 92
B 1 T 1 T
= 20052a ZQsza,
2l 2l Z 1 oe(y 1 _8m
IR — g — _ _ a —alog(—1) ~—astg
Res(l—l—x?’z_ z) = =, Z:_i— 5 Z:_i—2( i)"Y= e 8 5¢ 2
1 3 1 .3
= = — a — 1= sin — a.
5 CoSs 5 o 12 S 5 «
Therefore
s 3 s 3

(27i)(sum of residues) = 7(sin 5 + sin > a) + im(cos 5@ + cos > Q).



This gives

3 3
f(2)dz = W(singa + Singa) + iw(cosga + cos ga).

Ypo,R
Note that the right hand side is independent of p and r, so taking limits of both sides as p — 0 and
R — 00, and using equation (* * *), we get

. 3 3
% (1—e?) I, = n(sin g a + sin ; a) + im(cos g a + cos g Q).
Since 1 — e *™* = (1 — cos 27a) + i(sin 27a’), we have
3
g(1 —cos2ma)l, = ﬂ(sinﬁa—i—sin—ﬂa) (A)
2 2 2
and 3
%(sin 2ra)l, = m(cos g a + cos g ). (B)
When o # 1,1, 2, then we can divide by sin 2ma in equation (B) and get

2mcos 5 a+cos L a

Ia = N
a sin 27w

2 COS QY COS %a

o Sin T Ccos T

27T COS ga

o sin o

27 CcoS %oz

a 2sin ga Cos ga

> s
= — cosec —a.
« 2
Notice that the above cancelations were possible since o # %, 1, %

Now suppose o = % or o = % Equation (A) gives immediately that

2
L=2V2
«

Note however that .
T
—a=+v2 wh = = —.
Cose02a \/_ when « 5 or 5
When o = 1, we go back to equation (xx), to obtain

I 22/0 1_f$2 dr =2 (arctanx)o ) = .

Again notice that
T
cosec Ea =1 whena=1

Hence our final formula is -

s
I, = —cosec —ar, for 0<a<?2.
« 2



