Math 503 Complex Analysis - Take-Home Midterm Exam 1 - Solutions

1	2	3	4	TOTAL
20	20	20	40	100
Please do not write anything inside the above boxes!				

Check that there are 2 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

STUDENT NO:

Q-1) For a fixed integer $n>0$ and a fixed real number $\alpha>0$, find all entire functions f satisfying $|f(z)| \leq \alpha|z|^{n}$ for all $z \in \mathbb{C}$.

Solution:

Let $h(z)=f(z) / z^{n}$. This is an analytic function on the plane with a singularity at $z=0$. The fact that $|h(z)| \leq \alpha$, for all $z \in \mathbb{C}$, shows that
(a) $z=0$ is a removable singularity for h, hence h is entire and
(b) by Liouville's theorem h is constant.

Let this constant be $\alpha^{\prime} \in \mathbb{C}$. Then $f(z)=\alpha^{\prime} z^{n}$ and since $|f(z)| \leq \alpha|z|^{n}$, we must have $\left|\alpha^{\prime}\right| \leq \alpha$.

Q-2) Note that $\operatorname{cotan} z$ is a meromorphic function with a simple pole at each $z=\pi n$, where $n \in \mathbb{Z}$. Therefore its Laurent series

$$
\operatorname{cotan} z=\frac{b_{1}}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}
$$

converges for $|z|<\pi$. Determine the coefficients $b_{1}, a_{0}, a_{1}, \ldots, a_{n}, \ldots$.
The standard and easiest way to do this to use the following facts:
(a) $e^{i z}=\cos z+i \sin z$, for all $z \in \mathbb{C}$, and
(b) $\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}$, for $|z|<2 \pi$, where B_{n} are Bernoulli numbers with the convention that $B_{0}=1$ and $B_{1}=-\frac{1}{2}$.

Solution:

First observe that using (a) above we can write

$$
\operatorname{cotan} z=\frac{\cos z}{\sin z}=i \frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}}=i \frac{e^{2 i z}+1}{e^{2 i z}-1}=i\left(1+\frac{2}{e^{2 i z}-1}\right)=i\left(1+\frac{1}{i z} \frac{2 i z}{e^{2 i z}-1}\right) .
$$

Next, using (b) above we can further write

$$
\operatorname{cotan} z==i\left(1+\frac{1}{i z} \frac{2 i z}{e^{2 i z}-1}\right)==i\left(1+\frac{1}{i z} \sum_{m=0}^{\infty} \frac{B_{m}}{m!}(2 i z)^{m},\right)
$$

which now converges for $|z|<\pi$. Simplifying this, and noting that $B_{2 n+1}=0$ for $n \geq 1$, we get finally

$$
\operatorname{cotan} z=\frac{1}{z}+\sum_{n=1}^{\infty}(-1)^{n} \frac{4^{n} B_{2 n}}{(2 n)!} z^{2 n-1}=\frac{1}{z}-\frac{1}{3} z-\frac{1}{45} z^{3}-\frac{2}{945} z^{5}-\frac{1}{4725} z^{7}-\frac{2}{93555} z^{9}-\cdots .
$$

Note that all the upcoming signs are negative since $B_{2 n}=(-1)^{n-1}\left|B_{2 n}\right|$ for $n \geq 1$.

NAME: STUDENT NO:

Q-3) Let U be a non-empty, open and connected subset of \mathbb{C}, and let f be a holomorphic map on U. Assume that there is a point $z_{0} \in U$ such that $\left|f\left(z_{0}\right)\right| \geq|f(z)|$ for all $z \in U$.

1. Using Cauchy Integral Formula, show that $|f(z)|=c$, a constant, for all $z \in U$.
2. Using Cauchy-Riemann equations, show that f is constant, assuming that $|f(z)|$ is constant.
3. Using the Open Mapping Theorem, show that f is constant, assuming that $|f(z)|$ is constant.

Solution:

Let $r>0$ be such that $B_{r}\left(z_{0}\right) \subset U$. The Cauchy Integral Formula gives us

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Taking absolute values of both sides, we get

$$
\left|f\left(z_{0}\right)\right| \leq\left|f\left(z_{0}+r e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right|
$$

where the last inequality is the given fact about $f\left(z_{0}\right)$. But this forces $|f(z)|$ to be constant throughout $B_{r}\left(z_{0}\right)$. Now let z_{1} be any other point of U and let γ be a path connecting z_{0} to z_{1}. We repeat the above argument for every point on γ and conclude that $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{1}\right)\right|$. This shows that $|f(z)|=c$, constant, for all $z \in U$.

If $c=0$, then clearly $f=0$ and is constant, so there is nothing to prove. Assume $c \neq 0$.
Let $f(z)=u(x, y)+i v(x, y)$, where u and v are real functions. We found that

$$
u^{2}+v^{2}=c^{2} .
$$

Taking partial derivatives of both sides with respect to x and y separately, we find

$$
u u_{x}+v v_{x}=0 \text { and } u u_{y}+v v_{y}=0 .
$$

Using Cauchy-Riemann equations to replace v_{x} and v_{y} with $-u_{y}$ and u_{x} respectively, we get

$$
\begin{equation*}
u u_{x}-v u_{y}=0 \quad \text { and } \quad u u_{y}+v u_{x}=0 . \tag{*}
\end{equation*}
$$

Multiply the first equation by u, the second by v, and add side by side to obtain

$$
\left(u^{2}+v^{2}\right) u_{x}=0
$$

which implies that $u_{x}=0$ since $c \neq 0$. Next again starting from equation $(*)$, multiply the first equation by v, the second by u and subtract to obtain

$$
\left(u^{2}+v^{2}\right) u_{y}=0,
$$

which implies that $u_{y}=0$. Hence we get $u=k$, a constant. Now Cauchy-Riemann equations give that $v_{x}=v_{y}=0$, so $v=k^{\prime}$ is also constant. This finally shows that $f(z)=k+i k^{\prime}$ is constant.

If we however use a strong theorem such as the Open Mapping Theorem, we can prove that f is constant much more easily. Since $|f(z)|=c$, the image of U under f is the closed set $u^{2}+v^{2}=c^{2}$. This is possible only if f is constant.

Q-4) For any $\alpha \in \mathbb{R}$, define the integral

$$
I_{\alpha}=\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right)}{x^{1+\alpha}} d x
$$

Show that I_{α} exists if and only if $0<\alpha<2$, and in that case we have

$$
I_{\alpha}=\frac{\pi}{\alpha} \operatorname{cosec}\left(\frac{\pi}{2} \alpha\right) .
$$

Solution:

The singularities of the integrand are essential singularities. We try integration by parts with the hope of getting a better integrand.

$$
\begin{aligned}
u & =\log \left(1+x^{2}\right) & d v & =\frac{d x}{x^{1+\alpha}} \\
d u & =\frac{2 x d x}{1+x^{2}} & v & =-\frac{1}{\alpha x^{\alpha}}
\end{aligned}
$$

so we get

$$
\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right)}{x^{1+\alpha}} d x=-\frac{1}{\alpha}\left(\left.\frac{\log \left(1+x^{2}\right)}{x^{\alpha}}\right|_{0} ^{\infty}\right)+\frac{2}{\alpha} \int_{0}^{\infty} \frac{x^{1-\alpha}}{1+x^{2}} d x
$$

Therefore the existence of I_{α} first of all requires the existence of the limits $\left(\left.\frac{\log \left(1+x^{2}\right)}{x^{\alpha}}\right|_{0} ^{\infty}\right)$. By using L'Hospital's rule we find that

$$
\left(\left.\frac{\log \left(1+x^{2}\right)}{x^{\alpha}}\right|_{0} ^{\infty}\right)= \begin{cases}0 & \text { if } 0<\alpha<2 \\ -1 & \text { if } \alpha=2 \\ \infty & \text { otherwise }\end{cases}
$$

When $\alpha=2$, we see that

$$
\int \frac{1}{x\left(1+x^{2}\right)} d x=\int\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x=\frac{1}{2} \ln \left(\frac{x^{2}}{1+x^{2}}\right)+C
$$

Calculating the limits, we see that

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}}{1+x^{2}}\right)=0, \quad \text { but } \quad \lim _{x \rightarrow 0^{+}} \ln \left(\frac{x^{2}}{1+x^{2}}\right)=-\infty
$$

Therefore I_{2} does not exist.
We now assume $0<\alpha<2$, and check if I_{α} exists for these values of α. Note that for these values of α, we have

$$
\begin{equation*}
I_{\alpha}=\frac{2}{\alpha} \int_{0}^{\infty} \frac{x^{1-\alpha}}{1+x^{2}} d x \tag{**}
\end{equation*}
$$

To evaluate this integral first consider the function $f(z)=\frac{z^{1-\alpha}}{1+z^{2}}$, and the following contour.

$$
\gamma_{\rho, R}=L_{1}+C_{R}+L_{2}+C_{\rho}
$$

We use that branch of \log where $z=r e^{i \theta}$ with
$0 \leqslant \theta \leq 2 \pi$, and $\log z=\ln r+i \theta$.

Here $0<\rho<1<R$, and C_{ρ}, C_{R} are circles centered at the origin with radii ρ and R, respectively. L_{1} is the line parametrized by $z=x$, with $x \in(\rho, R)$, and $-L_{2}$ is the line parametrized by $z=x e^{2 \pi i}$, with $x \in(\rho, R)$. The $e^{2 \pi i}$ factor in L_{2} comes from the fact that we turn around the origin once and the logarithm function keeps a record of this. Integer powers of z will not notice this turn but $z^{1-\alpha}$ will certainly incorporate non-trivially the turning factor $e^{2 \pi i}$, when $\alpha \neq 1$, as we will see below.

Let $\gamma_{\rho, R}=L_{1}+C_{R}+L_{2}+C_{\rho}$ be the indented path in the figure. We will calculate $\int_{\gamma_{\rho, R}} f(z) d z$ in two different ways and equate them with the hope of recovering I_{α} somewhere during the process. First we observe that

$$
\int_{\gamma_{\rho, R}} f(z) d z=\int_{L_{1}} f(z) d z+\int_{C_{R}} f(z) d z+\int_{L_{2}} f(z) d z+\int_{C_{\rho}} f(z) d z
$$

When we take the limit of both sides as $\rho \rightarrow 0$ and $R \rightarrow \infty$ we will recover I_{α} on the right hand side, and it will be equated to the other calculation of $\int_{\gamma_{\rho, R}} f(z) d z$ as done below.

$$
\int_{\gamma_{\rho, R}} f(z) d z=(2 \pi i)(\text { sum of residues of } f(z) \text { inside the loop }) \text {. }
$$

Now we start to calculate the integrals on the circles. For this purpose let $K>0$ be any real number with $K \neq 1$, and let C_{K} be the circle centered at the origin with radius K. The modulus of the integral of f around C_{K} can be bounded as follows.

$$
\left|\int_{C_{K}} f(z) d z\right|=\left|\int_{|z|=K} \frac{z^{1-\alpha}}{1+z^{2}} d z\right| \leq 2 \pi K \frac{K^{1-\alpha}}{\left|1-K^{2}\right|}=2 \pi \frac{K^{2-\alpha}}{\left|1-K^{2}\right|}
$$

At this point observe that

$$
\lim _{K \rightarrow 0} \frac{K^{2-\alpha}}{\left|1-K^{2}\right|}=0 \quad \text { since } \quad 2-\alpha>0
$$

and

$$
\lim _{K \rightarrow \infty} \frac{K^{2-\alpha}}{\left|1-K^{2}\right|}=0 \quad \text { since } \quad 2-\alpha<2
$$

Therefore we have

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=0, \quad \text { and } \quad \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0 .
$$

We now calculate the integrals on L_{1} and L_{2}. On L_{1}, we have $z=x$ and $x \in[\rho, R]$, so

$$
\int_{L_{1}} f(z) d z=\int_{\rho}^{R} \frac{x^{1-\alpha}}{1+x^{2}} d x
$$

On $-L_{2}$, we have $z=x e^{2 \pi i}$, with $x \in[\rho, R]$, so we have

$$
f(z) d z=\frac{\left(x e^{2 \pi i}\right)^{1-\alpha}}{1+\left(x e^{2 \pi i}\right)^{2}} d\left(x e^{2 \pi i}\right)=e^{-2 \pi i \alpha} \frac{x^{1-\alpha}}{1+x^{2}} d x
$$

Hence we have

$$
\int_{L_{2}} f(z) d z=-\int_{L_{2}} f(z) d z=-e^{-2 \pi i \alpha} \int_{\rho}^{R} \frac{x^{1-\alpha}}{1+x^{2}} d x
$$

This leads to the equality

$$
\begin{equation*}
\lim _{\substack{\rho \rightarrow 0 \\ R \rightarrow \infty}} \int_{\gamma_{\rho, R}} f(z) d z=\frac{\alpha}{2}\left(1-e^{-2 \pi i \alpha}\right) I_{\alpha}, \tag{***}
\end{equation*}
$$

where we used equation $(* *)$.
Now we calculate residues. We use the branch of the log function compatible with our region inside the loop $\gamma_{\rho, R}$. This means that we write z in polar coordinates as $z=r e^{i \theta}$ with $\theta \in[0,2 \pi]$. In particular we have

$$
\log i=\frac{\pi}{2} i, \quad \text { and } \quad \log (-i)=\frac{3 \pi}{2} i
$$

We then have

$$
\begin{aligned}
\operatorname{Res}\left(\frac{z^{1-\alpha}}{1+x^{2}}, z=i\right) & =\left.\frac{z^{1-\alpha}}{2 z}\right|_{z=i}=\left.\frac{z^{-\alpha}}{2}\right|_{z=i}=\frac{1}{2} i^{-\alpha}=\frac{1}{2} e^{-\alpha \log i}=\frac{1}{2} e^{-\alpha \frac{\pi}{2} i} \\
& =\frac{1}{2} \cos \frac{\pi}{2} \alpha-i \frac{1}{2} \sin \frac{\pi}{2} \alpha, \\
\operatorname{Res}\left(\frac{z^{1-\alpha}}{1+x^{2}}, z=-i\right) & =\left.\frac{z^{1-\alpha}}{2 z}\right|_{z=-i}=\left.\frac{z^{-\alpha}}{2}\right|_{z=-i}=\frac{1}{2}(-i)^{-\alpha}=\frac{1}{2} e^{-\alpha \log (-i)}=\frac{1}{2} e^{-\alpha \frac{3 \pi}{2} i} \\
& =\frac{1}{2} \cos \frac{3 \pi}{2} \alpha-i \frac{1}{2} \sin \frac{3 \pi}{2} \alpha .
\end{aligned}
$$

Therefore

$$
(2 \pi i)(\text { sum of residues })=\pi\left(\sin \frac{\pi}{2} \alpha+\sin \frac{3 \pi}{2} \alpha\right)+i \pi\left(\cos \frac{\pi}{2} \alpha+\cos \frac{3 \pi}{2} \alpha\right)
$$

This gives

$$
\int_{\gamma_{\rho, R}} f(z) d z=\pi\left(\sin \frac{\pi}{2} \alpha+\sin \frac{3 \pi}{2} \alpha\right)+i \pi\left(\cos \frac{\pi}{2} \alpha+\cos \frac{3 \pi}{2} \alpha\right)
$$

Note that the right hand side is independent of ρ and r, so taking limits of both sides as $\rho \rightarrow 0$ and $R \rightarrow \infty$, and using equation $(* * *)$, we get

$$
\frac{\alpha}{2}\left(1-e^{-2 \pi i \alpha}\right) I_{\alpha}=\pi\left(\sin \frac{\pi}{2} \alpha+\sin \frac{3 \pi}{2} \alpha\right)+i \pi\left(\cos \frac{\pi}{2} \alpha+\cos \frac{3 \pi}{2} \alpha\right)
$$

Since $1-e^{-2 \pi i \alpha}=(1-\cos 2 \pi \alpha)+i(\sin 2 \pi \alpha)$, we have

$$
\begin{equation*}
\frac{\alpha}{2}(1-\cos 2 \pi \alpha) I_{\alpha}=\pi\left(\sin \frac{\pi}{2} \alpha+\sin \frac{3 \pi}{2} \alpha\right) \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha}{2}(\sin 2 \pi \alpha) I_{\alpha}=\pi\left(\cos \frac{\pi}{2} \alpha+\cos \frac{3 \pi}{2} \alpha\right) . \tag{B}
\end{equation*}
$$

When $\alpha \neq \frac{1}{2}, 1, \frac{3}{2}$, then we can divide by $\sin 2 \pi \alpha$ in equation (B) and get

$$
\begin{aligned}
I_{\alpha} & =\frac{2 \pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha+\cos \frac{3 \pi}{2} \alpha}{\sin 2 \pi \alpha} \\
& =\frac{2 \pi}{\alpha} \frac{\cos \pi \alpha \cos \frac{\pi}{2} \alpha}{\sin \pi \alpha \cos \pi \alpha} \\
& =\frac{2 \pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha}{\sin \pi \alpha} \\
& =\frac{2 \pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha}{2 \sin \frac{\pi}{2} \alpha \cos \frac{\pi}{2} \alpha} \\
& =\frac{\pi}{\alpha} \operatorname{cosec} \frac{\pi}{2} \alpha .
\end{aligned}
$$

Notice that the above cancelations were possible since $\alpha \neq \frac{1}{2}, 1, \frac{3}{2}$.
Now suppose $\alpha=\frac{1}{2}$ or $\alpha=\frac{3}{2}$. Equation (A) gives immediately that

$$
I_{\alpha}=\frac{\pi}{\alpha} \sqrt{2} .
$$

Note however that

$$
\operatorname{cosec} \frac{\pi}{2} \alpha=\sqrt{2} \quad \text { when } \alpha=\frac{1}{2} \quad \text { or } \frac{3}{2} .
$$

When $\alpha=1$, we go back to equation $(* *)$, to obtain

$$
I_{1}=2 \int_{0}^{\infty} \frac{x}{1+x^{2}} d x=2\left(\left.\arctan x\right|_{0} ^{\infty}\right)=\pi
$$

Again notice that

$$
\operatorname{cosec} \frac{\pi}{2} \alpha=1 \quad \text { when } \alpha=1
$$

Hence our final formula is

$$
I_{\alpha}=\frac{\pi}{\alpha} \operatorname{cosec} \frac{\pi}{2} \alpha, \text { for } 0<\alpha<2 .
$$

