Due Date: 17 November 2014, Monday – Class time NAME:.....

Ali Sinan Sertöz

STUDENT NO:

Math 503 Complex Analysis – Take-Home Midterm Exam 1 – Solutions

1	2	3	4	TOTAL
20	20	20	40	100

Please do not write anything inside the above boxes!

Check that there are **2** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) For a fixed integer n > 0 and a fixed real number $\alpha > 0$, find all entire functions f satisfying $|f(z)| \le \alpha |z|^n$ for all $z \in \mathbb{C}$.

Solution:

Let $h(z) = f(z)/z^n$. This is an analytic function on the plane with a singularity at z = 0. The fact that $|h(z)| \leq \alpha$, for all $z \in \mathbb{C}$, shows that

(a) z = 0 is a removable singularity for h, hence h is entire and

(b) by Liouville's theorem h is constant.

Let this constant be $\alpha' \in \mathbb{C}$. Then $f(z) = \alpha' z^n$ and since $|f(z)| \leq \alpha |z|^n$, we must have $|\alpha'| \leq \alpha$.

STUDENT NO:

Q-2) Note that $\cot an z$ is a meromorphic function with a simple pole at each $z = \pi n$, where $n \in \mathbb{Z}$. Therefore its Laurent series

$$\cot a_n z = \frac{b_1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

converges for $|z| < \pi$. Determine the coefficients $b_1, a_0, a_1, \ldots, a_n, \ldots$. The standard and easiest way to do this to use the following facts: (a) $e^{iz} = \cos z + i \sin z$, for all $z \in \mathbb{C}$, and (b) $\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n$, for $|z| < 2\pi$, where B_n are Bernoulli numbers with the convention that $B_0 = 1$ and $B_1 = -\frac{1}{2}$.

Solution:

First observe that using (a) above we can write

$$\cot a z = \frac{\cos z}{\sin z} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}} = i \frac{e^{2iz} + 1}{e^{2iz} - 1} = i \left(1 + \frac{2}{e^{2iz} - 1}\right) = i \left(1 + \frac{1}{iz}\frac{2iz}{e^{2iz} - 1}\right).$$

Next, using (b) above we can further write

$$\cot an z == i \left(1 + \frac{1}{iz} \frac{2iz}{e^{2iz} - 1} \right) == i \left(1 + \frac{1}{iz} \sum_{m=0}^{\infty} \frac{B_m}{m!} (2iz)^m \right)$$

which now converges for $|z| < \pi$. Simplifying this, and noting that $B_{2n+1} = 0$ for $n \ge 1$, we get finally

$$\cot an z = \frac{1}{z} + \sum_{n=1}^{\infty} (-1)^n \frac{4^n B_{2n}}{(2n)!} z^{2n-1} = \frac{1}{z} - \frac{1}{3} z - \frac{1}{45} z^3 - \frac{2}{945} z^5 - \frac{1}{4725} z^7 - \frac{2}{93555} z^9 - \cdots$$

Note that all the upcoming signs are negative since $B_{2n} = (-1)^{n-1} |B_{2n}|$ for $n \ge 1$.

NAME:

STUDENT NO:

- **Q-3**) Let U be a non-empty, open and connected subset of \mathbb{C} , and let f be a holomorphic map on U. Assume that there is a point $z_0 \in U$ such that $|f(z_0)| \ge |f(z)|$ for all $z \in U$.
 - 1. Using Cauchy Integral Formula, show that |f(z)| = c, a constant, for all $z \in U$.
 - 2. Using Cauchy-Riemann equations, show that f is constant, assuming that |f(z)| is constant.
 - 3. Using the Open Mapping Theorem, show that f is constant, assuming that |f(z)| is constant.

Solution:

Let r > 0 be such that $B_r(z_0) \subset U$. The Cauchy Integral Formula gives us

$$f(z_0) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z-z_0} dz = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Taking absolute values of both sides, we get

$$|f(z_0)| \le |f(z_0 + re^{i\theta})| \le |f(z_0)|,$$

where the last inequality is the given fact about $f(z_0)$. But this forces |f(z)| to be constant throughout $B_r(z_0)$. Now let z_1 be any other point of U and let γ be a path connecting z_0 to z_1 . We repeat the above argument for every point on γ and conclude that $|f(z_0)| = |f(z_1)|$. This shows that |f(z)| = c, constant, for all $z \in U$.

If c = 0, then clearly f = 0 and is constant, so there is nothing to prove. Assume $c \neq 0$.

Let f(z) = u(x, y) + iv(x, y), where u and v are real functions. We found that

$$u^2 + v^2 = c^2.$$

Taking partial derivatives of both sides with respect to x and y separately, we find

$$u u_x + v v_x = 0$$
 and $u u_y + v v_y = 0$.

Using Cauchy-Riemann equations to replace v_x and v_y with $-u_y$ and u_x respectively, we get

$$u u_x - v u_y = 0 \text{ and } u u_y + v u_x = 0.$$
 (*)

Multiply the first equation by u, the second by v, and add side by side to obtain

$$(u^2 + v^2) \, u_x = 0,$$

which implies that $u_x = 0$ since $c \neq 0$. Next again starting from equation (*), multiply the first equation by v, the second by u and subtract to obtain

$$(u^2 + v^2) \, u_y = 0,$$

which implies that $u_y = 0$. Hence we get u = k, a constant. Now Cauchy-Riemann equations give that $v_x = v_y = 0$, so v = k' is also constant. This finally shows that f(z) = k + ik' is constant.

If we however use a strong theorem such as the Open Mapping Theorem, we can prove that f is constant much more easily. Since |f(z)| = c, the image of U under f is the closed set $u^2 + v^2 = c^2$. This is possible only if f is constant.

NAME:

NAME:

STUDENT NO:

Q-4) For any $\alpha \in \mathbb{R}$, define the integral

$$I_{\alpha} = \int_0^\infty \frac{\log(1+x^2)}{x^{1+\alpha}} \, dx.$$

Show that I_{α} exists if and only if $0 < \alpha < 2$, and in that case we have

$$I_{\alpha} = \frac{\pi}{\alpha} \operatorname{cosec}(\frac{\pi}{2} \alpha).$$

Solution:

The singularities of the integrand are essential singularities. We try integration by parts with the hope of getting a better integrand.

$$u = \log(1 + x^2) \qquad \qquad dv = \frac{dx}{x^{1+\alpha}}$$
$$du = \frac{2x \, dx}{1+x^2} \qquad \qquad v = -\frac{1}{\alpha x^{\alpha}},$$

so we get

$$\int_0^\infty \frac{\log(1+x^2)}{x^{1+\alpha}} \, dx = -\frac{1}{\alpha} \left(\frac{\log(1+x^2)}{x^\alpha} \Big|_0^\infty \right) + \frac{2}{\alpha} \int_0^\infty \frac{x^{1-\alpha}}{1+x^2} \, dx.$$

Therefore the existence of I_{α} first of all requires the existence of the limits $\left(\frac{\log(1+x^2)}{x^{\alpha}}\Big|_{0}^{\infty}\right)$. By using L'Hospital's rule we find that

$$\left(\frac{\log(1+x^2)}{x^{\alpha}}\Big|_0^{\infty}\right) = \begin{cases} 0 & \text{if } 0 < \alpha < 2, \\ -1 & \text{if } \alpha = 2, \\ \infty & \text{otherwise.} \end{cases}$$

When $\alpha = 2$, we see that

$$\int \frac{1}{x(1+x^2)} \, dx = \int \left(\frac{1}{x} - \frac{x}{1+x^2}\right) \, dx = \frac{1}{2} \ln\left(\frac{x^2}{1+x^2}\right) + C.$$

Calculating the limits, we see that

$$\lim_{x \to \infty} \ln\left(\frac{x^2}{1+x^2}\right) = 0, \quad \text{but} \quad \lim_{x \to 0^+} \ln\left(\frac{x^2}{1+x^2}\right) = -\infty.$$

Therefore I_2 does not exist.

We now assume $0 < \alpha < 2$, and check if I_{α} exists for these values of α . Note that for these values of α , we have

$$I_{\alpha} = \frac{2}{\alpha} \int_{0}^{\infty} \frac{x^{1-\alpha}}{1+x^{2}} \, dx. \tag{**}$$

To evaluate this integral first consider the function $f(z) = \frac{z^{1-\alpha}}{1+z^2}$, and the following contour.

Here $0 < \rho < 1 < R$, and C_{ρ} , C_R are circles centered at the origin with radii ρ and R, respectively. L_1 is the line parametrized by z = x, with $x \in (\rho, R)$, and $-L_2$ is the line parametrized by $z = xe^{2\pi i}$, with $x \in (\rho, R)$. The $e^{2\pi i}$ factor in L_2 comes from the fact that we turn around the origin once and the logarithm function keeps a record of this. Integer powers of z will not notice this turn but $z^{1-\alpha}$ will certainly incorporate non-trivially the turning factor $e^{2\pi i}$, when $\alpha \neq 1$, as we will see below.

Let $\gamma_{\rho,R} = L_1 + C_R + L_2 + C_{\rho}$ be the indented path in the figure. We will calculate $\int_{\gamma_{\rho,R}} f(z)dz$ in two different ways and equate them with the hope of recovering I_{α} somewhere during the process. First we observe that

$$\int_{\gamma_{\rho,R}} f(z)dz = \int_{L_1} f(z)dz + \int_{C_R} f(z)dz + \int_{L_2} f(z)dz + \int_{C_{\rho}} f(z)dz$$

When we take the limit of both sides as $\rho \to 0$ and $R \to \infty$ we will recover I_{α} on the right hand side, and it will be equated to the other calculation of $\int_{\gamma_{\rho,R}} f(z)dz$ as done below.

$$\int_{\gamma_{\rho,R}} f(z)dz = (2\pi i)(\text{ sum of residues of } f(z) \text{ inside the loop }).$$

Now we start to calculate the integrals on the circles. For this purpose let K > 0 be any real number with $K \neq 1$, and let C_K be the circle centered at the origin with radius K. The modulus of the integral of f around C_K can be bounded as follows.

$$\left| \int_{C_K} f(z) \, dz \right| = \left| \int_{|z|=K} \frac{z^{1-\alpha}}{1+z^2} \, dz \right| \le 2\pi K \, \frac{K^{1-\alpha}}{|1-K^2|} = 2\pi \, \frac{K^{2-\alpha}}{|1-K^2|}.$$

At this point observe that

$$\lim_{K \to 0} \frac{K^{2-\alpha}}{|1 - K^2|} = 0 \quad \text{since} \quad 2 - \alpha > 0,$$

and

$$\lim_{K\to\infty}\frac{K^{2-\alpha}}{|1-K^2|}=0 \quad \text{since} \quad 2-\alpha<2.$$

Therefore we have

$$\lim_{\rho \to 0} \int_{C_{\rho}} f(z) dz = 0, \text{ and } \lim_{R \to \infty} \int_{C_{R}} f(z) dz = 0.$$

We now calculate the integrals on L_1 and L_2 . On L_1 , we have z = x and $x \in [\rho, R]$, so

$$\int_{L_1} f(z) \, dz = \int_{\rho}^{R} \frac{x^{1-\alpha}}{1+x^2} \, dx.$$

On $-L_2$, we have $z = xe^{2\pi i}$, with $x \in [\rho, R]$, so we have

$$f(z) dz = \frac{(xe^{2\pi i})^{1-\alpha}}{1+(xe^{2\pi i})^2} d(xe^{2\pi i}) = e^{-2\pi i\alpha} \frac{x^{1-\alpha}}{1+x^2} dx$$

Hence we have

$$\int_{L_2} f(z) \, dz = -\int_{L_2} f(z) \, dz = -e^{-2\pi i \alpha} \int_{\rho}^{R} \frac{x^{1-\alpha}}{1+x^2} \, dx.$$

This leads to the equality

$$\lim_{\substack{\rho \to 0 \\ R \to \infty}} \int_{\gamma_{\rho,R}} f(z) \, dz = \frac{\alpha}{2} \left(1 - e^{-2\pi i \alpha} \right) I_{\alpha}, \qquad (***)$$

where we used equation (**).

Now we calculate residues. We use the branch of the log function compatible with our region inside the loop $\gamma_{\rho,R}$. This means that we write z in polar coordinates as $z = re^{i\theta}$ with $\theta \in [0, 2\pi]$. In particular we have

$$\log i = \frac{\pi}{2}i$$
, and $\log(-i) = \frac{3\pi}{2}i$.

We then have

$$\begin{aligned} \operatorname{Res}\left(\frac{z^{1-\alpha}}{1+x^2}, z=i\right) &= \left.\frac{z^{1-\alpha}}{2z}\right|_{z=i} = \frac{z^{-\alpha}}{2} \bigg|_{z=i} = \frac{1}{2} \, i^{-\alpha} = \frac{1}{2} e^{-\alpha \log i} = \frac{1}{2} e^{-\alpha \frac{\pi}{2}i} \\ &= \left.\frac{1}{2} \cos \frac{\pi}{2} \alpha - i \frac{1}{2} \sin \frac{\pi}{2} \alpha, \\ \operatorname{Res}\left(\frac{z^{1-\alpha}}{1+x^2}, z=-i\right) &= \left.\frac{z^{1-\alpha}}{2z}\right|_{z=-i} = \frac{z^{-\alpha}}{2} \bigg|_{z=-i} = \frac{1}{2} \, (-i)^{-\alpha} = \frac{1}{2} e^{-\alpha \log(-i)} = \frac{1}{2} e^{-\alpha \frac{3\pi}{2}i} \\ &= \left.\frac{1}{2} \cos \frac{3\pi}{2} \alpha - i \frac{1}{2} \sin \frac{3\pi}{2} \alpha. \end{aligned}$$

Therefore

$$(2\pi i)(\text{sum of residues}) = \pi(\sin\frac{\pi}{2}\alpha + \sin\frac{3\pi}{2}\alpha) + i\pi(\cos\frac{\pi}{2}\alpha + \cos\frac{3\pi}{2}\alpha).$$

This gives

$$\int_{\gamma_{\rho,R}} f(z) \, dz = \pi \left(\sin\frac{\pi}{2}\,\alpha + \sin\frac{3\pi}{2}\,\alpha\right) + i\pi \left(\cos\frac{\pi}{2}\,\alpha + \cos\frac{3\pi}{2}\,\alpha\right)$$

Note that the right hand side is independent of ρ and r, so taking limits of both sides as $\rho \to 0$ and $R \to \infty$, and using equation (* * *), we get

$$\frac{\alpha}{2} \left(1 - e^{-2\pi i\alpha} \right) I_{\alpha} = \pi \left(\sin\frac{\pi}{2}\alpha + \sin\frac{3\pi}{2}\alpha \right) + i\pi \left(\cos\frac{\pi}{2}\alpha + \cos\frac{3\pi}{2}\alpha \right)$$

Since $1 - e^{-2\pi i \alpha} = (1 - \cos 2\pi \alpha) + i(\sin 2\pi \alpha)$, we have

$$\frac{\alpha}{2}(1 - \cos 2\pi\alpha)I_{\alpha} = \pi(\sin\frac{\pi}{2}\alpha + \sin\frac{3\pi}{2}\alpha) \tag{A}$$

and

$$\frac{\alpha}{2}(\sin 2\pi\alpha)I_{\alpha} = \pi(\cos\frac{\pi}{2}\alpha + \cos\frac{3\pi}{2}\alpha).$$
(B)

When $\alpha \neq \frac{1}{2}, 1, \frac{3}{2}$, then we can divide by $\sin 2\pi \alpha$ in equation (B) and get

$$I_{\alpha} = \frac{2\pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha + \cos \frac{3\pi}{2} \alpha}{\sin 2\pi \alpha}$$
$$= \frac{2\pi}{\alpha} \frac{\cos \pi \alpha \cos \frac{\pi}{2} \alpha}{\sin \pi \alpha \cos \pi \alpha}$$
$$= \frac{2\pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha}{\sin \pi \alpha}$$
$$= \frac{2\pi}{\alpha} \frac{\cos \frac{\pi}{2} \alpha}{2 \sin \frac{\pi}{2} \alpha \cos \frac{\pi}{2} \alpha}$$
$$= \frac{\pi}{\alpha} \operatorname{cosec} \frac{\pi}{2} \alpha.$$

Notice that the above cancelations were possible since $\alpha \neq \frac{1}{2}, 1, \frac{3}{2}$.

Now suppose $\alpha = \frac{1}{2}$ or $\alpha = \frac{3}{2}$. Equation (A) gives immediately that

$$I_{\alpha} = \frac{\pi}{\alpha} \sqrt{2}.$$

Note however that

$$\operatorname{cosec} \frac{\pi}{2} \alpha = \sqrt{2} \quad \text{when } \alpha = \frac{1}{2} \quad \text{or} \quad \frac{3}{2}.$$

When $\alpha = 1$, we go back to equation (**), to obtain

$$I_1 = 2 \int_0^\infty \frac{x}{1+x^2} \, dx = 2 \left(\arctan x \Big|_0^\infty \right) = \pi.$$

Again notice that

$$\operatorname{cosec} \frac{\pi}{2} \alpha = 1$$
 when $\alpha = 1$.

Hence our final formula is

$$I_{\alpha} = \frac{\pi}{\alpha} \operatorname{cosec} \frac{\pi}{2} \alpha$$
, for $0 < \alpha < 2$.