# Math 503 Complex Analysis - Take-Home Midterm Exam 2 - Solutions 

| 1 | 2 | 3 | 4 | TOTAL |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 25 | 25 | 25 | 25 | 100 |
| Please do not write anything inside the above boxes! |  |  |  |  |

Check that there are $\mathbf{4}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $\zeta(z)$ be the Riemann zeta function, which is meromorphic on $\mathbb{C}$ with a simple pole at $z=1$ and holomorphic elsewhere, and set $\eta(z)=\frac{\zeta^{\prime}(z)}{\zeta(z)}$ for $\operatorname{Re} z>1$.

Show that for any $z_{0}$ with $\operatorname{Re} z_{0} \geq 1$, we have

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \eta(z)=N,
$$

where $N$ is an integer. How do we determine the sign of $N$ ?

## Solution:

For any meromorphic function $f(z)$, the Laurent expansion of $f^{\prime} / f$ around any point $z_{0}$ is given as

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z-z_{0}}+F(z)
$$

where $F$ is analytic around $z_{0}$ and $m$ is an integer denoting the order of $f$ at $z_{0}$ : if $f$ vanishes to order $n$ at $z_{0}$, then $m=n$, and if $f$ has a pole of order $n$ at $z_{0}$, then $m=-n$. If on the other hand $f\left(z_{0}\right) \neq 0$, then $m=0$.

It follows that $\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{f(z)}=m$ is an integer. Now putting $f(z)=\zeta(z)$ solves the problem.

Q-2) Assume that $\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{z}}$ for $\operatorname{Re} z>1$, where the $\Lambda$ function is defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{m} \text { for some prime } p \text { and positive integer } m \\ 0 & \text { otherwise }\end{cases}
$$

Continuing from Question 1, show that for every $\epsilon>0$ and any $t \in \mathbb{R}$, we must have

$$
\operatorname{Re} \eta(1+\epsilon+i t)=-\sum_{n=1}^{\infty} \Lambda(n) n^{-(1+\epsilon)} \cos (t \log n)
$$

## Solution:

We need to find the real part of $n^{-(1+\epsilon+i t)}$.

$$
\begin{aligned}
n^{-(1+\epsilon+i t)} & =n^{-(1+\epsilon)} n^{-i t}=n^{-(1+\epsilon)} e^{-i t \log n} \\
& =n^{-(1+\epsilon)}[\cos (t \log n)-i \sin (t \log n)]
\end{aligned}
$$

Therefore $\operatorname{Re} \Lambda(n) n^{-z}=\Lambda(n) n^{-(1+\epsilon)} \cos (t \log n)$. Now summing these up we get the result.

NAME:
Q-3) Continuing from the previous questions, show that for all $\epsilon>0$, we have

$$
3 \operatorname{Re} \eta(1+\epsilon)+4 \operatorname{Re} \eta(1+\epsilon+i t)+\operatorname{Re} \eta(1+\epsilon+2 i t) \leq 0
$$

## Solution:

Using the previous result, what we want to prove here is equivalent to showing that

$$
3+4 \cos \alpha+\cos 2 \alpha \geq 0
$$

where $\alpha=t \log n$. This however follows from an obvious trigonometric identity.

$$
\begin{aligned}
3+4 \cos \alpha+\cos 2 \alpha & =3+4 \cos \alpha+2 \cos ^{2} \alpha-1 \\
& =2(\cos \alpha+1)^{2} \\
& \geq 0 .
\end{aligned}
$$

Q-4) Continuing from the previous questions, show that neither $\zeta(i t)$ nor $\zeta(1+i t)$ vanishes for any $t \in \mathbb{R}$.

## Solution:

Suppose that $\zeta$ vanishes at $(1+i t)$ to order $N$. Letting $z=1+\epsilon+i t$ and $z_{0}=1+i t$, we see that $z \rightarrow z_{0}$ is equivalent to $\epsilon \rightarrow 0$. Using the result of Question 1, we have

$$
\lim _{\epsilon \rightarrow 0}[3 \epsilon \eta(1+\epsilon)+4 \epsilon \eta(1+\epsilon+i t)+\epsilon \eta(1+\epsilon+2 i t)]=-3+4 N>0
$$

but this contradicts the result of Question 2. This shows that $\zeta(1+i t) \neq 0$ for ant $t \in \mathbb{R}$.
It follows from the Riemann functional equation

$$
\zeta(z)=2^{z} \pi^{z-1} \sin \left(\frac{\pi z}{2}\right) \Gamma(1-z) \zeta(1-z)
$$

that if $\zeta(i t)=0$, then $\zeta(1-i t)=0$. But this contradicts our finding above. So $\zeta$ function has no zeros on the $\operatorname{Re} z=0$ and $\operatorname{Re} z=1$ lines.

