Due Date: 29 December 2014, Monday – Class time NAME:.....

Ali Sinan Sertöz

STUDENT NO:

Math 503 Complex Analysis – Take-Home Midterm Exam 2 –

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are **4** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

STUDENT NO:

Q-1) Let $\zeta(z)$ be the Riemann zeta function, which is meromorphic on \mathbb{C} with a simple pole at z = 1 and holomorphic elsewhere, and set $\eta(z) = \frac{\zeta'(z)}{\zeta(z)}$ for $\operatorname{Re} z > 1$.

Show that for any z_0 with $\operatorname{Re} z_0 \ge 1$, we have

$$\lim_{z \to z_0} (z - z_0)\eta(z) = N,$$

where N is an integer. How do we determine the sign of N?

Solution:

NAME:

STUDENT NO:

Q-2) Assume that $\frac{\zeta'(z)}{\zeta(z)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^z}$ for $\operatorname{Re} z > 1$, where the Λ function is defined as

 $\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m \text{ for some prime } p \text{ and positive integer } m, \\ 0 & \text{otherwise.} \end{cases}$

Continuing from Question 1, show that for every $\epsilon > 0$ and any $t \in \mathbb{R}$, we must have

$$\operatorname{Re} \eta(1+\epsilon+it) = -\sum_{n=1}^{\infty} \Lambda(n) \, n^{-(1+\epsilon)} \, \cos(t \log n).$$

Solution:

NAME:

NAME:

STUDENT NO:

Q-3) Continuing from the previous questions, show that for all $\epsilon > 0$, we have

$$3\operatorname{Re}\eta(1+\epsilon) + 4\operatorname{Re}\eta(1+\epsilon+it) + \operatorname{Re}\eta(1+\epsilon+2it) \le 0.$$

Solution:

NAME:

STUDENT NO:

Q-4) Continuing from the previous questions, show that neither $\zeta(it)$ nor $\zeta(1 + it)$ vanishes for any $t \in \mathbb{R}$.

Solution: