Ali Sinan Sertöz

STUDENT NO: \qquad

Math 503 Complex Analysis - Take-Home Midterm Exam 2 -

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $\zeta(z)$ be the Riemann zeta function, which is meromorphic on \mathbb{C} with a simple pole at $z=1$ and holomorphic elsewhere, and set $\eta(z)=\frac{\zeta^{\prime}(z)}{\zeta(z)}$ for $\operatorname{Re} z>1$.

Show that for any z_{0} with $\operatorname{Re} z_{0} \geq 1$, we have

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \eta(z)=N,
$$

where N is an integer. How do we determine the sign of N ?

Solution:

NAME:

STUDENT NO:

Q-2) Assume that $\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{z}}$ for $\operatorname{Re} z>1$, where the Λ function is defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{m} \text { for some prime } p \text { and positive integer } m \\ 0 & \text { otherwise }\end{cases}
$$

Continuing from Question 1, show that for every $\epsilon>0$ and any $t \in \mathbb{R}$, we must have

$$
\operatorname{Re} \eta(1+\epsilon+i t)=-\sum_{n=1}^{\infty} \Lambda(n) n^{-(1+\epsilon)} \cos (t \log n)
$$

Solution:

STUDENT NO:

Q-3) Continuing from the previous questions, show that for all $\epsilon>0$, we have

$$
3 \operatorname{Re} \eta(1+\epsilon)+4 \operatorname{Re} \eta(1+\epsilon+i t)+\operatorname{Re} \eta(1+\epsilon+2 i t) \leq 0 .
$$

Solution:

Q-4) Continuing from the previous questions, show that neither $\zeta(i t)$ nor $\zeta(1+i t)$ vanishes for any $t \in \mathbb{R}$.

Solution:

