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Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory
that you write your answers alone.

(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in
such a manner that the source is easily retrieved with your citation. This includes any ideas you
borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing
not to acknowledge their contribution!)

(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if
any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in
preparing this submitted work.

Please sign here:
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Q-1) Show that there is an analytic function f defined on the punctured unit disc

D∗ = {z | 0 < |z| < 1},

such that f ′ never vanishes and f(D∗) = D, where

D = {z | |z| < 1}.

Solution:

The map z 7→ z + 1

z − 1
maps D∗ onto the half plane Re z < 0 with -1 missing. The exponential map

maps that region onto D \ {0, 1/e}. Now use z 7→ 1 + z

1− z
to map D \ {0, 1/e} onto the right half

plane, Re z > 0, with 1 and a =
e+ 1

e− 1
missing.

Define a branch of the logarithm function with −π < θ < π. Send the above half plane with this
branch of the logarithm. The image is the horizontal strip −π

2
< Im z <

π

2
, with 1 and ln a missing.

Rotate everything by z 7→ iz. The new region is the vertical strip −π
2
< Re z <

π

2
, with 0 and i ln a

missing.

Dilate everything by z 7→ πz

ln a
, to obtain the vertical strip − π2

2 ln a
< Re z <

π2

2 ln a
with 0 and iπ

missing.

Let R =
π2

2 ln a
. Note that R ≈ 6.39.

Define the annulus AR = {z ∈ C | 1
R
< |z| < R}.

Use the map z 7→ ez to map the last vertical strip to AR with ±1 missing.

Let α = e−iπ/3 =
1

2
− i
√
3

2
.

Use the map z 7→ αz to send the region AR \ {±1} onto AR \ {±α}.

For any r > 1 define Er ⊂ C to be the interior of the ellipse given by

4x2(
r + 1

r

)2 +
4y2(
r − 1

r

)2 = 1,

where as usual z = x+ iy.

Consider the map φ(z) =
1

2

(
z +

1

z

)
. Note that φ′(z) = 0 only at ±1 which are missing in AR \

{±1}. Also note that φ(AR \ {±1}) = ER \ {±1}.



Now consider the polynomial map P (z) = z3 − 3z. This polynomial is chosen to have its derivatives
vanish only at ±1.

Consider the map φ(z) = z +
1

z
, and let E ′R = φ(AR) be the corresponding ellipse.

We now assume that ER \ {±1} is conformally equivalent to E ′R \ {±1}.

By direct computation check that P (E ′R) = φ(AR3) = E ′R3 and hence is a simply connected bounded
region in C.

Notice that since R > 2, the points ±2 belong to E ′R \ {±1}.

Also note that P (1) = P (−2) = −2 and P (−1) = P (2) = 2. Hence P (E ′R \ {±1}) = G is an open,
simply connected and bounded region in C.

By the Riemann mapping theorem there is a one-to-one analytic function h from G onto D.

Composing all the above described maps gives us the reqiured map f .

Without assuming that ER \ {±1} is conformally equivalent to E ′R \ {±1} we proceed as follows.

We continue to use the notation of the previous paragraph.

Any point in C is of the form z = φ(reiθ) for some unique r ≥ 1 and some θ. In particular if z is
inside ER, then P (z) = φ(z3).

Suppose there is a loop γ in P (ER) which is not null homotopic. Then there is a point q inside this
loop which does not belong to P (ER). The point q is of the form φ(z3) for some z = reiθ with r ≥ 1.
Let q′ be φ(z).

Let F0 be the ellipse which is the image under φ of the circle with radius r and F1 the ellipse which
is the image under φ of the circle with radius r3. We consider F0 in the same plane as ER and F1 as
in the same plane as P (ER).

We have q ∈ F1 and q′ ∈ F0.

The images of the ray through z is both orthogonal to F0 and F1. This image intersects γ on both
sides of q, so there must be points on the image of this ray on both sides of q′. But this is impossible
as the ellipses of the form φ(reiθ) form an increasing sequence of nested sets and once q′ is outside
ER, the points on the orthogonal ray on one side of that ellipse are never in ER.

Hence no loop in P (ER) can be null homotopic.
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Q-2 Let G be a simply connected and bounded region in C. Fix a point a ∈ G. Assume that for every
real valued harmonic function u(z) on ∂G, there exists a real valued harmonic function U(z) on G
such that U(z) = u(z) for all z ∈ ∂G. Construct an analytic function f : G → D which vanishes
only at a. Here D is the unit disc |z| < 1.
This is how Riemann started to prove his famous mapping theorem. After this step he uses some
intricate analysis to show that the above constructed f is a conformal equivalence.

Solution:

Using the existence assumption of the problem (the Dirichlet Principle), let U(z) be a real valued
harmonic function defined on G such that

U(z) = − log |z − a| for z ∈ ∂G.

Since G is simply connected there exists a harmonic conjugate V (z) for U(z) on G. Let g be the
analytic function on G defines by g(z) = U(z) + iV (z). Now check that

f(z) = (z − a)eg(z)

maps G into D and vanishes only at z = a.
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Q-3 Show that there is an analytic function f on D = {z | |z| < 1} which is not analytic on any open
set G which properly contains D.

Solution:

We can use two different approaches. First we can use Theorem 5.15 on page 170 of Conway.

Theorem: Let G be a region and let {an} be a sequence of distinct points in G with no limit point in
G; and let {mi} be a sequence of positive integers. Then there is an analytic function f defined on G
whose only zeros are at the points an; moreover, an is a zero of f of multiplicity mn.

In our case we takeG = D and an = (1− 1

n
)ein. Also take eachmn = 1. Then there exists an analytic

function whose only zeros are simple zeros at the points an. The sequence an has the boundary of D
as its accumulation set so f cannot extend beyond D.

The second approach uses a theorem from the book of Bak and Newman; Theorem 18.5 on page 231.

Theorem: Suppose

f(z) =
∞∑

k=0

ckz
nk with lim inf

k→∞

nk+1

nk
> 1.

Then the circle of convergence of the power series is a natural boundary for f .

This means that such an f is an example whose existence we are asked to show in the problem. Now
check that

f(z) =
∞∑
k=0

zk!

is analytic in D where |z| = 1 is a natural boundary.
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Q-4) Let ζ(z) be the Riemann zeta function. Prove that for Re z > 2,

ζ(z − 1)

ζ(z)
=
∞∑
n=1

φ(n)

nz
,

where φ(n) is the Euler totient function which counts the number of positive integers less than n
that are relatively prime to n.

Solution:

We first consider the product
∞∑
n=1

φ(n)

nz

∞∑
n=1

1

nz
. Suppose ab = n and a ≤ b. Then from

(
· · ·+ φ(a)

az
+ · · ·+ φ(b)

bz
+ · · ·

)(
· · ·+ 1

az
+ · · ·+ 1

bz
+ · · ·

)

we see that the term
φ(a) + φ(b)

(ab)z
is contributed. Hence we have

∞∑
n=1

φ(n)

nz

∞∑
n=1

1

nz
=
∞∑
n=1

∑
d|n φ(d)

nz
.

Let Cn be a cyclic group of order n, and let ω be a generator. For any d dividing n, ωn/d generates
a subgroup Cd of order d. There are φ(d) generators of the group Cd. These generators are the only
elements of Cn with order d. Since every element of Cn has an order d which divides n, we have∑

d|n

φ(d) = n.

Thus we proved that

∞∑
n=1

φ(n)

nz

∞∑
n=1

1

nz
=
∞∑
n=1

∑
d|n φ(d)

nz
=
∞∑
n=1

n

nz
= ζ(z − 1),

and this proves the claim of the problem.


