Due Date: 22 December 2016, Thursday Class Time Instructor: Ali Sinan Sertöz

Math 503 Complex Analysis - Final Exam - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Show that there is an analytic function f defined on the punctured unit disc

$$
D^{*}=\{z|0<|z|<1\}
$$

such that f^{\prime} never vanishes and $f\left(D^{*}\right)=D$, where

$$
D=\{z| | z \mid<1\} .
$$

Solution:

The map $z \mapsto \frac{z+1}{z-1}$ maps D^{*} onto the half plane $\operatorname{Re} z<0$ with -1 missing. The exponential map maps that region onto $D \backslash\{0,1 / e\}$. Now use $z \mapsto \frac{1+z}{1-z}$ to map $D \backslash\{0,1 / e\}$ onto the right half plane, $\operatorname{Re} z>0$, with 1 and $a=\frac{e+1}{e-1}$ missing.

Define a branch of the logarithm function with $-\pi<\theta<\pi$. Send the above half plane with this branch of the logarithm. The image is the horizontal strip $-\frac{\pi}{2}<\operatorname{Im} z<\frac{\pi}{2}$, with 1 and $\ln a$ missing.
Rotate everything by $z \mapsto i z$. The new region is the vertical strip $-\frac{\pi}{2}<\operatorname{Re} z<\frac{\pi}{2}$, with 0 and $i \ln a$ missing.

Dilate everything by $z \mapsto \frac{\pi z}{\ln a}$, to obtain the vertical strip $-\frac{\pi^{2}}{2 \ln a}<\operatorname{Re} z<\frac{\pi^{2}}{2 \ln a}$ with 0 and $i \pi$ missing.

Let $R=\frac{\pi^{2}}{2 \ln a}$. Note that $R \approx 6.39$.
Define the annulus $A_{R}=\left\{z \in \mathbb{C}\left|\frac{1}{R}<|z|<R\right\}\right.$.
Use the map $z \mapsto e^{z}$ to map the last vertical strip to A_{R} with ± 1 missing.
Let $\alpha=e^{-i \pi / 3}=\frac{1}{2}-i \frac{\sqrt{3}}{2}$.
Use the map $z \mapsto \alpha z$ to send the region $A_{R} \backslash\{ \pm 1\}$ onto $A_{R} \backslash\{ \pm \alpha\}$.
For any $r>1$ define $E_{r} \subset \mathbb{C}$ to be the interior of the ellipse given by

$$
\frac{4 x^{2}}{\left(r+\frac{1}{r}\right)^{2}}+\frac{4 y^{2}}{\left(r-\frac{1}{r}\right)^{2}}=1
$$

where as usual $z=x+i y$.
Consider the map $\phi(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$. Note that $\phi^{\prime}(z)=0$ only at ± 1 which are missing in $A_{R} \backslash$ $\{ \pm 1\}$. Also note that $\phi\left(A_{R} \backslash\{ \pm 1\}\right)=E_{R} \backslash\{ \pm 1\}$.

Now consider the polynomial map $P(z)=z^{3}-3 z$. This polynomial is chosen to have its derivatives vanish only at ± 1.

Consider the map $\phi(z)=z+\frac{1}{z}$, and let $E_{R}^{\prime}=\phi\left(A_{R}\right)$ be the corresponding ellipse.
We now assume that $E_{R} \backslash\{ \pm 1\}$ is conformally equivalent to $E_{R}^{\prime} \backslash\{ \pm 1\}$.
By direct computation check that $P\left(E_{R}^{\prime}\right)=\phi\left(A_{R^{3}}\right)=E_{R^{3}}^{\prime}$ and hence is a simply connected bounded region in \mathbb{C}.

Notice that since $R>2$, the points ± 2 belong to $E_{R}^{\prime} \backslash\{ \pm 1\}$.
Also note that $P(1)=P(-2)=-2$ and $P(-1)=P(2)=2$. Hence $P\left(E_{R}^{\prime} \backslash\{ \pm 1\}\right)=G$ is an open, simply connected and bounded region in \mathbb{C}.

By the Riemann mapping theorem there is a one-to-one analytic function h from G onto D.
Composing all the above described maps gives us the reqiured map f.
Without assuming that $E_{R} \backslash\{ \pm 1\}$ is conformally equivalent to $E_{R}^{\prime} \backslash\{ \pm 1\}$ we proceed as follows.
We continue to use the notation of the previous paragraph.
Any point in \mathbb{C} is of the form $z=\phi\left(r e^{i \theta}\right)$ for some unique $r \geq 1$ and some θ. In particular if z is inside E_{R}, then $P(z)=\phi\left(z^{3}\right)$.

Suppose there is a loop γ in $P\left(E_{R}\right)$ which is not null homotopic. Then there is a point q inside this loop which does not belong to $P\left(E_{R}\right)$. The point q is of the form $\phi\left(z^{3}\right)$ for some $z=r e^{i \theta}$ with $r \geq 1$. Let q^{\prime} be $\phi(z)$.

Let F_{0} be the ellipse which is the image under ϕ of the circle with radius r and F_{1} the ellipse which is the image under ϕ of the circle with radius r^{3}. We consider F_{0} in the same plane as E_{R} and F_{1} as in the same plane as $P\left(E_{R}\right)$.

We have $q \in F_{1}$ and $q^{\prime} \in F_{0}$.
The images of the ray through z is both orthogonal to F_{0} and F_{1}. This image intersects γ on both sides of q, so there must be points on the image of this ray on both sides of q^{\prime}. But this is impossible as the ellipses of the form $\phi\left(r e^{i \theta}\right)$ form an increasing sequence of nested sets and once q^{\prime} is outside E_{R}, the points on the orthogonal ray on one side of that ellipse are never in E_{R}.

Hence no loop in $P\left(E_{R}\right)$ can be null homotopic.

Q-2 Let G be a simply connected and bounded region in \mathbb{C}. Fix a point $a \in G$. Assume that for every real valued harmonic function $u(z)$ on ∂G, there exists a real valued harmonic function $U(z)$ on G such that $U(z)=u(z)$ for all $z \in \partial G$. Construct an analytic function $f: G \rightarrow D$ which vanishes only at a. Here D is the unit disc $|z|<1$.
This is how Riemann started to prove his famous mapping theorem. After this step he uses some intricate analysis to show that the above constructed f is a conformal equivalence.

Solution:

Using the existence assumption of the problem (the Dirichlet Principle), let $U(z)$ be a real valued harmonic function defined on G such that

$$
U(z)=-\log |z-a| \text { for } z \in \partial G
$$

Since G is simply connected there exists a harmonic conjugate $V(z)$ for $U(z)$ on G. Let g be the analytic function on G defines by $g(z)=U(z)+i V(z)$. Now check that

$$
f(z)=(z-a) e^{g(z)}
$$

maps G into D and vanishes only at $z=a$.

Q-3 Show that there is an analytic function f on $D=\{z| | z \mid<1\}$ which is not analytic on any open set G which properly contains D.

Solution:

We can use two different approaches. First we can use Theorem 5.15 on page 170 of Conway.
Theorem: Let G be a region and let $\left\{a_{n}\right\}$ be a sequence of distinct points in G with no limit point in G; and let $\left\{m_{i}\right\}$ be a sequence of positive integers. Then there is an analytic function f defined on G whose only zeros are at the points a_{n}; moreover, a_{n} is a zero of f of multiplicity m_{n}.

In our case we take $G=D$ and $a_{n}=\left(1-\frac{1}{n}\right) e^{i n}$. Also take each $m_{n}=1$. Then there exists an analytic function whose only zeros are simple zeros at the points a_{n}. The sequence a_{n} has the boundary of D as its accumulation set so f cannot extend beyond D.

The second approach uses a theorem from the book of Bak and Newman; Theorem 18.5 on page 231.
Theorem: Suppose

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{n_{k}} \text { with } \liminf _{k \rightarrow \infty} \frac{n_{k+1}}{n_{k}}>1 .
$$

Then the circle of convergence of the power series is a natural boundary for f.
This means that such an f is an example whose existence we are asked to show in the problem. Now check that

$$
f(z)=\sum_{k=0}^{\infty} z^{k!}
$$

is analytic in D where $|z|=1$ is a natural boundary.

Q-4) Let $\zeta(z)$ be the Riemann zeta function. Prove that for $\operatorname{Re} z>2$,

$$
\frac{\zeta(z-1)}{\zeta(z)}=\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{z}},
$$

where $\phi(n)$ is the Euler totient function which counts the number of positive integers less than n that are relatively prime to n.

Solution:

We first consider the product $\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{z}} \sum_{n=1}^{\infty} \frac{1}{n^{z}}$. Suppose $a b=n$ and $a \leq b$. Then from

$$
\left(\cdots+\frac{\phi(a)}{a^{z}}+\cdots+\frac{\phi(b)}{b^{z}}+\cdots\right)\left(\cdots+\frac{1}{a^{z}}+\cdots+\frac{1}{b^{z}}+\cdots\right)
$$

we see that the term $\frac{\phi(a)+\phi(b)}{(a b)^{z}}$ is contributed. Hence we have

$$
\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{z}} \sum_{n=1}^{\infty} \frac{1}{n^{z}}=\sum_{n=1}^{\infty} \frac{\sum_{d \mid n} \phi(d)}{n^{z}}
$$

Let C_{n} be a cyclic group of order n, and let ω be a generator. For any d dividing $n, \omega^{n / d}$ generates a subgroup C_{d} of order d. There are $\phi(d)$ generators of the group C_{d}. These generators are the only elements of C_{n} with order d. Since every element of C_{n} has an order d which divides n, we have

$$
\sum_{d \mid n} \phi(d)=n
$$

Thus we proved that

$$
\sum_{n=1}^{\infty} \frac{\phi(n)}{n^{z}} \sum_{n=1}^{\infty} \frac{1}{n^{z}}=\sum_{n=1}^{\infty} \frac{\sum_{d \mid n} \phi(d)}{n^{z}}=\sum_{n=1}^{\infty} \frac{n}{n^{z}}=\zeta(z-1),
$$

and this proves the claim of the problem.

