Due Date: 8 December 2016, Thursday, Class Time

Math 503 Complex Analysis - Homework 3

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Submit your solutions on this booklet only. Use extra pages if necessary.

Rules for Homework Assignments

- (1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
- (2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
- (3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you **exhibit your total understanding of the ideas involved**.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Construct a sequence of functions $f_n(x) : \mathbb{R} \to \mathbb{R}$ such that each $f_n(x)$ is real analytic, i.e. at every $x_0 \in \mathbb{R}$ each $f_n(x)$ has a Taylor expansion converging to the function itself, and moreover $f_n(x)$ converges uniformly to f(x) on \mathbb{R} where f(x) = |x|.

Note that the uniform limit of these real analytic functions is not analytic. This never happens with complex analytic functions.

Solution:

Define $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $n = 1, 2, \dots$ It is clear that each f_n is real analytic.

We claim that $f_n(x) - f(x) \le \frac{1}{\sqrt{n}}$ for all $x \in \mathbb{R}$ and all $n = 1, 2, \ldots$. Assuming that this is true, for any $\epsilon > 0$ let N be any integer such that $\frac{1}{\sqrt{N}} < \epsilon$. Then for any $n \ge N$ and any $x \in \mathbb{R}$, we will have $|f_n(x) - f(x)| < \epsilon$, proving the uniform convergence.

Since each f_n is even, and also f is even, it suffices to prove the above claim only for $x \ge 0$. For this first consider the function for each positive integer n.

$$\phi_n(x) = \sqrt{x^2 + \frac{1}{n}} + x - \frac{1}{\sqrt{n}}$$

for $x \ge 0$. We have $\phi_n(0) = 0$ and $\phi'_n(x) > 0$. This shows that $\phi_n(x) \ge 0$ for all $x \ge 0$. Then for $x \ge 0$ and every $n = 1, 2, \ldots$, we have the following inequalities.

$$\frac{1}{\sqrt{n}} \le \sqrt{x^2 + \frac{1}{n}} + x$$

$$\frac{\frac{1}{\sqrt{n}}}{\sqrt{x^2 + \frac{1}{n}} + x} \le 1$$

$$\frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + x} \le \frac{1}{\sqrt{n}}$$

$$\sqrt{x^2 + \frac{1}{n}} - x \le \frac{1}{\sqrt{n}}$$

$$f_n(x) - f(x) \le \frac{1}{\sqrt{n}}$$

which completes the proof.

NAME: STUDENT NO: DEPARTMENT:

Q-2) Let D be the unit disc. Find all analytic functions $f: D \to D$ with at least two fixed points.

Solution:

Let f(p)=p and f(q)=q with $p,q\in D$ and $p\neq q$. Assume without loss of generality that $q\neq 0$. Let ϕ be that automorphism of D sending p to 0. Consider the function $g=\phi\circ f\circ \phi^{-1}$. Let $\phi(q)=r$. Note that $r\neq 0$.

We now have g(0)=0 and g(r)=r. By Schwarz's lemma g(z)=cz for some |c|=1, since |g(z)|=|z| holds for $r\neq 0$. But since g(r)=r, c must be 1.

Now we have $\phi \circ f \circ \phi^{-1}(z) = z$ or $f \circ \phi^{-1}(z) = \phi^{-1}(z)$ for every $z \in D$. This shows that f is the identity map.

Hence only analytic function from D to D with at least two fixed points is the identity function.

Q-3

- (a) Does there exist an analytic surjective map $f \colon D^* \to D$? Here D is the unit disc around the origin and D^* is D with the origin removed.
- (b) Does there exist an analytic surjective map $f: D \to D^*$?

Solution:

(a) Recall that for any $a \in D$, the function

$$\phi_a(z) = \frac{z - a}{1 - \bar{a} z}$$

is an automorphism of D. For any $a \in D^*$, the function

$$f(z) = (\phi_a(z))^2 = \left(\frac{z-a}{1-\bar{a}z}\right)^2$$

does the trick. Clearly $\phi_a(D^*)=D\setminus\{\phi_a(0)\}=D\setminus\{-a\}$. So we have to find another point of D^* which maps to $f(0)=a^2$. Check that

$$f\left(\frac{2a}{1+|a|^2}\right) = a^2,$$

hence f is surjective.

(b) Check that

$$f(z) = \exp\frac{z+1}{z-1}$$

does the job! The Möbius transformation sends D onto $\operatorname{Re} z < 0$, and the exponential map sends $\operatorname{Re} z < 0$ onto D^* .

 \mathbf{Q} -4) For any positive integer n calculate the integral

$$I_n = \int_0^\infty \frac{dx}{(x^2 + 1)^n}.$$

Solution:

Let $\phi(z)=(z+i)^{-n}$. Since ϕ is analytic at z=i, it has a Taylor expansion around i.

$$\phi(z) = a_0 + a_1(z-i) + \dots + a_k(z-i)^k + \dots$$

Consider the function

$$f_n(z) = \frac{1}{(z^2+1)^n} = \frac{\phi(z)}{(z-i)^n}.$$

Then

Res
$$(f(z), i) = a_{n-1} = \frac{\phi^{(n-1)}(i)}{(n-1)!}$$
.

By induction we find that

$$\phi^{(k)}(z) = (-1)^k \frac{(n+k-1)!}{(n-1)!} (z+i)^{-n-k}.$$

Hence

$$\phi^{(n-1)}(z) = (-1)^{n-1} \frac{(2n-2)!}{(n-1)!} (z+i)^{-2n+1}, \quad \text{and} \quad \phi^{(n-1)}(i) = \frac{(2n-2)!}{(n-1)!} \frac{1}{i \cdot 2^{2n-1}}.$$

Evaluate $f_n(z)$ around the closed path going from -R to R along the real line and then following the semicircle with center the origin and radius R back to z=-R. The integral along the circular path goes to zero as R goes to infinity by standard arguments. The only singularity within the path is z=i. The integrand is even. So we have

$$\int_0^\infty \frac{dx}{(x^2+1)^n} = \frac{(2n-2)!}{[(n-1)!]^2} \frac{\pi}{2^{2n-1}}$$
$$= \frac{\pi}{2} \frac{2n-3}{2n-2} \frac{2n-5}{2n-4} \cdots \frac{1}{2}.$$