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Q-1) Let f be analytic on B̄(0;R) with |f(z)| ≤ M for |z| ≤ R and |f(0)| = a > 0. Let α >
2 be any real number. Show that the number of zeros of f in B(0; R

α
) is less than or equal to

1

log(α− 1)
log

(
M

a

)
.

Solution:

Let z1, . . . , zn be the zeros of f in B(0;R/α), repeated according to multiplicity if necessary. Con-
sider the function

g(z) =
f(z) z1 · · · zn

(z − z1) · · · (z − zn)
.

Clearly g is analytic in B̄(0;R) and |g(0)| = |f(0)| = a > 0. By the Maximum Modulus Principle
there is some z0 with |z0| = R such that |g(z0)| ≥ |g(z)| for all z ∈ B(0;R). In particular |g(z0)| ≥
|g(0)| = a > 0. Thus we have

0 < a ≤ |f(z0)| |z1 · · · zn|
|z0 − z1| · · · |z0 − zn|

≤ M |z1 · · · zn|
|z0 − z1| · · · |z0 − zn|

,

or
|z − z1| · · · |z − zn| ≤

M

a
|z1 · · · zn|.

But for each 1 ≤ k ≤ n we have

|z0 − zk| ≥ |z0| − |zk| ≥ R− R

α
= (α− 1)

R

α
,

and
|zk| <

R

α
.

Putting these together we get

(α− 1)n
Rn

αn
≤ M

a

Rn

αn
,

or, after cancellation

(α− 1)n ≤ M

a
.

Taking the logarithm of both sides we finally get

n log(α− 1) ≤ log

(
M

a

)
.

Since log(α− 1) > 0, we can divide both sides by log(α− 1) and get

n ≤ 1

log(α− 1)
log

(
M

a

)
.
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Q-2 Let f be a non-constant analytic function in B(0;R) and for 0 ≤ r < R define A(r) =
max{Re f(z) | |z| = r}. Show that A(r) is a strictly increasing function.

Solution:

Assume not. Then choose 0 ≤ r0 < R to be the smallest radius for which there is some ε > 0 such
that A(r0) ≥ A(r) for all r0 < r < r0 + ε.

Choose z0 with |z0| = r0 and |f(z0)| = A(r0).

Let U0 = B(z0; ε) and W0 = f(U0). Since f is analytic W0 is open.

Since f(z0) is in W0, and since W0 is open, there is some δ > 0 such that B(f(z0); δ) ⊂ W0. In
particular f(z0) + δ/2 ∈ B(f(z0); δ) ⊂ W0. But Re(f(z0) + δ/2) > Re f(z0), so there is no point in
U0 mapping to f(z0) + δ/2. But then f(z0) + δ/2 6∈ W0. This is a contradiction.

Hence A(r) must be strictly increasing.



NAME: STUDENT NO: DEPARTMENT:

Q-3 Evaluate the improper integral
∫ ∞
0

(
1

x2
− 1

x sinhx

)
dx.

Solution:

Let f(z) =
sinh z − z
z2 sinh z

. This function has a removable singularity at z = 0. In fact

f(z) =
1

6
− 7

360
z2 +

31

1529
z3 + · · · .

The only singularities of f are simple poles at z = kπi where k is a non-zero integer, and hence

Res(f(z), kπi) = − i
π

(−1)k+1

k
.

Note that
∞∑
k=1

Res(f(z), kπi) = − i
π

∞∑
k=1

(−1)k+1

k
= − i

π
log 2.

We will write
f(z) =

1

z2
− 1

z sinh z
,

and integrate it over the closed path γk as shown below.

(nα, 0)(−nα, 0)

(nα, π
2
n)(−nα, π

2
n)

n = 4k + 1

1
2
< α < 1

Ak

Bk

Ck

γk = Ak +Bk + Ck + [−nα, nα]

We note the following facts about sinh z.

1. sinh(x+ iy) = sinh x cos y + i coshx sin y

2. | sinh(x+ iy)|2 = sinh2 x+ sin2 y ≥ sinh2 x



3. | sinhx| ≥ |x| for all x ∈ R

4. In particular | sinh(x+ iy)| ≥ |x| for all x, y ∈ R.

Integrating f(z) around γk we get∫
γk

f(z) dz = 2πi
2k∑
j=1

Res(f(z), iπj) = 2
2k∑
j=1

(−1)j+11

j
.

When we take the limit of all sides as k goes to infinity, the rightmost side will converge to 2 log 2.
Now we examine the integral on left hand side.

on the path Ak:
Here z = nα + iy where 0 ≤ y ≤ π

2
n. Therefore |z| ≥ nα and | sinh z| ≥ nα. Then

|f(z)| ≤ 1

|z|2
+

1

|z| | sinh z|
≤ 2

n2α
.

Letting `(Ak) denote the length of the path Ak, we have

`(Ak) =
π

2
n.

It follows that ∣∣∣∣∫
Ak

f(z) dz

∣∣∣∣ ≤ (π2 n)
(

2

n2α

)
→ 0 as k →∞.

on the path Ck:
Here z = −nα + iy where 0 ≤ y ≤ π

2
n. Hence the inequalities of the analysis of path Ak hold here.

Also we have `(Ck) = `(Ak). So we again have∣∣∣∣∫
Ck

f(z) dz

∣∣∣∣ ≤ (π2 n)
(

2

n2α

)
→ 0 as k →∞.

on the path Bk:
Here z = x + iπ

2
n, with −nα ≤ x ≤ nα. We have `(Bk) = 2nα and |z| ≥ π

2
n. Recalling that

n = 4k + 1, we have
sinh(x+

π

2
n) = i coshx,

and hence | sinh z| ≥ 1 for z ∈ Bk. Then we have∣∣∣∣∫
Bk

f(z) dz

∣∣∣∣ ≤ (2nα)

(
4

π2n2
+

2

πn

)
=

8nα

π2n2
+

4nα

πn
→ 0 as k →∞ .

on the path [−nα, nα]:
Since f is an even function here we have∫

[−nα,nα]
f(z) dz = 2

∫ nα

0

(
1

x2
− 1

x sinhx

)
dx→ 2

∫ ∞
0

(
1

x2
− 1

x sinhx

)
dx as k →∞ .

Putting these together we finally have∫ ∞
0

(
1

x2
− 1

x sinhx

)
dx = log 2.
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Q-4) Evaluate the following improper integrals.

(a)
∫ ∞
0

sinx2 dx

(b)
∫ ∞
0

cosx2 dx

Solution:

AR

BRCR

γR = AR +BR + CR
π
4

Let f(z) = eiz
2 , and consider the integral

∫
γR
f(z) dz, where γR is shown in the above figure.

On AR: z = x, 0 ≤ x ≤ R and dz = dx.∫
AR

f(z) dz =

∫ R

0

eix
2

dx =

∫ R

0

cosx2 dx+ i

∫ R

0

sinx2 dx.

On CR: z = αx, 0 ≤ x ≤ R and dz = αdx where α = eiπ/4 = 1√
2
(1 + i). Note that α2 = i. Then∫

CR

f(z) dz = α

∫ 0

R

eiα
2x2 dx = −α

∫ R

0

eiα
2x2 dx = −α

∫ R

0

e−x
2

dx.

On BR: z = Reiθ = R cos θ+ iR sin θ, 0 ≤ θ ≤ π
4
, dz = iReiθ dθ. Note z2 = R2 cos 2θ+ iR2 sin 2θ.

Hence ∫
BR

f(z) dz = iR

∫ π/4

0

e−R
2 sin 2θ+iR2 cos 2θ eiθ dθ.

Recall that sin 2θ ≥ 2θ
2

π
for 0 ≤ 2θ ≤ π/2. Therefore∣∣∣∣∫

BR

f(z) dz

∣∣∣∣ ≤ R

∫ π/4

0

e−R
2 sin 2θ dθ ≤ R

∫ π/4

0

e−
4R2θ
π dθ = R

(
− π

4R2
e−

4R2θ
π

∣∣∣θ=π/4
θ=0

)
.

Hence ∣∣∣∣∫
BR

f(z) dz

∣∣∣∣ ≤ π

4R

(
1− e−R2

)
.



Since f(z) is analytic inside the path γR, by Cauchy theorem we have∫
γR

f(z) dz = 0,

or equivalently ∫
AR

f(z) dz +

∫
BR

f(z) dz +

∫
CR

f(z) dz = 0.

Taking the limits of both sides as R→∞, we first observe that

lim
R→∞

∫
BR

f(z) dz = 0,

and

lim
R→∞

∫
CR

f(z) dz = −α
∫ ∞
0

e−x
2

dx = −α
√
π

2
= −

( √
π

2
√

2
+ i

√
π

2
√

2

)
.

Moreover
lim
R→∞

∫
AR

f(z) dz =

∫ ∞
0

cosx2 dx+ i

∫ ∞
0

sinx2 dx.

Finally, putting these together we find∫ ∞
0

cosx2 dx =

∫ ∞
0

sinx2 dx =

√
π

2
√

2
≈ 0.626....

Here is a graph of y = cosx2 and y = sinx2.


