Due Date: 24 November 2016, Thursday Class Time
\qquad

Math 503 Complex Analysis - Midterm Exam 2 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Let f be analytic on $\bar{B}(0 ; R)$ with $|f(z)| \leq M$ for $|z| \leq R$ and $|f(0)|=a>0$. Let $\alpha>$ 2 be any real number. Show that the number of zeros of f in $B\left(0 ; \frac{R}{\alpha}\right)$ is less than or equal to $\frac{1}{\log (\alpha-1)} \log \left(\frac{M}{a}\right)$.

Solution:

Let z_{1}, \ldots, z_{n} be the zeros of f in $B(0 ; R / \alpha)$, repeated according to multiplicity if necessary. Consider the function

$$
g(z)=\frac{f(z) z_{1} \cdots z_{n}}{\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)} .
$$

Clearly g is analytic in $\bar{B}(0 ; R)$ and $|g(0)|=|f(0)|=a>0$. By the Maximum Modulus Principle there is some z_{0} with $\left|z_{0}\right|=R$ such that $\left|g\left(z_{0}\right)\right| \geq|g(z)|$ for all $z \in B(0 ; R)$. In particular $\left|g\left(z_{0}\right)\right| \geq$ $|g(0)|=a>0$. Thus we have

$$
0<a \leq \frac{\left|f\left(z_{0}\right)\right|\left|z_{1} \cdots z_{n}\right|}{\left|z_{0}-z_{1}\right| \cdots\left|z_{0}-z_{n}\right|} \leq \frac{M\left|z_{1} \cdots z_{n}\right|}{\left|z_{0}-z_{1}\right| \cdots\left|z_{0}-z_{n}\right|}
$$

or

$$
\left|z-z_{1}\right| \cdots\left|z-z_{n}\right| \leq \frac{M}{a}\left|z_{1} \cdots z_{n}\right|
$$

But for each $1 \leq k \leq n$ we have

$$
\left|z_{0}-z_{k}\right| \geq\left|z_{0}\right|-\left|z_{k}\right| \geq R-\frac{R}{\alpha}=(\alpha-1) \frac{R}{\alpha}
$$

and

$$
\left|z_{k}\right|<\frac{R}{\alpha}
$$

Putting these together we get

$$
(\alpha-1)^{n} \frac{R^{n}}{\alpha^{n}} \leq \frac{M}{a} \frac{R^{n}}{\alpha^{n}}
$$

or, after cancellation

$$
(\alpha-1)^{n} \leq \frac{M}{a} .
$$

Taking the logarithm of both sides we finally get

$$
n \log (\alpha-1) \leq \log \left(\frac{M}{a}\right)
$$

Since $\log (\alpha-1)>0$, we can divide both sides by $\log (\alpha-1)$ and get

$$
n \leq \frac{1}{\log (\alpha-1)} \log \left(\frac{M}{a}\right)
$$

Q-2 Let f be a non-constant analytic function in $B(0 ; R)$ and for $0 \leq r<R$ define $A(r)=$ $\max \{\operatorname{Re} f(z)||z|=r\}$. Show that $A(r)$ is a strictly increasing function.

Solution:

Assume not. Then choose $0 \leq r_{0}<R$ to be the smallest radius for which there is some $\epsilon>0$ such that $A\left(r_{0}\right) \geq A(r)$ for all $r_{0}<r<r_{0}+\epsilon$.

Choose z_{0} with $\left|z_{0}\right|=r_{0}$ and $\left|f\left(z_{0}\right)\right|=A\left(r_{0}\right)$.
Let $U_{0}=B\left(z_{0} ; \epsilon\right)$ and $W_{0}=f\left(U_{0}\right)$. Since f is analytic W_{0} is open.
Since $f\left(z_{0}\right)$ is in W_{0}, and since W_{0} is open, there is some $\delta>0$ such that $B\left(f\left(z_{0}\right) ; \delta\right) \subset W_{0}$. In particular $f\left(z_{0}\right)+\delta / 2 \in B\left(f\left(z_{0}\right) ; \delta\right) \subset W_{0}$. $\operatorname{But} \operatorname{Re}\left(f\left(z_{0}\right)+\delta / 2\right)>\operatorname{Re} f\left(z_{0}\right)$, so there is no point in U_{0} mapping to $f\left(z_{0}\right)+\delta / 2$. But then $f\left(z_{0}\right)+\delta / 2 \notin W_{0}$. This is a contradiction.

Hence $A(r)$ must be strictly increasing.

Q-3 Evaluate the improper integral $\int_{0}^{\infty}\left(\frac{1}{x^{2}}-\frac{1}{x \sinh x}\right) d x$.

Solution:

Let $f(z)=\frac{\sinh z-z}{z^{2} \sinh z}$. This function has a removable singularity at $z=0$. In fact

$$
f(z)=\frac{1}{6}-\frac{7}{360} z^{2}+\frac{31}{1529} z^{3}+\cdots
$$

The only singularities of f are simple poles at $z=k \pi i$ where k is a non-zero integer, and hence

$$
\operatorname{Res}(f(z), k \pi i)=-\frac{i}{\pi} \frac{(-1)^{k+1}}{k}
$$

Note that

$$
\sum_{k=1}^{\infty} \operatorname{Res}(f(z), k \pi i)=-\frac{i}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=-\frac{i}{\pi} \log 2
$$

We will write

$$
f(z)=\frac{1}{z^{2}}-\frac{1}{z \sinh z},
$$

and integrate it over the closed path γ_{k} as shown below.

We note the following facts about $\sinh z$.

1. $\sinh (x+i y)=\sinh x \cos y+i \cosh x \sin y$
2. $|\sinh (x+i y)|^{2}=\sinh ^{2} x+\sin ^{2} y \geq \sinh ^{2} x$
3. $|\sinh x| \geq|x|$ for all $x \in \mathbb{R}$
4. In particular $|\sinh (x+i y)| \geq|x|$ for all $x, y \in \mathbb{R}$.

Integrating $f(z)$ around γ_{k} we get

$$
\int_{\gamma_{k}} f(z) d z=2 \pi i \sum_{j=1}^{2 k} \operatorname{Res}(f(z), i \pi j)=2 \sum_{j=1}^{2 k}(-1)^{j+1} \frac{1}{j}
$$

When we take the limit of all sides as k goes to infinity, the rightmost side will converge to $2 \log 2$. Now we examine the integral on left hand side.
on the path A_{k} :
Here $z=n^{\alpha}+i y$ where $0 \leq y \leq \frac{\pi}{2} n$. Therefore $|z| \geq n^{\alpha}$ and $|\sinh z| \geq n^{\alpha}$. Then

$$
|f(z)| \leq \frac{1}{|z|^{2}}+\frac{1}{|z||\sinh z|} \leq \frac{2}{n^{2 \alpha}}
$$

Letting $\ell\left(A_{k}\right)$ denote the length of the path A_{k}, we have

$$
\ell\left(A_{k}\right)=\frac{\pi}{2} n
$$

It follows that

$$
\left|\int_{A_{k}} f(z) d z\right| \leq\left(\frac{\pi}{2} n\right)\left(\frac{2}{n^{2 \alpha}}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

on the path C_{k} :
Here $z=-n^{\alpha}+i y$ where $0 \leq y \leq \frac{\pi}{2} n$. Hence the inequalities of the analysis of path A_{k} hold here. Also we have $\ell\left(C_{k}\right)=\ell\left(A_{k}\right)$. So we again have

$$
\left|\int_{C_{k}} f(z) d z\right| \leq\left(\frac{\pi}{2} n\right)\left(\frac{2}{n^{2 \alpha}}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

on the path B_{k} :
Here $z=x+i \frac{\pi}{2} n$, with $-n^{\alpha} \leq x \leq n^{\alpha}$. We have $\ell\left(B_{k}\right)=2 n^{\alpha}$ and $|z| \geq \frac{\pi}{2} n$. Recalling that $n=4 k+1$, we have

$$
\sinh \left(x+\frac{\pi}{2} n\right)=i \cosh x
$$

and hence $|\sinh z| \geq 1$ for $z \in B_{k}$. Then we have

$$
\left|\int_{B_{k}} f(z) d z\right| \leq\left(2 n^{\alpha}\right)\left(\frac{4}{\pi^{2} n^{2}}+\frac{2}{\pi n}\right)=\frac{8 n^{\alpha}}{\pi^{2} n^{2}}+\frac{4 n^{\alpha}}{\pi n} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

on the path $\left[-n^{\alpha}, n^{\alpha}\right]$:
Since f is an even function here we have

$$
\int_{\left[-n^{\alpha}, n^{\alpha}\right]} f(z) d z=2 \int_{0}^{n^{\alpha}}\left(\frac{1}{x^{2}}-\frac{1}{x \sinh x}\right) d x \rightarrow 2 \int_{0}^{\infty}\left(\frac{1}{x^{2}}-\frac{1}{x \sinh x}\right) d x \quad \text { as } k \rightarrow \infty
$$

Putting these together we finally have

$$
\int_{0}^{\infty}\left(\frac{1}{x^{2}}-\frac{1}{x \sinh x}\right) d x=\log 2 .
$$

Q-4) Evaluate the following improper integrals.
(a) $\int_{0}^{\infty} \sin x^{2} d x$
(b) $\int_{0}^{\infty} \cos x^{2} d x$

Solution:

Let $f(z)=e^{i z^{2}}$, and consider the integral $\int_{\gamma_{R}} f(z) d z$, where γ_{R} is shown in the above figure.
On $A_{R}: z=x, 0 \leq x \leq R$ and $d z=d x$.

$$
\int_{A_{R}} f(z) d z=\int_{0}^{R} e^{i x^{2}} d x=\int_{0}^{R} \cos x^{2} d x+i \int_{0}^{R} \sin x^{2} d x
$$

On $C_{R}: z=\alpha x, 0 \leq x \leq R$ and $d z=\alpha d x$ where $\alpha=e^{i \pi / 4}=\frac{1}{\sqrt{2}}(1+i)$. Note that $\alpha^{2}=i$. Then

$$
\int_{C_{R}} f(z) d z=\alpha \int_{R}^{0} e^{i \alpha^{2} x^{2}} d x=-\alpha \int_{0}^{R} e^{i \alpha^{2} x^{2}} d x=-\alpha \int_{0}^{R} e^{-x^{2}} d x
$$

On $B_{R}: z=R e^{i \theta}=R \cos \theta+i R \sin \theta, 0 \leq \theta \leq \frac{\pi}{4}, d z=i R e^{i \theta} d \theta$. Note $z^{2}=R^{2} \cos 2 \theta+i R^{2} \sin 2 \theta$. Hence

$$
\int_{B_{R}} f(z) d z=i R \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta+i R^{2} \cos 2 \theta} e^{i \theta} d \theta
$$

Recall that $\sin 2 \theta \geq 2 \theta \frac{2}{\pi}$ for $0 \leq 2 \theta \leq \pi / 2$. Therefore

$$
\left|\int_{B_{R}} f(z) d z\right| \leq R \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} d \theta \leq R \int_{0}^{\pi / 4} e^{-\frac{4 R^{2} \theta}{\pi}} d \theta=R\left(-\left.\frac{\pi}{4 R^{2}} e^{-\frac{4 R^{2} \theta}{\pi}}\right|_{\theta=0} ^{\theta=\pi / 4}\right)
$$

Hence

$$
\left|\int_{B_{R}} f(z) d z\right| \leq \frac{\pi}{4 R}\left(1-e^{-R^{2}}\right)
$$

Since $f(z)$ is analytic inside the path γ_{R}, by Cauchy theorem we have

$$
\int_{\gamma_{R}} f(z) d z=0
$$

or equivalently

$$
\int_{A_{R}} f(z) d z+\int_{B_{R}} f(z) d z+\int_{C_{R}} f(z) d z=0
$$

Taking the limits of both sides as $R \rightarrow \infty$, we first observe that

$$
\lim _{R \rightarrow \infty} \int_{B_{R}} f(z) d z=0
$$

and

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=-\alpha \int_{0}^{\infty} e^{-x^{2}} d x=-\alpha \frac{\sqrt{\pi}}{2}=-\left(\frac{\sqrt{\pi}}{2 \sqrt{2}}+i \frac{\sqrt{\pi}}{2 \sqrt{2}}\right) .
$$

Moreover

$$
\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=\int_{0}^{\infty} \cos x^{2} d x+i \int_{0}^{\infty} \sin x^{2} d x
$$

Finally, putting these together we find

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}} \approx 0.626 \ldots
$$

Here is a graph of $y=\cos x^{2}$ and $y=\sin x^{2}$.

