NAME:
STUDENT NO:

Math 503 Complex Analysis - Final Exam - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

General Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Let $\eta(z)=\frac{\zeta^{\prime}(z)}{\zeta(z)}$ for $\operatorname{Re} z>1$, where ζ is the Riemann zeta function. Show that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \eta(z)$ is always an integer for $\operatorname{Re} z_{0} \geq 1$. What is this integer? Make sure you cover all the cases of $\operatorname{Re} z_{0} \geq 1$.

Solution:

Note that $\eta(z)$ is defined ana analytic for all z with $\operatorname{Re} z \geq 1$ with the exception of $z=1$ where it has a pole of order 1 with residue 1 . Also note that $\eta(z)$ has no zero in this domain. Thus with the exception of $z_{0}=1, \lim _{z \rightarrow z_{0}} \eta(z)$ exists for all z_{0} wirh $\operatorname{Re} z_{0} \geq 1$ Thus

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \eta(z)=0, \operatorname{Re} z_{0} \geq 1, z_{0} \neq 1
$$

At $z=1, \zeta(z)$ has the Laurent expansion

$$
\zeta(z)=\frac{1}{z-1}+h(z)
$$

where $h(z)$ is analytic in some open ball around $z=1$. Then

$$
\eta(z)=\frac{-\frac{1}{(z-1)^{2}}+h^{\prime}(z)}{\frac{1}{z-1}+h(z)}=\frac{-1}{z-1} \frac{1-(z-1)^{2} h 2(z)}{1+(z-1) h(z)} .
$$

Therefore

$$
\lim _{z \rightarrow 1}(z-1) \eta(z)=-1
$$

Conclusion:

$$
\text { When } \operatorname{Re} z_{0} \geq 1, \quad \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \eta(z)= \begin{cases}0 & z_{0} \neq 1 \\ -1 & z_{0}=1\end{cases}
$$

Q-2) Let ϕ be an analytic function on $\operatorname{Re} z>0$, and satisfy the conditions
(a) $\phi(1)=2017$,
(b) $\phi(z+1)=z \phi(z)$,
(c) $\lim _{n \rightarrow \infty} \frac{\phi(z+n)}{n^{z} \phi(n)}=2018$.

Find $\lim _{z \rightarrow \pi} \frac{\phi(z)}{\Gamma(z)}$.

Solution:

First note that (b) implies that $\phi(z+n)=z(z+1)(z+2) \cdots(z+n-1) \phi(z)$. Together with (a) this gives $\phi(n)=2017(n-1)$!.

Next we decipher the left hand side of (c).

$$
\begin{aligned}
\frac{\phi(z+n)}{n^{z} \phi(n)} & =\frac{z(z+1) \cdots(z+n-1) \phi(z)}{n^{z} 2017(n-1)!} \cdot \frac{z+n}{z+n} \cdot \frac{n}{n} \\
& =\frac{z(z+1) \cdots(z+n)}{n^{z} n!} \cdot \frac{n}{z+n} \cdot \frac{\phi(z)}{2017} \\
& =\left(\Gamma(z) \frac{z(z+1) \cdots(z+n)}{n^{z} n!}\right) \cdot \frac{n}{z+n} \cdot\left(\frac{\phi(z)}{\Gamma(z)}\right) \frac{1}{2017}
\end{aligned}
$$

Taking the limit of both sides as n goes to infinity and using Gauss's formula for the Γ function we get

$$
2018=\left(\lim _{n \rightarrow \infty} \frac{\phi(z)}{\Gamma(z)}\right) \frac{1}{2017}=\frac{\phi(z)}{\Gamma(z)} \frac{1}{2017} .
$$

Thus we find that

$$
\phi(z)=2017 \times 2018 \Gamma(z) .
$$

Since $\Gamma(z)$ is continuous at $z=\pi$, we get

$$
\lim _{z \rightarrow \pi} \frac{\phi(z)}{\Gamma(z)}=2017 \times 2018=4070306
$$

Q-3 Show that

$$
\sinh \pi z=\pi z \prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2}}\right) .
$$

Solution:

This follows from a simple calculation using the definition and the factorization of the sine function.

$$
\begin{aligned}
\sinh z & =\frac{e^{z}-e^{-z}}{2}=\frac{e^{-i(i z)}-e^{i(i z)}}{2} \\
& =-i \frac{e^{i(i z)}-e^{-i(i z)}}{2 i}=-i \sin i z \\
& =(-i)(i z) \prod_{n=1}^{\infty}\left(1-\frac{(i z)^{2}}{\pi^{2} n^{2}}\right) \\
& =z \prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{\pi^{2} n^{2}}\right)
\end{aligned}
$$

Now it follows that

$$
\sinh \pi z=\pi z \prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2}}\right)
$$

Q-4) For any positive integer n, calculate

$$
I_{n}=\int_{0}^{\infty} \frac{d x}{1+x^{2 n+1}}
$$

Solution:

Let $f(z)=\frac{1}{1+z^{2 n+1}}$. Then

$$
\operatorname{Res}\left(f(z), z_{0}\right)=\frac{1}{(2 n+1) z_{0}^{2 n}}=-\frac{z_{0}}{2 n+1},
$$

since the pole is simple. Now check that

$$
\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=I_{n}, \quad \lim _{R \rightarrow \infty} \int_{B_{R}} f(z) d z=0, \quad \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=-\alpha I_{n}
$$

The residue theorem now gives us

$$
(1-\alpha) I_{n}=2 \pi i\left(\frac{-z_{0}}{2 n+1}\right)
$$

Finally simplifying this expression to your heart's content, you find

$$
I_{n}=\frac{\pi}{2 n+1} \operatorname{cosec} \frac{\pi}{2 n+1}, n=1,2, \ldots
$$

