NAME:
STUDENT NO: \qquad

Math 503 Complex Analysis - Homework 1 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

General Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

NAME:

Q-1) Find the real and imaginary parts of $\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{2018}$.
Solution: Let $z=\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)$. Then $z=\operatorname{cis}\left(-\frac{\pi}{3}\right)$. Hence

$$
z^{2018}=\operatorname{cis}\left(-\frac{2018 \times 3 \pi}{3}\right)=\operatorname{cis}\left(-336 \times 2 \pi-\frac{2 \pi}{3}\right)=\operatorname{cis}\left(-\frac{2 \pi}{3}\right)=-\frac{1}{2}-i \frac{\sqrt{3}}{2} .
$$

Thus

$$
\operatorname{Re} z^{2018}=-\frac{1}{2} \quad \text { and } \quad \operatorname{Im} z^{2018}=-\frac{\sqrt{3}}{2} .
$$

Also note that

$$
z^{2018}=\left(z^{6}\right)^{336} z^{2}=z^{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

Q-2) Find the real and imaginary parts of $\frac{7+i}{(8+i)^{2}}$.
Solution:

$$
\begin{aligned}
\frac{7+i}{(8+i)^{2}} & =\frac{7+i}{63+16 i} \\
& =\frac{7+i}{63+16 i} \frac{63-16 i}{63-16 i} \\
& =\frac{457-49 i}{4225}
\end{aligned}
$$

Hence

$$
\operatorname{Re}\left(\frac{7+i}{(8+i)^{2}}\right)=\frac{457}{4225} \quad \text { and } \quad \operatorname{Im}\left(\frac{7+i)}{(8+i)^{2}}\right)=-\frac{49}{4225}
$$

Q-3 Write all cube roots of i in rectangular form, i.e. in the form $a+i b$.

Solution:

The fundamental argument of i is 90°. Hence a primitive cube root is cis 30°. The other cube roots are then $\operatorname{cis}\left(30^{\circ}+120^{\circ}\right)$ and $\operatorname{cis}\left(30^{\circ}+240^{\circ}\right)$. Calculating these we find the cube roots as

$$
\frac{\sqrt{3}}{2}+i \frac{1}{2}, \quad-\frac{\sqrt{3}}{2}+i \frac{1}{2}, \quad-i .
$$

Q-4) Let (X, d) be a metric space and $\left\{x_{n}\right\}$ a Cauchy sequence in X. Assume that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges to some point a in X. Show that $\left\{x_{n}\right\}$ also converges to a.

Solution:

Choose an $\epsilon>0$. Since $\left\{x_{n}\right\}$ is Cauchy, there exists and index N_{1} such that for all $n, m \geq N_{1}$ we have $d\left(x_{n}, x_{m}\right)<\epsilon / 2$. On the other hand since $\left\{x_{n_{k}}\right\}$ converges to a, there exists and index N_{2} such that for all $n_{k}>N_{2}$ we have $d\left(x_{n_{k}}, a\right)<\epsilon / 2$. Now let N be any index larger than both N_{1} and N_{2}. Choose any $n_{k}>N$. Then for any $n>N$ we have $d\left(x_{n}, a\right) \leq d\left(x_{n}, x_{n_{k}}\right)+d\left(x_{n_{k}}, a\right)<\epsilon / 2+\epsilon / 2=\epsilon$, showing that the sequence $\left\{x_{n}\right\}$ also converges to a.

