Due Date: 5 October 2017, Thursday

NAME:	

Math 503 Complex Analysis - Homework 1

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are **4** questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Submit your solutions on this booklet only. Use extra pages if necessary.**

General Rules for Take-Home Assignments

- (1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you **write your answers alone**.
- (2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
- (3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you **exhibit your total understanding of the ideas involved**.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

NAME:

Q-1) Find the real and imaginary parts of $\left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)^{2018}$.

NAME:

DEPARTMENT:

Q-2) Find the real and imaginary parts of $\frac{7+i}{(8+i)^2}$.

Q-3 Write all cube roots of i in rectangular form, i.e. in the form a + ib.

Q-4) Let (X, d) be a metric space and $\{x_n\}$ a Cauchy sequence in X. Assume that $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ which converges to some point a in X. Show that $\{x_n\}$ also converges to a.