NAME:
STUDENT NO: \qquad

Math 503 Complex Analysis - Midterm 1 - Solution Key

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

General Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) Let G be simply connected open subset of \mathbb{C} and $u(x, y)$ a harmonic function on G. Show that a harmonic conjugate for u exists on G.

Solution:

We need the Green's Theorem from Calculus: If $P(x, y)$ and $Q(x, y)$ are C^{1} functions on a simply connected domain U and $\omega=P d x+Q d y$ is a closed form, then the line integral of ω on paths totally lying in U are path independent.

Now let $u(x, y)$ be a harmonic function in the simply connected region U. Define the function $g(z)=$ $u_{x}-i u_{y}$. Check that g is holomorphic in U.

Note that $g(z) d z=\left(u_{x}-i u_{y}\right)(d x+i d y)=\omega_{1}+i \omega_{2}$ where ω_{1}, ω_{2} are real and closed. Hence, fixing a point $z_{0} \in U$ we can define a function

$$
F(z)=\int_{z_{0}}^{z} g(s) d s, z \in U
$$

Now fix any $z \in U$ and for a given $\epsilon>0$ let $\delta>0$ be such that whenever $\left|z-z^{\prime}\right|<\delta$, we have $\left|g(z)-g\left(z^{\prime}\right)\right|<\epsilon$. Choose Δz such that $|\Delta z|<\delta$. Then we have
$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-g(z)\right|=\left|\frac{1}{\Delta z} \int_{z}^{z+\Delta z}(g(s)-g(z)) d s\right| \leq\left|\frac{1}{\Delta z}\right| \int_{z}^{z+\Delta z}|g(s)-g(z)||d s|<\epsilon$,
assuming we perform the last path independent integral along a line joining z to $z+\Delta z$; this line will stay in U for small $|\Delta z|$ since U is open. Now this last expression above shows that $F^{\prime}=g$. Note

$$
F(z)^{\prime}=U_{x}+i V_{x}=V_{y}-i U_{y}=u_{x}-i u_{y}
$$

Then $U+c=u$ for some real constant c. Hence u is the real part of the holomorphic function $F+c$ and hence V is a harmonic conjugate for u.

Q-2) Derive, in your own words, the polar form of the Cauchy-Riemann equations and use that to show that the \log function is holomorphic on $\mathbb{C} \backslash\{z \leq 0\}$.

Solution:

Let $f(z)=u(x, y)+i v(x, y)$ be a holomorphic function. We have the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Now keeping in mind that

$$
x=r \cos \theta, \quad \text { and } \quad y=r \sin \theta
$$

we take partial derivatives of u and v with respect to r and θ using the chain rule.

$$
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial u}{\partial x}(\cos \theta)+\frac{\partial u}{\partial y}(\sin \theta)=\frac{\partial v}{\partial y}(\cos \theta)-\frac{\partial v}{\partial x}(\sin \theta)
$$

where we implemented the Cauchy-Riemann equations in the last line. Similarly we have

$$
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}=-\frac{\partial u}{\partial x}(r \sin \theta)+\frac{\partial u}{\partial y}(r \cos \theta)=-\frac{\partial v}{\partial y}(r \sin \theta)-\frac{\partial v}{\partial x}(r \cos \theta) .
$$

Comparing these with

$$
\begin{aligned}
& \frac{\partial v}{\partial r}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial v}{\partial x}(\cos \theta)+\frac{\partial v}{\partial y}(\sin \theta) \\
& \frac{\partial v}{\partial \theta}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}=-\frac{\partial v}{\partial x}(r \sin \theta)+\frac{\partial v}{\partial y}(r \cos \theta)
\end{aligned}
$$

we observe that we have the relations

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

which are the polar forms of the Cauchy-Riemann equations.
Finally we apply this to the \log function. If $z=r e^{\theta}$, then

$$
\log z=\log r+i \theta, \quad \text { so } \quad u=\log r \text { and } v=\theta .
$$

We immediately have

$$
u_{r}=\frac{1}{r}, v_{\theta}=1, u_{\theta}=0, v_{r}=0
$$

It then follows that the polar from of the Cauchy-Riemann equations hold for the log function.

Q-3 Classify all holomorphic functions on a fixed connected open subset of \mathbb{C} which take only real values.

Solution:

Let $f(z)=u(x, y)+i v(x, y)$. Since f is taking only real numbers we must have $v \equiv 0$. From the Cauchy-Riemann equations we find that $u_{x}=0$ and $u_{y}=0$, so U is constant, since the domain is connected.

Thus the only holomorphic functions which take only real numbers on a connected domain are the constants.

Q-4) Calculate the following numbers, always using the fundamental branch of the logarithm whenever a logarithm is required.
(i) i^{i}
(ii) $(-2)^{i}$.
(iii) $\pi^{\frac{1+i}{1-i}}$
(iv) $(\sqrt{3}+i)^{1+i \sqrt{3}}$
(v) Let $a_{0}=i$ and $a_{n}=\left(a_{n-1}\right)^{i}$ for $n=1,2, \ldots$. Find a_{n}.

Solution:

If $z=r e^{i \theta}$, then the fundamental branch is chosen as $-\pi<\theta \leq \pi$.
(i) $i=e^{i \frac{\pi}{2}} \cdot i^{i}=\exp (i \log i)=\exp \left(i i \frac{\pi}{2}\right)=e^{-\frac{\pi}{2}} \approx 0.20$.
(ii) First note that $2^{i}=\exp (i \ln 2)=\cos \ln 2+i \sin \ln 2$.

Hence $(-2)^{i}=\left(2 e^{i \pi}\right)^{i}=2^{i} e^{-\pi}=e^{-\pi}(\cos \ln 2+i \sin \ln 2) \approx 0.03+i 0.02$.
(iii) First note that $\frac{1+i}{1-i}=i$. Hence $\pi^{i}=\exp (i \ln \pi)=\cos \ln \pi+i \sin \ln \pi \approx 0.41+i 0.91$.
(iv) $(\sqrt{3}+i)^{1+i \sqrt{3}}=\left(2 e^{i \frac{\pi}{6}}\right)^{1+i \sqrt{3}}=\exp \left((1+i \sqrt{3})\left(\ln 2+i \frac{\pi}{6}\right)=\exp \left(\left(\ln 2-\frac{\sqrt{3} \pi}{6}\right)+i\left(\sqrt{3} \ln 2+\frac{\pi}{6}\right)\right)\right.$.

This finally gives $(\sqrt{3}+i)^{1+i \sqrt{3}}=2 e^{-\frac{\sqrt{3} \pi}{6}}\left(\cos \left(\sqrt{3} \ln 2+\frac{\pi}{6}\right)+i \sin \left(\sqrt{3} \ln 2+\frac{\pi}{6}\right)\right) \approx-0.12+$ i0.79.
(v) We check that the first few terms of the sequence are

$$
a_{0}=i, a_{1}=e^{-\frac{\pi}{2}}, a_{2}=-i, a_{3}=e^{\frac{\pi}{2}}, a_{4}=i .
$$

So we can write

$$
a_{n}= \begin{cases}e^{-\frac{\pi}{2}}, & \text { if } n \equiv 1 \quad \bmod 4, \\ -i & \text { if } n \equiv 2 \quad \bmod 4, \\ e^{\frac{\pi}{2}} & \text { if } n \equiv 3 \quad \bmod 4, \\ i & \text { if } n \equiv 0 \quad \bmod 4\end{cases}
$$

