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Math 503 Complex Analysis - Midterm 2 – Solutions
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Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Submit your solutions on this booklet only. Use extra pages if necessary.

General Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory
that you write your answers alone.

(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in
such a manner that the source is easily retrieved with your citation. This includes any ideas you
borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing
not to acknowledge their contribution!)

(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if
any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in
preparing this submitted work.

Please sign here:



NAME: STUDENT NO: DEPARTMENT:

Q-1) The original proof of the Riemann Mapping Theorem assumes that the proper, connected and
simply connected open set U is bounded. Show that this causes no loss of generality.
(Of course you cannot use the Riemann Mapping Theorem here!)

Solution:

On page 162 of Conway, we showed that if b is a point in U c, complement of U in C, then g(z) =√
z − b is defined and is a one-to-one holomorphic map. Then we showed that the interior of the

complement of g(U) is non-empty, (see equation 4.8 on that page).

So we might as well assume from the start that the complement of U has non-empty interior. Let z0 be

a point in the interior of U c. Then f(z) =
1

z − z0
is a Mobius transformation so U is biholomorphic

to f(U). It is clear that f(U) is bounded even if U is not.

So we can assume U is bounded.
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Q-2) On the internet find the original proof Riemann gave for his mapping theorem and explain the steps
of the proof in your own words.

Solution:

Let U be an open, bounded, connected and simply connected proper subset of C with ∂U smooth.

Fix a point z0 ∈ U .

By Dirichlet principle there is a harmonic function u(z) on U such that u(z) = − ln |z − z0| for
z ∈ ∂U .

Let v(z) be a harmonic conjugate of u(z) on U .

Then check that
f(z) = (z − z0)eu(z)+iv(z)

is a one-to-one holomorphic map of U onto the unit disc.
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Q-3 LetG be a simply connected region which is not the whole plane and suppose that z̄ ∈ G whenever
z ∈ G. Let a ∈ G∩R and suppose that f : G→ D = {z : |z| < 1} is a one-to-one analytic function
with f(a) = 0, f ′(a) > 0 and f(G) = D. Let G+ = {z ∈ G : Im z > 0}. Show that f(G+) must
lie entirely above or entirely below the real axis.
(There are solutions of this on the Internet. Again use your own wording in your solution in a way
to show your understanding.)

Solution:

We first prove that f(z̄) = f(z).
Proof of claim: Define g(z) = f(z̄). If f(z) = u(x, y) + iv(x, y) and g(z) = U(x, y) + iV (x, y),
then U(x, y) = u(x,−y) and V (x, y) = −v(x,−y). Checking Cauchy-Riemann conditions we
see that g is holomorphic. By definition g is one-to-one and onto D. Check that g(a) = 0 and
g′(a) = ux(a, 0) > 0, so by the uniquesness claim of Riemann mapping theorem we must have
g(z) = f(z). Now it follows that f(z̄) = f(z). This proves the claim.

Since G+ is open, f(G+) is also open. If f(G+) does not lie entirely above or below the real line then
there exists w ∈ f(G+) such that w̄ is also in f(G+), and w 6= w̄.

Let α and β in G+ be such that f(α) = w and f(β) = w̄. Putting these together we obtain

f(β) = w̄ = f(α) = f(ᾱ).

Since f is one-to-one, we must have ᾱ = β, but then both of α and β cannot be in G+. This
contradiction shows that f(G+) must lie totally above or below the real line.
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Q-4) Let In =

∫ ∞
0

log x

(1 + x2)n
dx, n = 2, 3, . . . .

Find a formula in terms of residues for In and using a software to calculate these residues, write
the values of In for n = 2, . . . , 10. (Check privately using the same software that the values of In
match your residue calculations.)

Solution:

First notice that by a change of variables we observe that∫ 1

0

log x

(1 + x2)
dx = −

∫ ∞
1

log x

(1 + x2)
dx,

so I1 = 0

Next let f(z) =
log z

(1 + z2)n
and integrate f around the following path.

r−r−R R

γR

γr

i

Letting ρ = r or R, we see that ∣∣∣∣∣
∫
γρ

f(z) dz

∣∣∣∣∣ ≤ πρ2(log ρ+ π)

|1− ρ2|n
.

The expression on the right goes to zero when ρ→ 0 for n ≥ 1, and it still goes to zero when ρ→∞
when n > 1.

On [−R,−r] we have∫ −r
−R

f(z) dz =

∫ R

r

log x

(1 + x2)n
dx+ iπ

∫ R

r

dx

(1 + x2)n
=

∫ R

r

log x

(1 + x2)n
dx+ iπ

π

22n−1
(2n− 2)!

[(n− 1)!]2
,

where the last equality is derived in class.



Letting γr,R be the above path with 0 < r < 1 < R, we have∫
γr,R

f(z) = 2πiRes(f, i).

Putting these together we have

In = πiRes(f, i)− i π
2

22n

(2n− 2)!

[(n− 1)!]2
.

To calculate the residue let g(z, n) =
log z

(z + i)n
. Then

Res(f, i) =
1

(n− 1)!

(
∂n−1

∂zn−1
g(z, n)

∣∣∣∣
z=i

)
.

Finally we have

In = i
π

(n− 1)!)

(
∂n−1

∂zn−1
g(z, n)

∣∣∣∣
z=i

)
− i π

2

22n

(2n− 2)!

[(n− 1)!]2
, for n > 1.

The right hand side does give a real number and in fact a negative real number!

I2 = −1

4
π I3 = −1

4
π I4 = −23

96
π I5 = −11

48
π I6 = − 563

2560
π

I7 = −1627

768
π I8 = − 88069

430080
π I9 = −1423

7168
π I10 = −1593269

8257536
π I11 = − 7759469

41287680
π

Recall that I1 = 0.


