Math 503 Complex Analysis - Midterm 2 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Submit your solutions on this booklet only. Use extra pages if necessary.

General Rules for Take-Home Assignments

(1) You may discuss the problems with your classmates or with me but it is absolutely mandatory that you write your answers alone.
(2) You must obey the usual rules of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends. (It is a good thing to borrow ideas from friends but it is a bad thing not to acknowledge their contribution!)
(3) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work.

Please sign here:

Q-1) The original proof of the Riemann Mapping Theorem assumes that the proper, connected and simply connected open set U is bounded. Show that this causes no loss of generality. (Of course you cannot use the Riemann Mapping Theorem here!)

Solution:

On page 162 of Conway, we showed that if b is a point in U^{c}, complement of U in \mathbb{C}, then $g(z)=$ $\sqrt{z-b}$ is defined and is a one-to-one holomorphic map. Then we showed that the interior of the complement of $g(U)$ is non-empty, (see equation 4.8 on that page).

So we might as well assume from the start that the complement of U has non-empty interior. Let z_{0} be a point in the interior of U^{c}. Then $f(z)=\frac{1}{z-z_{0}}$ is a Mobius transformation so U is biholomorphic to $f(U)$. It is clear that $f(U)$ is bounded even if U is not.

So we can assume U is bounded.

Q-2) On the internet find the original proof Riemann gave for his mapping theorem and explain the steps of the proof in your own words.

Solution:

Let U be an open, bounded, connected and simply connected proper subset of \mathbb{C} with ∂U smooth.
Fix a point $z_{0} \in U$.
By Dirichlet principle there is a harmonic function $u(z)$ on U such that $u(z)=-\ln \left|z-z_{0}\right|$ for $z \in \partial U$.

Let $v(z)$ be a harmonic conjugate of $u(z)$ on U.
Then check that

$$
f(z)=\left(z-z_{0}\right) e^{u(z)+i v(z)}
$$

is a one-to-one holomorphic map of U onto the unit disc.

Q-3 Let G be a simply connected region which is not the whole plane and suppose that $\bar{z} \in G$ whenever $z \in G$. Let $a \in G \cap \mathbb{R}$ and suppose that $f: G \rightarrow D=\{z:|z|<1\}$ is a one-to-one analytic function with $f(a)=0, f^{\prime}(a)>0$ and $f(G)=D$. Let $G_{+}=\{z \in G$: $\operatorname{Im} z>0\}$. Show that $f\left(G_{+}\right)$must lie entirely above or entirely below the real axis.
(There are solutions of this on the Internet. Again use your own wording in your solution in a way to show your understanding.)

Solution:

We first prove that $f(\bar{z})=\overline{f(z)}$.
Proof of claim: Define $g(z)=\overline{f(\bar{z})}$. If $f(z)=u(x, y)+i v(x, y)$ and $g(z)=U(x, y)+i V(x, y)$, then $U(x, y)=u(x,-y)$ and $V(x, y)=-v(x,-y)$. Checking Cauchy-Riemann conditions we see that g is holomorphic. By definition g is one-to-one and onto D. Check that $g(a)=0$ and $g^{\prime}(a)=u_{x}(a, 0)>0$, so by the uniquesness claim of Riemann mapping theorem we must have $g(z)=f(z)$. Now it follows that $f(\bar{z})=\overline{f(z)}$. This proves the claim.

Since G_{+}is open, $f\left(G_{+}\right)$is also open. If $f\left(G_{+}\right)$does not lie entirely above or below the real line then there exists $w \in f\left(G_{+}\right)$such that \bar{w} is also in $f\left(G_{+}\right)$, and $w \neq \bar{w}$.

Let α and β in G_{+}be such that $f(\alpha)=w$ and $f(\beta)=\bar{w}$. Putting these together we obtain

$$
f(\beta)=\bar{w}=\overline{f(\alpha)}=f(\bar{\alpha})
$$

Since f is one-to-one, we must have $\bar{\alpha}=\beta$, but then both of α and β cannot be in G_{+}. This contradiction shows that $f\left(G_{+}\right)$must lie totally above or below the real line.

Q-4) Let $I_{n}=\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{n}} d x, n=2,3, \ldots$.
Find a formula in terms of residues for I_{n} and using a software to calculate these residues, write the values of I_{n} for $n=2, \ldots, 10$. (Check privately using the same software that the values of I_{n} match your residue calculations.)

Solution:

First notice that by a change of variables we observe that

$$
\int_{0}^{1} \frac{\log x}{\left(1+x^{2}\right)} d x=-\int_{1}^{\infty} \frac{\log x}{\left(1+x^{2}\right)} d x
$$

so $I_{1}=0$
Next let $f(z)=\frac{\log z}{\left(1+z^{2}\right)^{n}}$ and integrate f around the following path.

Letting $\rho=r$ or R, we see that

$$
\left|\int_{\gamma_{\rho}} f(z) d z\right| \leq \frac{\pi \rho^{2}(\log \rho+\pi)}{\left|1-\rho^{2}\right|^{n}} .
$$

The expression on the right goes to zero when $\rho \rightarrow 0$ for $n \geq 1$, and it still goes to zero when $\rho \rightarrow \infty$ when $n>1$.

On $[-R,-r]$ we have

$$
\int_{-R}^{-r} f(z) d z=\int_{r}^{R} \frac{\log x}{\left(1+x^{2}\right)^{n}} d x+i \pi \int_{r}^{R} \frac{d x}{\left(1+x^{2}\right)^{n}}=\int_{r}^{R} \frac{\log x}{\left(1+x^{2}\right)^{n}} d x+i \pi \frac{\pi}{2^{2 n-1}} \frac{(2 n-2)!}{[(n-1)!]^{2}}
$$

where the last equality is derived in class.

Letting $\gamma_{r, R}$ be the above path with $0<r<1<R$, we have

$$
\int_{\gamma_{r, R}} f(z)=2 \pi i \operatorname{Res}(f, i)
$$

Putting these together we have

$$
I_{n}=\pi i \operatorname{Res}(f, i)-i \frac{\pi^{2}}{2^{2 n}} \frac{(2 n-2)!}{[(n-1)!]^{2}}
$$

To calculate the residue let $g(z, n)=\frac{\log z}{(z+i)^{n}}$. Then

$$
\operatorname{Res}(f, i)=\frac{1}{(n-1)!}\left(\left.\frac{\partial^{n-1}}{\partial z^{n-1}} g(z, n)\right|_{z=i}\right)
$$

Finally we have

$$
I_{n}=i \frac{\pi}{(n-1)!)}\left(\left.\frac{\partial^{n-1}}{\partial z^{n-1}} g(z, n)\right|_{z=i}\right)-i \frac{\pi^{2}}{2^{2 n}} \frac{(2 n-2)!}{[(n-1)!]^{2}}, \text { for } n>1
$$

The right hand side does give a real number and in fact a negative real number!

$$
\begin{array}{lllll}
I_{2}=-\frac{1}{4} \pi & I_{3}=-\frac{1}{4} \pi & I_{4}=-\frac{23}{96} \pi & I_{5}=-\frac{11}{48} \pi & I_{6}=-\frac{563}{2560} \pi \\
I_{7}=-\frac{1627}{768} \pi & I_{8}=-\frac{88069}{430080} \pi & I_{9}=-\frac{1423}{7168} \pi & I_{10}=-\frac{1593269}{8257536} \pi & I_{11}=-\frac{7759469}{41287680} \pi
\end{array}
$$

Recall that $I_{1}=0$.

