
Final Exam
Math 503 Complex Analysis I

Due: 31 December 2020
Instructor: Ali Sinan Sertöz

Solution KeyBilkent University

You may and in fact must discuss your solutions with your friends. Consult any source available.
After you understand the solution start writing your own solution in your own words. When you get
stuck, again talk with your friends and consult sources before you continue to write your own solution
in your own words.

At the end of each solution quote the sources that you used, including your friends’s names who
provided you with useful ideas. This is professionalism!

Never borrow your friend’s written solution and never lend your written solution.

Then scan and save your solutions as one pdf file and mail it to me before the deadline.

Q-1) Let f(z) = u(x, y) + iv(x, y) be an entire function. Prove or disprove the following.

(a) If there exist w ∈ C and r > 0 such that there is no z ∈ C such that f(z) ∈ B(w; r), then f is
constant.

(b) If there exists M > 0 such that |u(x, y)| ≤M for all z = x+ iy ∈ C, then f is constant.

(c) If there exists M > 0 such that |v(x, y)| ≤M for all z = x+ iy ∈ C, then f is constant.

Answer-1

(a) Suppose such a w and r > 0 exist. Then |f(z)−w| ≥ r for any z ∈ C, and the function
1

f(z)− w
is a bounded entire function which according to Liouville’s theorem must be constant. Hence f itself
is constant.

If you want to use a heavier machinery then you can quote Picard’s Little Theorem (Conway, page
297) which says that an entire function which omits two values is constant. Here f omits a whole
open disc and is certainly constant.

(b) Take w = M + 1 and r = 1, then apply part (a). Hence f is constant.

You can also show that since ef(z) is bounded and therefore constant, it forces f to be constant as
well.

(c) Similar to part (b), take w = i(M + 1) and r = 1. Hence f is constant.

Similarly here you can use e−if(z) which will be bounded and hence constant.
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Q-2) Prove or disprove the following.

(a) f(z) = z is the only entire function with the propert that f(n) = n for every integer n.

(b) f(z) = π is the only entire function with the property that f(n) = π for every integer n.

Answer-2

(a) This is not true. Let g(z) be an entire function whose zero set is the set of integers. Such functions
exist thanks to Weierstrass factorization theorem. Then f(z) = g(z) + z is another entire function
with the required property. In fact you can take g(z) = sin 2πz.

(b) This is not true either since as above we can consider the function π + sin 2πz.
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Q-3) Show that for every integer n ≥ 2, we have∫ ∞
0

dx

1 + xn
=

π

n sin π
n

.

Answer-3

Let f(z) =
1

1 + zn
and consider the path LR = AR +BR +CR where AR is the path along the x-axis

from 0 to R > 1, BR is the circular arc from R to R exp(2πi/n) on the circle of radius R and center
0, CR is the path along the line from R exp(2πi/n) to 0. We have

IR :=

∫
LR

f(z) dz = 2πiRes [f(z), z = exp(πi/n)] =
2π

n

(
sin

π

n
− i cos

π

n

)
.

We also have ∫
AR+CR

f(z) dz = (1− exp(2πi/n))

∫ R

0

dx

1 + xn
.

Taking limits as R→∞, and noting that in that case the integral over BR also goes to zero, we get

(1− exp(2πi/n))

∫ ∞
0

dx

1 + xn
=

2π

n

(
sin

π

n
− i cos

π

n

)
.

Now equating the imaginary parts of both sides and simplifying gives us the required formula.
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Q-4) Show that cos πz =
∞∏
n=1

(
1− 4z2

(2n− 1)2

)
.

Answer-4

We reduce this back to an expression using the sin πz function as follows.

cosπz =
sin 2πz

2 sinπz

=
���2πz

∏∞
n=1

(
1− 4z2

n2

)
�
��2πz
∏∞

n=1

(
1− z2

n2

)
=

∏∞
n=1

(
1− 4z2

(2n−1)2

)
������
(

1− 4z2

(2n)2

)
��������∏∞

n=1

(
1− z2

n2

)
=

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
.

Q-5) Find a formula for the value of the integrals In =

∫ π/2

0

dx

1 + tann! x
, where n ≥ 4 is an integer.

Answer-5

When n ≥ 4, then n! = 4m for some integer m ≥ 1.

First use a real substitution t = tanx.

I4m =

∫ π/2

0

dx

1 + tan4m x
=

∫ ∞
0

dt

(1 + t2)(1 + t4m)
.

Now let
f(z) =

1

(1 + z2)(1 + z4m)
.

Let γR be the contour consisting of the real interval [−R,R] together with the semicircle CR of radius
R centered at the origin, in the upper half plane and traversed in the positive direction, counterclock-
wise. When R > 1 we have∫

γR

f(z) dz = (2πi)( sum of the residues of f(z) in the upper half plane).

We also observe that the right hand side is independent of R > 1, but the left hand side depends on
R. Taking limits as R goes to infinity, we get

lim
R→∞

∫
γR

f = lim
R→∞

∫
CR

f + lim
R→∞

∫
[−R,R]

f = lim
R→∞

∫
[−R,R]

f = 2I4m,

since the limit of the integral on CR is zero. We then have

I4m = πi( sum of the residues of f(z) in the upper half plane).
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We now recall that if f(z) =
p(z)

q(z)
, where p and q are analytic functions, a is a simple zero of q, and

p(a) 6= 0, then Res(f(z), z = a) =
p(a)

q′(a)
. First let

f(z) =
p(z)

q(z)
, where p(z) =

1

(z + i)(z4m + 1)
, and q(z) = z − i.

Then
Res(f(z), z = i) = p(i) =

1

4i
.

Next let

f(z) =
p(z)

q(z)
, where p(z) =

1

(1 + z2)
, and q(z) = 1 + z4m.

Let z0, z1, . . . z2m−1 be the roots of q(z) = 0 in the upper half plane, where

zk = exp(
2k + 1

4m
πi), k = 0, . . . , 2m− 1.

Observe that
z2m−k−1 = −z̄k, k = 0, . . . ,m− 1.

Now a straighforward calculation shows that

Res(f(z), z = zk) + Res(f(z), z = z2m−k−1) = 0,

and hence
2m−1∑
k=0

Res(f(z), z = zk) = 0.

Thus the sum of residues of f(z) in the upper half plane is just 1/(4i) which was calculated above.

Thus finally we get

In =

∫ π/2

0

dx

1 + tann! x
=
π

4
, n ≥ 4.

In fact you can prove that

,

∫ π/2

0

dx

1 + tanα x
=
π

4
, α ∈ R. ,

Here is how to do it. Let

φ(α) =

∫ π/2

0

dx

1 + tanα x
.
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We now show that φ′(α) = 0 as follows.

φ′(α) =
d

dα

∫ π/2

0

dx

1 + tanα x

=
d

dα

∫ ∞
0

dt

(1 + t2)(1 + tα)
(after putting t = tanx)

=

∫ ∞
0

d

dα

dt

(1 + t2)(1 + tα)
(Leibniz integral rule)

=

∫ ∞
0

−tα ln t dt

(1 + t2)(1 + tα)2

=

∫ 1

0

−tα ln t dt

(1 + t2)(1 + tα)2
+

∫ ∞
1

−tα ln t dt

(1 + t2)(1 + tα)2

=

∫ ∞
1

xα lnx dx

(1 + x2)(1 + xα)2
+

∫ ∞
1

−tα ln t dt

(1 + t2)(1 + tα)2
(after putting t = 1/x)

= 0,

as claimed. Now that we know that φ(α) is constant, we calculate φ for an easy α.

φ(0) =

∫ π/2

0

dx

2
=
π

4
.

Hence φ(α) =
π

4
for any α ∈ R.

Note added after I read your solutions: There is a much easier and neater way of getting this result.
Here is how some of you did it.

Let

Iα =

∫ π/2

0

dx

1 + tanα x
. (∗)

Now put x =
π

2
− t. Then note that tanx =

1

tan t
. With this substitution we get

Iα =

∫ π/2

0

tanα t

1 + tanα t
dt. (∗∗)

Finally adding (∗) and (∗∗) side by side we get

2Iα =

∫ π/2

0

dx =
π

2
,

which then clearly shows that
Iα =

π

4
.
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