Homework \# 01
Math 503 Complex Analysis I
Due: 11 October 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) On page 43 of Conway's book we have the theorem:
2.30 Theorem. Let G be either the whole plane \mathbb{C} or some open disk. If $u: G \rightarrow \mathbb{R}$ is a harmonic function then u has a harmonic conjugate.

After the proof the section ends with the following paragraph:
Where was the fact that G is a disk or \mathbb{C} used? Why can't this method of proof be doctored sufficiently that it holds for general regions G ? Where does the proof break down when $G=\mathbb{C}-\{0\}$ and $u(z)=\log |z|$?

Discuss your answers to these questions.

Answer:

At the last line of the proof we define $v(x, y)$ as the sum of two integrals. Let $\left(x_{0}, y_{0}\right)$ be a point in the region G. Then according to the definition of v we have

$$
v\left(x_{0}, y_{0}\right)=\int_{0}^{y_{0}} u_{x}(x, t) d t-\int_{0}^{x_{0}} u_{y}(s, 0) d s
$$

In particular for all $(x, y) \in \mathbb{C}$ with $0 \leq x \leq x_{0}$ and $0 \leq y \leq y_{0}$, we must have

$$
v(x, y)=\int_{0}^{y} u_{x}(x, t) d t-\int_{0}^{x} u_{y}(s, 0) d s
$$

For the integrals of this last line to make sense, the whole rectangle with corners $(0,0),\left(x_{0}, 0\right),\left(x_{0}, y_{0}\right)$ and $\left(0, y_{0}\right)$ must be in the domain G of u. This generally requires that G is a convex set.

If u is defined on a general region G which is not necessarily convex, then around each point $p \in G$ we can consider a small ball $B_{p} \subset G$, and define a harmonic conjugate $v[p]$ of u on B_{p}. If on all possible non-empty intersections $B_{p} \cap B_{q}$ the functions $v[p]$ and $v[q]$ agree, then we have a harmonic conjugate for u on G.

However if G is not simply connected, then this process may fail for some functions. In particular for $G=\mathbb{C}-\{0\}$ and $u(z)=\log |z|$, this is precisel what happens. If you choose the points p on a circle around the origin, and move p on this circle counterclockwise, you will see that when you return to your original starting point the new v you find does not agree with the v you found at the start. This is because the complex log function picks up an extra 2π imaginary part when you turn around the origin once.

