
Homework # 03
Math 503 Complex Analysis I

Due: 3 December 2020 Thursday
Instructor: Ali Sinan Sertöz

Solution KeyBilkent University

Q-1) Prove the folowing identities where a ∈ C but is not an integer.

(a)
π2

sin2 πa
=

∞∑
n=−∞

1

(a+ n)2

(b) π2 = 8
∞∑
n=0

1

(2n+ 1)2

(c) π cotπa =
1

a
+
∞∑
n=1

2a

a2 − n2

(d)
π

sin πa
=

1

a
+
∞∑
n=1

(−1)n 2a

a2 − n2

Remarks: The result of (c) is crucially used in the factorization of the sine function. All these
identities are proved in a very similar manner so they can all be considered as the manifestation of
a single idea. All the information needed to attack these identities are explained in detail on page
122 of Conway’s book.

Solutions start on next page.
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Answer:
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γn = γAB + γBC + γCD + γDA

We consider the rectangle with the corners at

A = (n+
1

n
, n), B = (−n− 1

n
, n), C = (−n− 1

n
,−n), D = (n+

1

n
,−n),

where n is a positive integer. Our path γn is traced counterclockwise.

Our first task is to find upper bounds for the moduli of sin πz and cos πz when z = x+ iy ∈ γn. We
use the usual identities

| cos(x+ iy)π|2 = cos2 πx+ sinh2 πy, | sin(x+ iy)π|2 = sin2 πx+ sinh2 πy.

On γDA we have z = (n+ 1/2) + iy, for −n ≤ y ≤ n. Then

| cos[(n+ 1/2)π + iyπ]|2 = cos2(n+ 1/2)π + sinh2 πy = sinh2 πy,

| sin[(n+ 1/2)π + iyπ]|2 = sin2(n+ 1/2)π + sinh2 πy = 1 + sinh2 πy.

Hence for z ∈ γDA we have

| cot πz|2 = sinh2 πy

1 + sinh2 πy
≤ 1,

and
| csc πz|2 = 1

1 + sinh2 πy
≤ 1.

On γAB we have z = x+ in, for −n− 1/2 ≤ x ≤ n+ 1/2. Then for z ∈ γAB we have

| cot πz|2 = cos2 πx+ sinh2 πn

sin2 πx+ sinh2 πn
≤ 1 + sinh2 πn

sinh2 πn
≤ 2,

| csc πz|2 = 1

sin2 πx+ sinh2 πn
≤ 1

sinh2 πn
≤ 1.
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When z ∈ γBC , then −z ∈ γDA, and when z ∈ γCD, then −z ∈ γAB. Hence the upper bounds for
| cotπz| and | csc πz| on these parts of the boundary are the same.

Hence for z ∈ γn we have
| cot πz| ≤ 2 and | csc πz| ≤ 1.

(a) Let a be a complex number which is not an integer. Let

fa(z) =
π cot πz

(z + a)2
.

For any integer n > |a|, let

In,a =

∫
γn

fa(z) dz.

By residue theorem we know that In,a is equal to 2πi times the sum of the residues of fa(z) inside
the contour γn. The poles of fa(z) inside thsi contour are z = a and z = k, for k = −n, . . . , n. We
calculate the residues to be

Res(fa(z), z = −a) = −
π2

sin2 πa
, and Res(fa(z), z = k) =

1

(k + a)2
.

Hence we have

In,a = 2πi

(
− π2

sin2 πa
+

n∑
k=−n

1

(k + a)2

)
.

Now we take the limit of both sides as n goes to infinity. For this first we examine |In,a|.

For this purpose observe that when z ∈ γn, we have |z| > |a| and |z| ≥ |n|. Hence

|(z + a)2| ≥ (|z| − |a|)2 ≥ |z|2 ≥ n2,

and it then follows that ∣∣∣∣ 1

(z + a)2

∣∣∣∣ ≤ 1

n2
.

We can know see that

|In,a| ≤
2π(8n+ 2)

n2
,

where 8n+ 2 is the length of the contour γn. It then follows that

lim
n→∞

In,a = 0.

This gives

lim
n→∞

(
− π2

sin2 πa
+

n∑
k=−n

1

(k + a)2

)
= 0,

which is equivalent to what we wanted to establish

π2

sin2 πa
=

∞∑
n=−∞

1

(a+ n)2
.

(b) In the previous result we choose a = 1/2. Then we have

π2 =
∞∑

n=−∞

1

(n+ 1/2)2
=
∞∑
−∞

4

(2n+ 1)2
= 8

∞∑
n=0

1

(2n+ 1)2
,
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as claimed.

(c) We again use the contours γn for n > |a|, but this time we set

fa(z) =
π cot πz

z2 − a2
.

For z ∈ γn we again have ∣∣∣∣ 1

z2 − a2

∣∣∣∣ ≤ 1

n2
, and | cot πz| ≤ 2.

The poles of fa(z) inside the contour γn are z = ±a and z = k, for k = −n, . . . , n. Then the residues
are

Res(fa(z), z = ±a) =
π cotπa

2a
, Res(fa(z), z = k) =

1

k2 − a2
.

We argue as in (a) above and find that the sum of the residues as n goes to infinity is zero. This gives

π cot πa

a
=

∞∑
k=−∞

1

a2 − k2
.

Multiplying both sides by a, taking out the k = 0 case and observing that k and −k give the same
summand we get

π cotπa =
1

a
+
∞∑
k=1

2a

a2 − k2
,

as claimed.

(d) We again use γn for n > |a|, but this time we set

fa(z) =
π csc πz

z2 − a2
.

Repeating the above arguments we see that

Res(fa(z), z = ±a) =
π

2a

1

sin πa
, Res(fa(z), z = k) =

(−1)k

k2 − a2
.

Since we showed that
| csc πz| ≤ 1 for z ∈ γn,

we have, as above,

lim
n→∞

(
π

a sin πa
+

n∑
k=−n

(−1)k

k2 − a2

)
= 0.

Rearranging this we get
π

sin πa
=

1

a
+
∞∑
k=1

(−1)k 2a

a2 − k2
,

as claimed.
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