Homework \# 03
Math 503 Complex Analysis I
Due: 3 December 2020 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Prove the folowing identities where $a \in \mathbb{C}$ but is not an integer.
(a) $\frac{\pi^{2}}{\sin ^{2} \pi a}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}$
(b) $\pi^{2}=8 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$
(c) $\pi \cot \pi a=\frac{1}{a}+\sum_{n=1}^{\infty} \frac{2 a}{a^{2}-n^{2}}$
(d) $\frac{\pi}{\sin \pi a}=\frac{1}{a}+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 a}{a^{2}-n^{2}}$

Remarks: The result of (c) is crucially used in the factorization of the sine function. All these identities are proved in a very similar manner so they can all be considered as the manifestation of a single idea. All the information needed to attack these identities are explained in detail on page 122 of Conway's book.

Solutions start on next page.

Answer:

We consider the rectangle with the corners at

$$
A=\left(n+\frac{1}{n}, n\right), B=\left(-n-\frac{1}{n}, n\right), C=\left(-n-\frac{1}{n},-n\right), D=\left(n+\frac{1}{n},-n\right),
$$

where n is a positive integer. Our path γ_{n} is traced counterclockwise.
Our first task is to find upper bounds for the moduli of $\sin \pi z$ and $\cos \pi z$ when $z=x+i y \in \gamma_{n}$. We use the usual identities

$$
|\cos (x+i y) \pi|^{2}=\cos ^{2} \pi x+\sinh ^{2} \pi y,|\sin (x+i y) \pi|^{2}=\sin ^{2} \pi x+\sinh ^{2} \pi y
$$

On $\gamma_{D A}$ we have $z=(n+1 / 2)+i y$, for $-n \leq y \leq n$. Then

$$
\begin{aligned}
&|\cos [(n+1 / 2) \pi+i y \pi]|^{2}=\cos ^{2}(n+1 / 2) \pi+\sinh ^{2} \pi y \\
&=\sinh ^{2} \pi y \\
&|\sin [(n+1 / 2) \pi+i y \pi]|^{2}=\sin ^{2}(n+1 / 2) \pi+\sinh ^{2} \pi y
\end{aligned}=1+\sinh ^{2} \pi y . ~ \$
$$

Hence for $z \in \gamma_{D A}$ we have

$$
|\cot \pi z|^{2}=\frac{\sinh ^{2} \pi y}{1+\sinh ^{2} \pi y} \leq 1
$$

and

$$
|\csc \pi z|^{2}=\frac{1}{1+\sinh ^{2} \pi y} \leq 1
$$

On $\gamma_{A B}$ we have $z=x+i n$, for $-n-1 / 2 \leq x \leq n+1 / 2$. Then for $z \in \gamma_{A B}$ we have

$$
\begin{aligned}
& |\cot \pi z|^{2}=\frac{\cos ^{2} \pi x+\sinh ^{2} \pi n}{\sin ^{2} \pi x+\sinh ^{2} \pi n} \leq \frac{1+\sinh ^{2} \pi n}{\sinh ^{2} \pi n} \leq 2 \\
& |\csc \pi z|^{2}=\frac{1}{\sin ^{2} \pi x+\sinh ^{2} \pi n} \leq \frac{1}{\sinh ^{2} \pi n} \leq 1
\end{aligned}
$$

When $z \in \gamma_{B C}$, then $-z \in \gamma_{D A}$, and when $z \in \gamma_{C D}$, then $-z \in \gamma_{A B}$. Hence the upper bounds for $|\cot \pi z|$ and $|\csc \pi z|$ on these parts of the boundary are the same.

Hence for $z \in \gamma_{n}$ we have

$$
|\cot \pi z| \leq 2 \quad \text { and } \quad|\csc \pi z| \leq 1
$$

(a) Let a be a complex number which is not an integer. Let

$$
f_{a}(z)=\frac{\pi \cot \pi z}{(z+a)^{2}}
$$

For any integer $n>|a|$, let

$$
I_{n, a}=\int_{\gamma_{n}} f_{a}(z) d z
$$

By residue theorem we know that $I_{n, a}$ is equal to $2 \pi i$ times the sum of the residues of $f_{a}(z)$ inside the contour γ_{n}. The poles of $f_{a}(z)$ inside thsi contour are $z=a$ and $z=k$, for $k=-n, \ldots, n$. We calculate the residues to be

$$
\operatorname{Res}\left(f_{a}(z), z=-a\right)=-\frac{\pi^{2}}{\sin ^{2} \pi a}, \quad \text { and } \quad \operatorname{Res}\left(f_{a}(z), z=k\right)=\frac{1}{(k+a)^{2}}
$$

Hence we have

$$
I_{n, a}=2 \pi i\left(-\frac{\pi^{2}}{\sin ^{2} \pi a}+\sum_{k=-n}^{n} \frac{1}{(k+a)^{2}}\right) .
$$

Now we take the limit of both sides as n goes to infinity. For this first we examine $\left|I_{n, a}\right|$.
For this purpose observe that when $z \in \gamma_{n}$, we have $|z|>|a|$ and $|z| \geq|n|$. Hence

$$
\left|(z+a)^{2}\right| \geq(|z|-|a|)^{2} \geq|z|^{2} \geq n^{2}
$$

and it then follows that

$$
\left|\frac{1}{(z+a)^{2}}\right| \leq \frac{1}{n^{2}} .
$$

We can know see that

$$
\left|I_{n, a}\right| \leq \frac{2 \pi(8 n+2)}{n^{2}}
$$

where $8 n+2$ is the length of the contour γ_{n}. It then follows that

$$
\lim _{n \rightarrow \infty} I_{n, a}=0
$$

This gives

$$
\lim _{n \rightarrow \infty}\left(-\frac{\pi^{2}}{\sin ^{2} \pi a}+\sum_{k=-n}^{n} \frac{1}{(k+a)^{2}}\right)=0
$$

which is equivalent to what we wanted to establish

$$
\frac{\pi^{2}}{\sin ^{2} \pi a}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}
$$

(b) In the previous result we choose $a=1 / 2$. Then we have

$$
\pi^{2}=\sum_{n=-\infty}^{\infty} \frac{1}{(n+1 / 2)^{2}}=\sum_{-\infty}^{\infty} \frac{4}{(2 n+1)^{2}}=8 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}},
$$

as claimed.
(c) We again use the contours γ_{n} for $n>|a|$, but this time we set

$$
f_{a}(z)=\frac{\pi \cot \pi z}{z^{2}-a^{2}}
$$

For $z \in \gamma_{n}$ we again have

$$
\left|\frac{1}{z^{2}-a^{2}}\right| \leq \frac{1}{n^{2}}, \quad \text { and } \quad|\cot \pi z| \leq 2
$$

The poles of $f_{a}(z)$ inside the contour γ_{n} are $z= \pm a$ and $z=k$, for $k=-n, \ldots, n$. Then the residues are

$$
\operatorname{Res}\left(f_{a}(z), z= \pm a\right)=\frac{\pi \cot \pi a}{2 a}, \quad \operatorname{Res}\left(f_{a}(z), z=k\right)=\frac{1}{k^{2}-a^{2}}
$$

We argue as in (a) above and find that the sum of the residues as n goes to infinity is zero. This gives

$$
\frac{\pi \cot \pi a}{a}=\sum_{k=-\infty}^{\infty} \frac{1}{a^{2}-k^{2}}
$$

Multiplying both sides by a, taking out the $k=0$ case and observing that k and $-k$ give the same summand we get

$$
\pi \cot \pi a=\frac{1}{a}+\sum_{k=1}^{\infty} \frac{2 a}{a^{2}-k^{2}},
$$

as claimed.
(d) We again use γ_{n} for $n>|a|$, but this time we set

$$
f_{a}(z)=\frac{\pi \csc \pi z}{z^{2}-a^{2}}
$$

Repeating the above arguments we see that

$$
\operatorname{Res}\left(f_{a}(z), z= \pm a\right)=\frac{\pi}{2 a} \frac{1}{\sin \pi a}, \quad \operatorname{Res}\left(f_{a}(z), z=k\right)=\frac{(-1)^{k}}{k^{2}-a^{2}}
$$

Since we showed that

$$
|\csc \pi z| \leq 1 \quad \text { for } \quad z \in \gamma_{n},
$$

we have, as above,

$$
\lim _{n \rightarrow \infty}\left(\frac{\pi}{a \sin \pi a}+\sum_{k=-n}^{n} \frac{(-1)^{k}}{k^{2}-a^{2}}\right)=0
$$

Rearranging this we get

$$
\frac{\pi}{\sin \pi a}=\frac{1}{a}+\sum_{k=1}^{\infty}(-1)^{k} \frac{2 a}{a^{2}-k^{2}}
$$

as claimed.

