Homework \# 03
Math 503 Complex Analysis I
Due: 3 December 2020 Thursday
Instructor: Ali Sinan Sertöz

Bilkent University
Name \& Lastname:
Student ID: \qquad

Scan and save your answer as a pdf file and mail it to me before the deadline.
Q-1) Prove the folowing identities where $a \in \mathbb{C}$ but is not an integer.
(a) $\frac{\pi^{2}}{\sin ^{2} \pi a}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}$
(b) $\pi^{2}=8 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$
(c) $\pi \cot \pi a=\frac{1}{a}+\sum_{n=1}^{\infty} \frac{2 a}{a^{2}-n^{2}}$
(d) $\frac{\pi}{\sin \pi a}=\frac{1}{a}+\sum_{n=1}^{\infty}(-1)^{n} \frac{2 a}{a^{2}-n^{2}}$

Remarks: The result of (c) is crucially used in the factorization of the sine function. All these identities are proved in a very similar manner so they can all be considered as the manifestation of a single idea. All the information needed to attack these identities are explained in detail on page 122 of Conway's book.

