Midterm \# 01
Math 503 Complex Analysis I
Due: 18 November 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(z)=u(x, y)+i v(x, y)$ be a C^{1}-function on \mathbb{C}. Here as usual u and v are real valued C^{1} function of the real variables x and y, and $z=x+i y$. Assume that f is conformal. Show that f is complex analytic.

Answer: We will show that f satisfies the Cauchy-Riemann equations.
Let z_{0} be an arbitrary point in \mathbb{C} and $z(t)=x(t)+i y(t)$ be a C^{1}-curve passing through z_{0}. Assume without loss of generality that $z(0)=z_{0}$. Also assume that $z(t)$ is smooth in the sense that $z^{\prime}(t) \neq 0$ for any t in its domain.
$z^{\prime}(0)$ is the tangent vector to $z(t)$ at $t=0$.
Define the image of $z(t)$ under f as $w(t)=f(z(t))$. Since $z(t)$ and $f(x, y)$ are C^{1}-functions, $w^{\prime}(t)$ exists.

To say that f is conformal at $z(0)$ means that the f rotates $z^{\prime}(0)$ by a fixed angle regardless of what $z^{\prime}(0)$ is. In other words f is conformal at z_{0} if the difference $\arg w^{\prime}(0)-\arg z^{\prime}(0)$ is independent of $z^{\prime}(0)$. We note here that $\arg w^{\prime}(0)-\arg z^{\prime}(0)=\arg \frac{w^{\prime}(0)}{z^{\prime}(0)}$. Now we want to explicitly write $\frac{w^{\prime}(0)}{z^{\prime}(0)}$.

Since we can write $w(t)=f(z(t))=f(x(t), y(t))=u(x(t), y(t))+i v(x(t), y(t))$, using the chain rule for real variables we have

$$
\begin{aligned}
w^{\prime}(t) & =f_{x} x^{\prime}+f_{y} y^{\prime} \\
& =f_{x} \frac{1}{2}\left(z^{\prime}+\bar{z}^{\prime}\right)+f_{y} \frac{1}{2 i}\left(z^{\prime}-\bar{z}^{\prime}\right) \\
& =\frac{1}{2}\left(f_{x}-i f_{y}\right) z^{\prime}+\frac{1}{2}\left(f_{x}+i f_{y}\right) \bar{z}^{\prime} .
\end{aligned}
$$

It then follows that

$$
\frac{w^{\prime}}{z^{\prime}}=\frac{1}{2}\left(f_{x}-i f_{y}\right)+\frac{1}{2}\left(f_{x}+i f_{y}\right) \frac{\bar{z}^{\prime}}{z^{\prime}} .
$$

For all possible choices of curves $z(t)$ with $z(0)=z_{0}$, this expression describes points on a circle of radius $\frac{1}{2}\left(f_{x}+i f_{y}\right)$ and center $\frac{1}{2}\left(f_{x}-i f_{y}\right)$. The argument on this circle certainly changes and depends on $z(t)$ unless of course the the circle is a point, i.e. the radius is zero.

Hence if f is conformal we have

$$
0=f_{x}+i f_{y}=u_{x}+i v_{x}+i\left(u_{y}+i v_{y}\right)=\left(u_{x}-v_{y}\right)+i\left(u_{y}+v_{x}\right)
$$

which are precisely the Cauchy-Riemann equations. Hence f is analytic.
See: Ahlfors, Complex Analysis, Second Edition, McGraw-Hill, 1966, page 74.

Q-2) If $f(z)$ is analytic on a region G and is zero on a non-empty open subset U of G, then $f(z) \equiv 0$ on G. This is in stark contrast with what is possible in real analysis. To see this wide difference between these two worlds construct a real valued, non-negative C^{∞}-function $f(x)$ of the real variable x with the property that $f(x)=1$ on the open interval $(-1,1)$, and is zero outside the interval $(-2,2)$.

Answer: First consider the function

$$
g(x)= \begin{cases}e^{-1 / x} & \text { when } x>0 \\ 0 & \text { when } x \leq 0\end{cases}
$$

In Calculus courses we proved that this function is C^{∞}.
Our second auxiliary function is defined as

$$
h(x)=\frac{g(x)}{g(x)+g(1-x)} .
$$

Check that h is non-negative, C^{∞}, and $h(x)=1$ when $x \geq 1$, and is zero when $x \leq 0$.
We finally define our required function as

$$
f(x)=h(x+2) h(2-x) .
$$

Check that f satisfies our expectations.
See: Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, 1983, page 10.

Q-3) Let $m \geq 1$ be an integer, and define

$$
F(m)=\int_{|z|=1} \frac{\sin z}{z^{m}} d z
$$

where the integration is taken counterclockwise. Find an explicit formula for $F(m)$.

Answer:

For any analytic function $f(z)$ we have, by Cauchy Integral Formula (Corollary 2.13, page 73)

$$
\int_{|z|=1} \frac{f(z)}{z^{m}} d z=\frac{2 \pi i}{(m-1)!} f^{(m-1)}(0) .
$$

Define

$$
\epsilon_{m}=\left\{\begin{array}{lll}
0 & m \equiv 1 & \bmod 4 \\
1 & m \equiv 2 & \bmod 4, \\
0 & m \equiv 3 & \bmod 4 \\
-1 & m \equiv 0 & \bmod 4
\end{array}\right.
$$

Notice that if $f(z)=\sin z$, then $f^{(m-1)}(0)=\epsilon_{m}$. Then we have

$$
F(m)=\frac{2 \pi i}{(m-1)!} \epsilon_{m}, \quad m \geq 1
$$

Q-4) Show that

$$
\tan z=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} z^{2 n-1}, \quad|z|<\frac{\pi}{2}
$$

where B_{n} are Bernoulli numbers with the convention that $B_{0}=1$ and $\sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0$, for $n \geq 1$.

Answer:

There are several ways to derive this formula but they all revolve around the same idea, $e^{x}=\cos x+$ $i \sin x$, where x is real. Of course the Bernoulli numbers also play a crucial role.

We will follow Euler for Bernoulli numbers.
We let the following equation define the constants B_{n}. Letting z be a complex parameter we write

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n},|z|<2 \pi .
$$

Note that the left hand side can be extended to $z=0$, and this sets

$$
B_{0}=1 .
$$

Also observe that the series converges for $|z|<2 \pi$ since the nearest pole to zero of the function $z /\left(e^{z}-1\right)$ is $z=2 \pi i$.

Now we determine the coefficients B_{n}.

$$
1=\left(\frac{e^{z}-1}{z}\right)\left(\frac{z}{e^{z}-1}\right)=\left(\sum_{n=0}^{\infty} \frac{z^{n+1}}{(n+1)!}\right)\left(\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} B_{k}\binom{n+1}{k}\right) \frac{z^{n}}{(n+1)!} .
$$

Thus the coefficients B_{n} are determined by the following recursive relation.

$$
B_{0}=1, \quad \sum_{k=0}^{n} B_{k}\binom{n+1}{k}=0 \text { for } n \geq 1
$$

These are precisely the defining conditions of Bernoulli numbers.

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, \ldots
$$

Let

$$
f(z)=\frac{z}{e^{z}-1}+\frac{z}{2}=1+\sum_{n=2}^{\infty} \frac{b_{n}}{n!} z^{n} .
$$

Direct calculation shows that $f(z)=f(-z)$, so f is an even function and hence the coefficients of odd powers of z are zero.

$$
B_{2 n+1}=0 \text { for } n \geq 1 .
$$

Next we can verify by straightforward simplification the following identities.

$$
\begin{aligned}
f(z) & =\frac{z}{2} \operatorname{coth} \frac{z}{2} \\
\tanh z & =2 \operatorname{coth} 2 z-\operatorname{coth} z \\
z \tanh z & =f(4 z)-f(2 z) \\
\tan z & =-i \tanh i z
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\tan z & =-i \tanh i z \\
& =-i\left(\frac{1}{i z}[f(4 i z)-f(2 i z)]\right) \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} z^{2 n-1}
\end{aligned}
$$

where the series converges for $|z|<\pi / 2$ since this is where $f(4 i z)$ converges.

