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Please do not write anything inside the above boxes!

Check that there are 4 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail.

For each question I will post the best student solution on the web. If there are more than one interesting
solutions, I will post them all. Having your solution posted on the web will get you extra 10 points for each
solution posted. These will be added to your total exam grades before an average is taken at the end of the
semester.



NAME: STUDENT NO:

Q-1)

(i) Show that Z[i] and Z[ρ] are discrete subgroups of C, where ρ = 1
2
(1 +

√
−3).

(ii) Show that Z[
√

2] is not a discrete subgroup of C.

[page 120, Exercise 1A]

Solution:

(i) Let p = m + in ∈ Z[i]. If p 6= 0, then |p|2 = m2 + n2 ≥ 1. Let U be the unit open disc in C
centered at the origin. Then p+ U is an open neighborhood of p containing no other element of Z[i].

Similarly if p = m + ρn ∈ Z[ρ], then |p|2 = (m +
n

2
)2 +

3

4
n2 ≥ 3

4
. This shows, as above, that Z[ρ]

is discrete.

(ii) We claim that for any ε > 0 there exists an element p ∈ Z[
√

2] with |p| < ε. Assume to the
contrary that p0 = m0 + n0

√
2 is the smallest nonzero element in p ∈ Z[

√
2]. For any non-zero

p = u + v
√

2 let k be the smallest integer that makes |p − p0| minimum. Since |p0| is smallest non-

zero element, we must have p− p0 = 0, but this implies that
√

2 =
m0 − u
v − n0

which is a contradiction.

Hence p ∈ Z[
√

2] is not discrete.

(Another idea) Since 0 < −1 +
√

2 < 1, for any ε > 0 there exists an integer N > 0 such that
(−1 +

√
2)N < ε. So p ∈ Z[

√
2] is not discrete.



NAME: STUDENT NO:

Q-2) Find conditions on the integers a and b such that aω1+bω2 is a basis element of the lattice generated
by ω1 and ω2.
[page 120, Exercise 3E]

Solution:

Let cω1+dω2 be the other element of the basis. By Theorem 3.4.2 on page 65 we must have ad−bc =
±1. This is equivalent to saying that (a, b) = 1.



NAME: STUDENT NO:

Q-3) Let Ω be a lattice. For which λ, the map ω 7→ λω is an automorphism of Ω?
[page 120, Exercise 3G]

Solution:

Let ω ∈ Ω be a non-zero element of smallest length. Then |λω| ≥ |ω|, so |λ| ≥ 1. But since
1/λ : Ω → Ω is also an automorphism, for the same reasoning we must have |1/λ| ≥ 1. This forces
|λ| = 1.

Since λ induces an automorphism, if {ω1, ω2} is a basis, then {λω1, λω2} is also a basis. Hence there
is a bases change matrix which represents the automorphism induced by λ. Let(

a b
c d

)(
ω1

ω2

)
=

(
λω1

λω2

)
= λ

(
ω1

ω2

)
,

where a, b, c, dıZ and ad− bc = ±1.

Since λ now occurs as an eigenvalue, it must satisfy the equation

λ2 − (a+ d)λ+ (ad− bc) = 0.

Since |λ| = 1, this is an elliptic transformation, so |a+ d| ≤ 1.

Now we examine the possible cases.

ad− bc = 1 and a+ d = 0.
In this case we have λ2 + 1 = 0, so λ = ±i.

ad− bc = 1 and a+ d = 1.

In this case we have λ2 − λ+ 1 = 0, so λ =
1± i

√
3

2
.

ad− bc = 1 and a+ d = −1.

In this case we have λ2 + λ+ 1 = 0, so λ =
−1± i

√
3

2
.

ad− bc = −1 case.
In this case we have (

λ− a+ d

2

)
=

(
a+ d

2

)2

+ 1.

This forces λ to be real but then |λ| = 1 forces λ = ±1.

Hence the only possible values of an automorphism inducing λ are

±1, ±i, 1± i
√

3

2
,
−1± i

√
3

2
.
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Q-4)

(i) Show that
∞∑

n=−∞

1

(z − n)2
converges normally on compact subsets of C \ Z.

(ii) Show that π2 cosec2 πz =
∞∑

n=−∞

1

(z − n)2
.

[page 121, Exercise 3I and 3J]

Solution:

Let K be a compact subset of the complex plane. Then there exists an index N such that for all
n ≥ N , the functions (z − n)−2 are analytic on K.

Note that for all n ≥ N , and all z ∈ K, we have |z ∗ n| > 0 and also

lim
n→∞

1
|z−n|2

1
n2

= 1,

so by the limit comparison test
∞∑
n=N

1

|n− z|2

converges. This proves that
∞∑
n=N

1

(n− z)2
converges normally, and hence uniformly on compact

subsets of C

For the second part we follow the hints in the book. Let

h(z) = π2 cosec2 πz −
∞∑

n=−∞

1

(z − n)2
.

Clearly h(z + 1) = h(z), so h is periodic with period 1.

Laurent series of π2 cosec2 πz at z = 0 is

1

z2
+
π2

3
+
π4

15
+ z2 + · · · .

Thus we have

h(z) =
1

z2
+
π2

3
+
π4

15
+ z2 + · · · − 1

z2
−
∑
n=−∞
n6=0

1

(z − n)2
.

This shows that h(0) is well defined after canceling out 1/z2.

By periodicity h(n) is defined at all integers. Thus h is continuous and restricting z to the closed and
bounded real interval [0, 1], we see that |h(z)| ≤ M for some M > 0. Again by periodicity we have
|h(z)| < M for all real z.



We now recall some trigonometric identities.

sin2 πz

2
=

1− cosπz

2
, and sin2 π(z + 1)

2
= cos2

πz

2
=

1 + cos πz

2
.

Using these we have

h(
z

2
) + h(

z + 1

2
) =

π2

sin2 πz
2

−
∞∑

n=−∞

4

(z − 2n)2
+

π2

cos2 πz
2

−
∞∑

n=−∞

4

(z − (2n− 1))2

=
2π2

1− cos πz
+

2π2

1 + cos πz
−

∞∑
n=−∞

4

(z − n)2

=
4π2

1− cos2 πz
−

∞∑
n=−∞

4

(z − n)2

=
4π2

sin2 πz
−

∞∑
n=−∞

4

(z − n)2

= 4h(z).

We showed that
h(
z

2
) + h(

z + 1

2
) = 4h(z),

for all z ∈ C. Restricting z to be real we find that

|4h(z)| ≤ |h(
z

2
)|+ |h(

z + 1

2
)| < 2M,

which implies that for all real z,
|h(z) < M/2.

Iterating the above arguments we find that for all real z,

|h(z)| < M/2n

for all positive integers n. This shows that h(z) = 0 for all real z. But then this forces the entire
function h(z) to be identically zero, which is precisely what we want to show.

Another idea is to start with the infinite product expression

sin πz = πz
∞∏
n=1

(
1− z

n

)(
1 +

z

n

)
.

Let

f(z) =
sin πz

π
= z

∞∏
n=1

(
1− z

n

)(
1 +

z

n

)
.

Calculating the logarithmic derivative of f we find

g(z) =
f ′(z)

f(z)
=

1

z
+
∞∑
n=1

(
1

z − n
+

1

z + n

)
.



Differentiating term by term we find

g′(z) =
∞∑

n=−∞

1

(z − n)2
.

Next noting that f(z) =
sin πz

π
, calculate g′(z) directly to find

g′(z) =

(
f ′(z)

f(z)

)′
= π2 cosec2 πz.


