\qquad
\qquad

Math 504 Complex Analysis II - Take-Home Exam 09 - Solutions

1	2	3	4	5	TOTAL
100	0	0	0	0	100

Please do not write anything inside the above boxes!
Write your name on top of every page. Show your work in reasonable detail.

Q-1) Find the index of $\Gamma(n)$ in Γ.
[page 317, Exercise 6L]

Solution:

Let $n \geq 2$ be an integer and $Z_{n}=\{0,1,2, \ldots, n-1\}$ be endowed with the addition and multiplication $\bmod n$, making it a ring. Let

$$
R_{n}=\left\{(a, b) \in Z_{n} \times Z_{n}\right\}
$$

We want to count the number of pairs $(a, b) \in R_{n}$ such that $\operatorname{gcd}(a, b, n)=1$.
There are n^{2} pairs in R_{n}. Let p_{1}, \ldots, p_{r} be the list of distinct prime factors of n. There are $\frac{n}{p_{1}}$ integers in Z_{n} which are divisible by p_{1}, giving us $\frac{n^{2}}{p_{1}^{2}}$ pairs $(a, b) \in R_{n}$ whose greatest common divisor is divisible by p_{1}. Thus we have

$$
n^{2}-\frac{n^{2}}{p_{1}^{2}}=n^{2}\left(1-\frac{1}{p_{1}^{2}}\right)
$$

pairs $(a, b) \in R_{n}$ with $\operatorname{gcd}\left(p_{1}, \operatorname{gcd}(a, b)\right)=1$. Arguing in exactly the same way we see that $\frac{1}{p_{2}^{2}}$ of these pairs have their greatest common divisor divisible by p_{2}, and we have

$$
n^{2}\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}^{2}}\right)
$$

pairs $(a, b) \in R_{n}$ with $\operatorname{gcd}\left(p_{i}, \operatorname{gcd}(a, b)\right)=1$ for $i=1,2$. Continuing in this way we see that there are

$$
n^{2} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}^{2}}\right)
$$

pairs $(a, b) \in R_{n}$ such that $\operatorname{gcd}(a, b)$ is not divisible by any of the primes dividing n. Hence this is the number we are looking for.

Let

$$
R_{n}^{\prime}=\left\{(a, b) \in Z_{n} \times Z_{n} \mid \operatorname{gcd}(a, b, n)=1\right\} .
$$

We just showed that

$$
\# R_{n}^{\prime}=n^{2} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}^{2}}\right)
$$

where p_{i} are the distinct primes dividing n.
We claim that for every pair $(a, b) \in R_{n}^{\prime}$, there exist exactly n pairs $(c, d) \in R_{n}$ such that $a d-b c \equiv 1$ $\bmod n$.

First we show that if $\operatorname{gcd}(a, b, n)=1$, then there exists at least one pair $(c, d) \in R_{n}$ such that $a d-b c \equiv 1 \bmod n$. For this note that since $\operatorname{gcd}(a, b, n)=1$, then there exist integers α, β, γ such that $\alpha a+\beta b+\gamma n=1$. Write $\alpha=d+\alpha_{1} n$ and $\beta=-c+\beta_{1} n$ for some integers α_{1} and β_{1} where
c and d are integers with $0 \leq c, d<n$. Putting these new expressions for α and β into the above equation for 1 we get $a d-b c \equiv 1 \bmod n$.

Next we show that there are n such solutions. Let $(c, d) \in R_{n}$ be a solution whose existence we just proved. Let $\left(c_{t}, d_{t}\right) \in R_{n}$ be defined as $c_{t} \equiv c+t a \bmod n$ and $d_{t} \equiv d+t b \bmod n$, for $t=0,1, \ldots, n-1$. Then it is clear that $a d_{t}-b c_{t} \equiv 1 \bmod n$ for all $t=0,1, \ldots, n-1$. We show that these solutions are all distinct. Assume that $\left(c_{t}, d_{t}\right)=\left(c_{s}, d_{s}\right) \in R_{n}$. This gives

$$
a(t-s) \equiv 0 \quad \bmod n, \text { and } b(t-s) \equiv 0 \quad \bmod n
$$

If p is a prime dividing n, then

$$
p \mid a(t-s), \text { and } p \mid b(t-s)
$$

If $p \mid a$, then $p \nmid b$ so $p \mid(t-s)$. If $p \nmid a$, then $p \mid(t-s)$. This shows that $n \mid(t-s)$. But as $0 \leq t, s<n$, we have $t=s$. This shows that we have at least n distinct solutions.

Now we show that any solution is of this form. Let $(c, d) \in R_{n}$ be a solution to $a d-b c \equiv 1 \bmod n$. Since $(c, d) \neq(0,0)$, we may without loss of generality assume that $d \neq 0$. Let $(x, y) \in R_{n}$ be another solution. Then we have

$$
\left(\begin{array}{ll}
d & -c \\
y & -x
\end{array}\right)\binom{a}{b}=\binom{1+k n}{1+w n}
$$

where k and w are some integers. If the coefficient matrix is not invertible, then by bringing it to echelon form we get the second row zero which means $x=y c / d$. Using this value of x we find

$$
1+w n=a y-b \frac{y c}{d}=a \frac{y d}{d}-b \frac{y c}{d}=\frac{y}{d}(a d-b c)
$$

from which we get

$$
d-y \equiv 0 \quad \bmod n
$$

Since $0 \leq d, y<n-1$, we have $d=y$, and hence $x=c$. This shows that if (x, y) is a different solution, then the coefficient matrix is invertible. Let Δ be its determinant. Multiplying both sides by the inverse of the coefficient matrix we get

$$
\binom{a}{b}=\frac{1}{\Delta}\left(\begin{array}{ll}
-x & c \\
-y & d
\end{array}\right)\binom{1+k n}{1+w n}
$$

and hence

$$
\binom{\Delta a}{\Delta b}=\binom{c-x+u n}{d-y+v n}
$$

for some integers u and v. From these we see that

$$
x \equiv c+t a \quad \bmod n, \text { and } y \equiv d+t b \quad \bmod n,
$$

as claimed. Hence the above n solutions are all the solutions.
Next we show that for every $(a, b) \in R_{n}$, if $\operatorname{gcd}(a, b, n)=m>1$, then there exists no pair $(c, d) \in$ R_{n} with $a d-b c \equiv 1 \bmod 1$. Assume to the contrary that there is a pair $(c, d) \in R_{n}$ such that $a d-b c=1+k n$ for some integer k. Since m divides each of a, b, n, we have $a d-b c \equiv 0 \bmod m$ and $1+k n \equiv 1 \bmod m$. This is a contradiction, proving our claim.

Putting these together we see that

$$
\# S L\left(2, Z_{n}\right)=n \cdot \# R_{n}^{\prime}=n^{2} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}^{2}}\right)
$$

where p_{i} are the distinct primes dividing n. Since

$$
\operatorname{PSL}\left(2, Z_{n}\right) \cong S L\left(2, Z_{n}\right) /\{ \pm I\}
$$

where I is the identity matrix, the cardinality of $\operatorname{PSL}\left(2, Z_{n}\right)$ is half the above number when $n>2$. When $n=2$, there is no difference between I and $-I$, so $P S L\left(2, Z_{n}\right) \cong S L\left(2, Z_{n}\right)$, and we do not need to divide by 2 in the above formula. Without dividing by 2 the formula gives 6 as the cardinality when $n=2$. Thus we have the result

$$
\# P S L\left(2, Z_{n}\right)=|\Gamma: \Gamma(n)|= \begin{cases}6 & \text { if } n=2 \\ \frac{n^{3}}{2} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}^{2}}\right), & \text { if } n>2\end{cases}
$$

where p_{i} are the distinct primes dividing n.

