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NAME: STUDENT NO:
Q-1) Find the index of I'(n) in T".

[page 317, Exercise 6L]

Solution:

Letn > 2be aninteger and Z,, = {0,1,2,...,n—1} be endowed with the addition and multiplication
mod n, making it a ring. Let
R, ={(a,b) € Z, x Z,,}.

We want to count the number of pairs (a,b) € R, such that gcd(a, b,n) = 1.

There are n? pairs in R,,. Let p, . . ., p, be the list of distinct prime factors of n. There are — integers
P
2
in Z, which are divisible by p;, giving us — pairs (a,b) € R, whose greatest common divisor is
p1

divisible by p;. Thus we have

1
pairs (a,b) € R, with gcd(p;,gcd(a,b)) = 1. Arguing in exactly the same way we see that — of

Dy
these pairs have their greatest common divisor divisible by p,, and we have

, 1 1
p1 Dy

pairs (a,b) € R,, with ged(p;, ged(a, b)) = 1 for i = 1,2. Continuing in this way we see that there
are

pairs (a,b) € R, such that gcd(a, b) is not divisible by any of the primes dividing n. Hence this is the
number we are looking for.

Let
R, ={(a,b) € Z,, x Z, | ged(a,b,n) =1}.

We just showed that
: 1
#R, =n*]] (1——2> ,
i=1 P

where p; are the distinct primes dividing n.

We claim that for every pair (a, b) € R], there exist exactly n pairs (¢,d) € R, such that ad — bc = 1
mod n.

First we show that if gcd(a,b,n) = 1, then there exists at least one pair (¢,d) € R, such that
ad — bc =1 mod n. For this note that since ged(a, b, n) = 1, then there exist integers «, 3,y such
that aa + b+ yn = 1. Write « = d + ayn and = —c + (1n for some integers o and 3; where



c and d are integers with 0 < ¢, d < n. Putting these new expressions for o and 3 into the above
equation for 1 we get ad — bc =1 mod n.

Next we show that there are n such solutions. Let (¢,d) € R, be a solution whose existence we
just proved. Let (¢;,d;) € R, be defined as ¢; = ¢ + ta mod n and d; = d + tb mod n, for
t=20,1,...,n — 1. Then it is clear that ad; — bc; =1 mod n forallt =0,1,...,n — 1. We show
that these solutions are all distinct. Assume that (¢;, d;) = (¢s,ds) € R,,. This gives

a(t—s)=0 modn, andb(t —s) =0 mod n.
If p is a prime dividing n, then
pla(t — s), and p|b(t — s).
If pla, then p fbso p|(t — s). If p fa, then p|(t — s). This shows that n|(t — s). Butas 0 < ¢,s < n,

we have ¢t = s. This shows that we have at least n distinct solutions.

Now we show that any solution is of this form. Let (¢, d) € R,, be a solution to ad — bc =1 mod n.
Since (¢, d) # (0,0), we may without loss of generality assume that d # 0. Let (z,y) € R, be

another solution. Then we have
d —c a\ (1+kn
y —x)\b) \1+wn)’

where £ and w are some integers. If the coefficient matrix is not invertible, then by bringing it to
echelon form we get the second row zero which means = = yc/d. Using this value of x we find

oy — ¥ oY Y Y-
1+wn=ay bd—ad bd—d(ad be),

from which we get
d—y=0 mod n.

Since 0 < d,y < n — 1, we have d = y, and hence © = c. This shows that if (z,y) is a different
solution, then the coefficient matrix is invertible. Let A be its determinant. Multiplying both sides by
the inverse of the coefficient matrix we get

a _l —x c 14+ kn
b) A\-y d)\1+wn)’
Aa\ (c—xz+un
Ab) \d—y+wvn)’

for some integers v and v. From these we see that

and hence

r=c+ta modn, andy =d+tb mod n,
as claimed. Hence the above n solutions are all the solutions.

Next we show that for every (a,b) € R,, if gcd(a,b,n) = m > 1, then there exists no pair (¢, d) €
R, with ad — bc = 1 mod 1. Assume to the contrary that there is a pair (¢,d) € R, such that
ad — bc = 1 + kn for some integer k. Since m divides each of a, b, n, we have ad — bc =0 mod m
and 1 + kn =1 mod m. This is a contradiction, proving our claim.



Putting these together we see that

T

#SL(2,7,) =n-#R, = n2H (1 — 2%) ;
i=1 i

where p; are the distinct primes dividing n. Since
PSL(2, Z,) = SL(2, Z,) {1},

where [ is the identity matrix, the cardinality of PSL(2, Z,,) is half the above number when n > 2.
When n = 2, there is no difference between [ and —1, so PSL(2, Z,)) = SL(2, Z,), and we do not
need to divide by 2 in the above formula. Without dividing by 2 the formula gives 6 as the cardinality
when n = 2. Thus we have the result

6 ifn =2,
#PSL(2,Z,) = :T(n)| =< n® 1+ (
1

n
2i:

2

1
1——), ifn > 2
b;

where p; are the distinct primes dividing n.



