
Chapter 1

Affine Varieties

1.1 First Definitions

Affine Space: We fix an algebraically closed field k. The affine n space over
k is denoted by An

k which is simply the set of n-tuples of elements of k. If k
is understood it can also be denoted simply by An. It differs from kn by the
absence of a k-vector space structure.

Zero Set: For any ideal J of the polynomial ring k[x1, . . . , xn] we denote by
Z(J) the common zeros of all polynomials in J ,

Z(J) = {p ∈ An | f(p) = 0 for all f ∈ J }.
Every ideal in k[x1, . . . , xn] is finitely generated. If J = (f1, . . . , fr), then we
denote Z(J) also by Z(f1, . . . , fr).

Definition 1 A subset X of An is called an algebraic set if it is of the form
X = Z(J) for some ideal J ⊂ k[x1, . . . , xn].

Some immediate examples of algebraic sets are ∅ = Z(1), {(a1, . . . , an)} =
Z(x1 − a1, . . . , xn − an) and An = Z(0). If k = C, then a nonempty proper
subset of An which is open with respect to the usual metric topology is not
an algebraic set.
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Zariski Topology: We put a new topology on An by declaring that the
collection of closed sets will consist only of algebraic sets. The topology thus
defined is called the Zariski topology.

Affine Variety: A closed set in a topological space is called irreducible if it is
not the union of two proper nonempty closed subsets. An affine algebraic set
is called an affine variety if it is irreducible in the Zariski topology. We may
drop the mention of “affine” when it is clear from the context, for example
when we are working in An or working with the polynomial ring k[x1, . . . , xn].

If f ∈ k[x1, . . . , xn] is an irreducible polynomial, then Z(f) is a variety.
Z(x1x2) is not a variety since it is the union of the closed sets Z(x1) and
Z(x2).

Dimension: The dimension of a closed set V in a topological space is
defined to be the maximal integer m, if it exists, for which we have a chain
of inclusions

V = V0 ! V1 ! · · · ! Vm

where each Vi is a nonempty closed subset. If no such m exists, the dimension
of V is defined to be infinite. The dimension of an open set is the dimension
of its closure.

The dimension of an algebraic variety is defined as its dimension as a closed
set in the Zariski topology. The dimension of an algebraic set is defined to
be the largest of the dimensions of its irreducible components. Varieties of
dimension one and two are called curves and surfaces, respectively. An n
dimensional variety is generally referred a to as an n-fold when n > 2.

For any nonconstant f ∈ k[x1, . . . , xn], the algebraic set Z(f) is called a
hypersurface, and if f is linear it is called a hyperplane. The dimension of a
hypersurface in An is n− 1.

Ideal of a Set: Starting with an arbitrary subset X of An define the set of
all polynomials which vanish on X by

I(X) = {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X }.

This is a radical ideal in k[x1, . . . , xn].
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We have the immediate relations;
(i) X ⊂ Z(I(X)) for any X ⊂ An and
(ii) J ⊂ I(Z(J)) for any ideal J ⊂ k[x1, . . . , xn].

Equality in (i) holds if X is already an algebraic set. Otherwise Z(I(X)) is
simply the closure X̄ of X.

To understand when the equality holds in (ii) we need the following theorem.

Theorem 2 (Hilbert’s zero theorem) If J is any ideal in k[x1, . . . , xn],
then I(Z(J)) is

√
J , the radical of J .

Proof: See Eisenbud [1]. ¤

This theorem fails when k is not algebraically closed.

We have an inclusion reversing correspondence between radical ideals and
algebraic sets. In other words if X ⊂ Y ⊂ An, then I(Y ) ⊂ I(X). And if
I1 ⊂ I2 are two ideals in k[x1, . . . , xn], then Z(I2) ⊂ Z(I1).

The algebraic set Z(J) is irreducible if and only if J is a prime ideal. Similarly
I(X) is a prime ideal if and only if X is an algebraic variety.

The dimension of an algebraic variety X is equal to the (Krull) dimension of
the prime ideal I(X) in k[x1, . . . , xn].

Definition 3 For an ideal J in k[x1, . . . , xn] we define µ(J) to be the number
of elements in a minimal generating set for J . If X is an algebraic set we
define µ(X) as the minimum integer r such that there exist r polynomials
f1, . . . , fr with X = Z(f1, . . . , fr) We define codim(X), the codimension of
X, as n− dim(X), where the dimension of X is its dimension in the Zariski
topology of An

We immediately have the inequalities 0 ≤ codim(X) ≤ µ(X) ≤ µ(J(X)).

In A2, when C is a curve, we always have 1 = codim C = µ(C) = µ(I(C)).

Every codimension one variety X in An is a hypersurface and necessarily
n− 1 = µ(X) = µ(I(X)), see [3].
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For every variety X in An, it is known that µ(X) ≤ n, see [2]. However for
any given integer m, there exists a variety X in An with µ(I(X)) ≥ m. One
such variety will be discussed in the next section.

Complete Intersections: For any variety X, if µ(X) = codim X, then X
is called a set theoretical complete intersection, STCI for short. If further
µ(I(X)) = codim X, then X is an ideal theoretical complete intersection, or
ITCI. We have examples of STCI varieties which are not ICTI.

Conjecture: It is conjectured that all curves in A3 are STCI.

Exercises

1. Show that affine algebraic sets satisfy the axioms for the closed sets
of a topology, i.e. show that the intersection of an arbitrary collection of
algebraic sets is algebraic and the union of two algebraic sets is algebraic.

2. Show that an arbitrary union of algebraic sets need not be algebraic.

3. Show that the codimension of a hypersurface is one.

4. Show that I(X) for any set X ⊂ An is a radical ideal.

5. Give an example of an ideal J in R[x1, . . . , xn] for which I(Z(J)) is not
the radical of J .

6. For any ideal J in k[x1, . . . , xn], show that the algebraic set Z(J) is
irreducible if and only if J is a prime ideal.

7. For any ideal J in k[x1, . . . , xn], show that Z(J) is singleton if J is a
maximal ideal. Is the converse true?




