Due on November 15, 2006, Wednesday.

MATH 591 Homework 2

1: For an affine variety $X \subset \mathbb{A}^{N}$ of dimension n let

$$
P(z)=\frac{1}{n!}\left(c_{n} z^{n}+\cdots+c_{0}\right)
$$

be its Hilbert polynomial. What is known about the geometric significance of the coefficients $c_{j}, j=0, \ldots, n$?

2: Show that any conic in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1}.
3: Show that any two curves in \mathbb{P}^{2} intersect.
4: Solve Exercise 7.2, Hartshorne page 54:
Let Y be a variety of dimension r in \mathbb{P}^{n}, with Hilbert polynomial P_{Y}. We define the arithmetic genus of Y to be $p_{a}(Y)=(-1)^{r}\left(P_{Y}(0)-1\right)$. (This is an invariant of Y independent of its projective embedding.)
(a) Show that $p_{a}\left(\mathbb{P}^{n}\right)=0$.
(b) If Y is a plane curve of degree d, show that $p_{a}(Y)=\frac{1}{2}(d-1)(d-2)$.
(c) More generally, if H is a hypersurface of degree d in \mathbb{P}^{n}, show that $p_{a}(H)=\binom{d-1}{n}$.
(d) If Y is a complete intersection of surfaces of degrees a, b in \mathbb{P}^{3}, then show that $p_{a}(Y)=\frac{1}{2} a b(a+b-4)+1$.
(e) Let $Y \subset \mathbb{P}^{n}, Z \subset \mathbb{P}^{m}$ be projective varieties of dimensions r and s respectively, and embed $Y \times X \subset \mathbb{P}^{n} \times \mathbb{P}^{m} \longrightarrow \mathbb{P}^{N}$ by the Segre embedding. Show that

$$
p_{a}(X \times Z)=p_{a}(Y) p_{a}(Z)+(-1)^{s} p_{a}(Y)+(-1)^{r} p_{a}(Z) .
$$

5: Solve Exercise 5.6.1, Karen page 79:
Assume that the variety $V \subset \mathbb{P}^{n}$ has the Hilbert polynomial $P(n)$. Calculate the Hilbert polynomial of the image variety $\nu_{d}(V) \subset \mathbb{P}^{N}$ of the Veronese map, where $N=\binom{n+d}{d}-1$.

