Due on November 15, 2006, Wednesday.

MATH 591 Homework 2

1: For an affine variety $X \subset \mathbb{A}^N$ of dimension n let

$$P(z) = \frac{1}{n!} \left(c_n z^n + \dots + c_0 \right)$$

be its Hilbert polynomial. What is known about the geometric significance of the coefficients $c_j, j = 0, ..., n$?

- **2:** Show that any conic in \mathbb{P}^2 is isomorphic to \mathbb{P}^1 .
- **3:** Show that any two curves in \mathbb{P}^2 intersect.
- 4: Solve Exercise 7.2, Hartshorne page 54: Let Y be a variety of dimension r in \mathbb{P}^n , with Hilbert polynomial P_Y . We define the *arithmetic genus* of Y to be $p_a(Y) = (-1)^r (P_Y(0) - 1)$. (This is an invariant of Y independent of its projective embedding.)
 - (a) Show that $p_a(\mathbb{P}^n) = 0$.
 - (b) If Y is a plane curve of degree d, show that $p_a(Y) = \frac{1}{2}(d-1)(d-2)$.
 - (c) More generally, if H is a hypersurface of degree d in \mathbb{P}^n , show that $p_a(H) = \binom{d-1}{n}$.
 - (d) If Y is a complete intersection of surfaces of degrees a, b in \mathbb{P}^3 , then show that $p(Y) = \frac{1}{2}ab(a+b-4) + 1$
 - $p_a(Y) = \frac{1}{2}ab(a+b-4) + 1.$ (e) Let $Y \subset \mathbb{P}^n, Z \subset \mathbb{P}^m$ be projective varieties of dimensions r and s respectively, and embed $Y \times X \subset \mathbb{P}^n \times \mathbb{P}^m \longrightarrow \mathbb{P}^N$ by the Segre embedding. Show that

$$p_a(X \times Z) = p_a(Y)p_a(Z) + (-1)^s p_a(Y) + (-1)^r p_a(Z).$$

- 5: Solve Exercise 5.6.1, Karen page 79:
 - Assume that the variety $V \subset \mathbb{P}^n$ has the Hilbert polynomial P(n). Calculate the Hilbert polynomial of the image variety $\nu_d(V) \subset \mathbb{P}^N$ of the Veronese map, where $N = \binom{n+d}{d} 1$.