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Ex I.1.8
p 8

Let Y be an affine variety of dimension r in An. Let H be a hypersurface in An, and
assume that Y * H. Then every irreducible component of Y ∩H has dimension r − 1.

Let B be the coordinate ring of Y and let ℘ be the prime ideal corresponding to the hypersur-
face H. By Theorem 1.11A (p7), ℘ has height 1. The coordinate ring of Y ∩H is isomorphic
to B/℘, and by Theorem 1.8A (p6), height ℘ + dim B/℘ = dim B. from here it follows that
dim Y ∩H = r − 1.

Ex I.2.14
p 13

The Segre Embedding. Let ψ : Pr × Ps → PN be the map defined by sending the ordered
pair (a0, . . . , ar)×(b0, . . . , bs) to (. . . , aibj , . . . ) in lexicographic order, where N = rs+r+s.
Note that ψ is well defined and injective. It is called the Segre embedding. Show that
the image of ψ is a subvariety of PN . [Hint: Let the homogeneous coordinates of PN be
{zij |i = 0, . . . , r, j = 0, . . . , s}, and a be the kernel of the homomorphism k[{zij}] →
k[x0, . . . , xr, y0, . . . , ys] which sends zij to xiyj . Then show that Imψ = Z(a).]

ψ is well defined since aibj is nonzero when ai and bj are nonzero, and λai and δbj map to
λδaibj which is the same point as aibj. To show that ψ is injective, suppose that (c0, . . . , cN)
is in the image of ψ. Assume without loss of generality that c0 is nonzero. Then a0 and b0

are nonzero. Again assume without loss of generality that c0 = a0 = b0 = 1. Then cj = bj for
j = 0, . . . , s, and ci(s+1) = ai for i = 0, . . . , r. Thus the preimage is uniquely defined and ψ is
injective. To show that the image is a subvariety first observe that if p ∈ a is any polynomial
then it vanishes identically on Imψ, so Imψ ⊆ Z(a). For the converse observe that the poly-
nomials zijzuv − zivzuj are all in a. If c ∈ Z(a), then (zijzuv − zivzuj)(c) = 0. We can assume
for convenience of notation that c00 = 1. Then cuv = c0vcu0 for u = 0, . . . , r and v = 0, . . . , s.
This shows ψ ((c00, c10, . . . , cr0)× (c00, c01, . . . , c0s)) = c, so c ∈ Imψ. Thus Z(a) ⊆Imψ, and the
equality holds.

Ex I.5.1
p 35

Locate the singular points and sketch the following curves in A2. (assume char k6= 2).
Which is which in Figure 4?
(a) x2 = x4 + y4;
(b) xy = x6 + y6;
(c) x3 = y2 + x4 + y4;
(d) x2y + xy2 = x4 + y4.

We recognize these curves through their tangent cones. The tangent cone is the zero set of the
lowest degree homogeneous part of the defining equation for the curve. We match the tangent
cone of the given equation with the curves in Figure 4:
(a) x2 = 0 is the double y-axis. Tachnode.
(b) xy = 0 is the x and y axes. Node.
(c) y2 = 0 is the double x-axis. Cusp.
(d) x2y + xy2 = 0 gives the x-axis, the y-axis and the line y = −x. Triple point.
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Ex I.5.2
p 36

Locate the singular points and describe the singularities of the following surfaces in A3

(assume char k 6= 2). Which is which in Figure 5?
(a) xy2 = z2;
(b) x2 + y2 = z2;
(c) xy + x3 + y3 = 0.

Let the Jacobian matrix be defined as θ(f)(P ) =

(
∂f

∂x
(P ),

∂f

∂y
(P ),

∂f

∂z
(P )

)
. Then P ∈ A3 is a

singular point of Z(f) if f(P ) = 0 and θ(f)(P ) = 0.

(a) f = xy2 − z2. θ(f) = (y2, 2xy,−2z) = 0 =⇒ y = 0, z = 0 and x is free. This is on the
surface. Hence the surface is singular along the x-axis. Pinch point.

(b) f = x2 + y2 − z2. θ(f) = (2x, 2y,−2z) = 0 =⇒ x = 0, y = 0, z = 0 which is also a point
on the surface. Hence the surface has an isolated singularity at the origin. Conical double
point.

(c) f = xy + x3 + y3. θ(f) = (y + 3x2, x + 3y2, 0) = 0 This gives two points (0, 0, z) which
is on the surface, and ((−1/27)(1/3),−3(−1/27)(2/3), z) which is not on the surface. Hence the
surface is singular along the z-axis. Double line.

Ex I.5.3
p 36

Multiplicities. Let Y ⊆ A2 be the curve defined by the equation f(x, y) = 0. Let P = (a, b)
be a point of A2. Make a linear change of coordinates so that P becomes the point (0, 0).
Then write f as a sum f = f0 + f1 + · · · + fd, where fi is a homogeneous polynomial of
degree i in x and y. Then we define the multiplicity of P on Y , denoted by µP (Y ), to be
the least r such that fr 6= 0. (Note that P ∈ Y ⇐⇒ µP (Y ) > 0.) The linear factors of
fr are called the tangent directions at P .
(a) Show that µP (f) = 1 ⇐⇒ P is a nonsingular point of Y .
(b) Find the multiplicity of each of the singular points in (Ex. 5.1) above.

The Jacobian matrix at the origin is θ(f) = (∂f
∂x

, ∂f
∂y

) evaluated at (x, y) = (0, 0).

(a) P = (0, 0) is a singular point of the affine plane curve Y if and only if θ = (a, b) 6= (0, 0) if
and only if f1 = ax + by with (a, b) 6= (0, 0) if and only if µP (Y ) = 1.

(b) In all these examples the singularity is the origin so to apply the definition we will check
the degree of the smallest nonzero homogeneous part of the given polynomials: For 5.1-a,
µp(Y ) = 2, for 5.1-b, µp(Y ) = 2, for 5.1-c, µp(Y ) = 3 and for 5.1-d, µp(Y ) = 3.
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Ex I.7.2
p 54

Let Y be a variety of dimension r in Pn, with Hilbert polynomial PY . We define the
arithmetic genus of Y to be pa(Y ) = (−1)r(PY (0) − 1). This is an important invariant
which (as we will see later in (III, Ex. 5.3)) is independent of the projective embedding
of Y .
(a) Show that pa(Pn) = 0.
(b) If Y is a plane curve of degree d, show that pa(Y ) = 1

2(d− 1)(d− 2).
(c) More generally, if H is a hypersurface of degree d in Pn, then pa(H) =

(
d−1
n

)
.

(d) If Y is a complete intersection (EX. 2.17) of surfaces of degrees a, b in P3, then
pa(Y ) = 1

2ab(a + b− 4) + 1.
(e) Let Y r ⊆ Pn, Zs ⊆ Pm be projective varieties, and embed Y ×Z ⊆ Pn×Pm → PN by

the Segre embedding. Show that

pa(Y × Z) = pa(Y )pa(Z) + (−1)spa(Y ) + (−1)rpa(Z).

(a) Hilbert polynomial of Pn is P (z) =
(

z+n
n

)
, where P (n) is the number of distinct homoge-

neous forms in the variables x0, . . . , xn (see p 52). P (z) = 1
n!

(z + 1) · · · (z + n), and P (0) = 1.
Then pa(Pn) = 0, regardless of what n is.

(b) Y is a hypersurface of degree d in P2, so we can use the formula derived on page 52,
PY (z) =

(
z+2
2

) − (
z−d+2

2

)
= 1

2
((z + 1)(z + 2) − (z − d + 1)(z − d + 2)). Putting z = 0,

PY (0) = 1− 1
2
(d− 1)(d− 2). The dimension r of Y is 1. Hence pa(Y ) = 1

2
(d− 1)(d− 2).

(c) Using the formula on page 52 again we have PY (z) =
(

z+n
n

) − (
z−d+n

n

)
, and PY (0) =

1− (−1)n 1
n!

(d− n)(d− n + 1) · · · (d− 1) = 1− (−1)n
(

d−1
n

)
. It follows that pa(Y ) =

(
d−1
n

)
.

(d) Let Y = Z(f, g) in P3 where f and g are polynomials of degrees a and b respectively.
We already know from Proposition 7.6 on page 52 that φS/(f)(`) =

(
`+3
3

) − (
`−a+3

3

)
, where

S = k[x0, . . . , x3]. Consider the short exact sequence of grades S-modules

0 → S(−b)
g→ S/(f) → S/(f, g) → 0.

Then

φS/(f,g)(`) = φS/(f)(`)− φS/(f)(`− b)

=

(
` + 3

3

)
−

(
`− a + 3

3

)
−

(
`− b + 3

3

)
+

(
`− a− b + 3

3

)
.

And putting in ` = 0 we get

φS/(f,g)(0) = 1− (1 +
1

2
ab(a + b− 4)),

from where it follows that pa(Y ) = 1 + 1
2
ab(a + b− 4)) since the dimension r of Y is 1.

(e) Let xi, yj and zij for i = 0, . . . , n, j = 0, . . . , m be the homogeneous coordinates of Pn,
Pm and Pmn+m+n respectively. As in (Ex. I.2.14) zij = xiyj when restricted to Pn × Pm. In
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particular any homogeneous form of degree d in zij restricted to Pn × Pm is the product of a
form of degree d in xi and a form of degree d in yj. If P denotes the Hilbert polynomial, then
we have PY×Z(d) = PY (d) · PZ(d). In particular if dim Y = r and dim Z = s, then we have

pa(Y × Z) = (−1)r+s(PY×Z(0)− 1)

= (−1)r+s(PY (0)PZ(0)− 1)

= (−1)r(PY (0)− 1) · (−1)s(PZ(0)− 1) + (−1)s[(−1)r(PY (0)− 1)]

+(−1)r[(−1)s(PZ(0)− 1)]

= pa(Y )pa(Z) + (−1)spa(Y ) + (−1)rpa(Z)

as required.


