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Ex II.1.18
p 68

Adjoint Property of f−1. Let f : X → Y be a continuous map of topological spaces. Show
that for any sheaf F on X there is a natural map f−1f∗F → F , and for any sheaf G on
Y there is a natural map G → f∗f−1G. Use these maps to show that there is a natural
bijection of sets, for any sheaves F on X and G on Y ,

HomX(f−1G,F) = HomY (G, f∗F).

Hence we say that f−1 is a left adjoint of f∗, and that f∗ is a right adjoint of f−1.

First we show that there is a natural map f−1f∗F → F :
Let H be the presheaf on X defined as

H(U) = lim
V⊇f(U)

f∗F(V ) = lim
V⊇f(U)

F(f−1(V )).

H(U) consists of equivalence classes of the form [α] where α ∈ F(f−1(V )) for some open V in
Y with V ⊇ f(U). Here for α1 ∈ F(f−1(V1)) and α2 ∈ F(f−1(V2)) we have [α1] = [α2] if there
is an open set W ⊆ V1 ∩ V2 in Y with W ⊇ f(U) such that

ρf−1(V1)f−1(W )(α1) = ρf−1(V2)f−1(W )(α2).

We can define a map φ : H → F by φ([α]) = ρf−1(V )U(α) if α ∈ F(f−1(V )). Since f−1f∗F
is the sheaf associated to the presheaf H, there is a unique map ψ : f−1f∗F → F such that
φ = ψ◦θ where θ : H → H+ = f−1f∗F is the natural morphism associated to the sheafification,
see (1.2, p 64).

Next we show that there is a natural map G → f∗f−1G:
Let H be the presheaf on Y defined by

V 7→ lim
W⊇f(f−1(V ))

G(W )

= lim
W⊇V

G(W )

∼= G(V ).

Let φ : G → H be the map taking α ∈ G(V ) into G(V ) via the above isomorphism. Let
θ : H → H+ = f∗f−1G be the map associated with the sheafification as above. Then θ ◦ φ is
the natural map from G to f∗f−1G.

For a sheaf A on Y , let us look closely at the sheaf f−1A on X:
f−1A is the sheaf associated to the presheaf U 7→ limV⊇f(U)A(V ). Then the stalk of this
presheaf at p is the stalk Af(p) of A at f(p). An element s of (f−1A)(U) can be considered as
a map

s : U 7→
∐
p∈U

Af(p)

such that for each q ∈ U , s(q) ∈ Af(q) and furthermore for each p ∈ U there is an open
neighbourhood V of p contained in U and an open W in Y with W ⊇ f(V ) such that there
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exists an α ∈ A(W ) with s(q) = αf(q) for each q ∈ V , where αf(q) denotes the restriction of α
to the stalk at f(q). So we can consider f−1A as the disjoint union of stalks of A satisfying
the above obvious conditions.

Finally we come to the bijection between the sets HomX(f−1G,F) and HomY (G, f∗F).

Let F ∈ HomX(f−1G,F), V an open set in Y and α ∈ G(V ). Since f−1(V ) is open in X, it
can be seen immediately that (f−1G)(f−1(V )) = G(V ). So α can be considered as an element
in (f−1G)(f−1(V )) and F (α) is in F(f−1(V )) = f∗F(V ). Thus we can define a map

HomX(f−1G,F) → HomY (G, f∗F)

F → T (F )

where

G(V ) → f∗F(V )

α → T (F )(α) = F (α)

for every open set V in Y .

Conversely let G ∈ HomY (G, f∗F), U an open set in X, and β ∈ (f−1G)(U). For every p ∈ U ,
there is an open neighbourhood U ′ of p in U , an open set W in Y containing f(U ′) and a
βW ∈ G(W ) such that β|U ′ is βW (this follows from the above discussion of f−1A). Now G(βW )
is in f∗F(W ) = F(f−1(W )). Using the restriction map from f−1(W ) to U ′ we can consider
G(βW ) in F(U ′). Since the sheaf morphism G commutes with the restriction maps, G(βW ) is
a well defined element in F(U ′), independent of W . Moreover U is covered by such U ′ so by
the sheaf property of F these local elements patch together to give a unique element in F(U)
which we denote by

⋃′ G(βW ). So by this notation G(β) =
⋃′ G(βW ). Thus we can define a

map

HomY (G, f∗F) → HomX(f−1G,F)

G → S(G)

where

f−1G(U) → F(U)

β → S(G)(β) =
′⋃

G(βW ) = G(β)

for every open set U in X.

Finally we check that S ◦ T and T ◦ S are the identity maps on their respective domains:
S(T (F )(β) =

⋃′ T (F )(βW ) =
⋃′ F (βW ) = F (β) and

T (S(G))(α) = S(G)(α) =
⋃′ G(αW ) = G(α).

This completes the solution.
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Ex II.1.19
p 68

Extending a Sheaf by Zero. Let X be a topological space, let Z be a closed subset, let
i : Z → X be the inclusion, let U = X − Z be the complementary open subset, and let
j : U → X be its inclusion.
(a) Let F be a sheaf on Z. Show that the stalk (i∗F)P of the direct image sheaf on X is

FP if P ∈ Z, 0 if P 6∈ Z. Hence we call i∗F the sheaf obtained by extending F by
zero outside Z. By abuse of notation we will sometimes write F instead of i∗F , and
say “consider F as a sheaf on X,” when we mean “consider i∗F .”

(b) Now let F be a sheaf on U . Let j!(F) be the sheaf on X associated to the presheaf
V 7→ F(V ) if V ⊆ U , V 7→ 0 otherwise. Show that the stalk (j!(F))P is equal to FP if
P ∈ U , 0 if P 6∈ U , and show that j!F is the only sheaf on X which has this property,
and whose restriction to U is F . We call j!F the sheaf obtained by extending F by
zero outside U .

(c) Now let F be a sheaf on X. Show that there is an exact sequence of sheaves on X

0 → j!(F|U ) → F → i∗(F|Z) → 0.

(a) If p ∈ X − Z, then there is an open neighbourhood V of p disjoint from Z and it follows
from

(i∗F)(V ) = F(i−1(V )) = F(V ∩ Z) = F(∅) = 0

that Fp = 0. Using the induced topology on Z, it follows by the same argument that when
p ∈ Z, then for any open neighbourhood V of p

(i∗F)(V ) = F(i−1(V )) = F(V ∩ Z)

and hence (i∗F)p = Fp.

(b) If p ∈ U , then there is an open neighbourhood V of p lying totally in U . The presheaf
V 7→ F(V ) gives (j!F)p = Fp. If however p is not in U , then no open neighbourhood V of p
can possibly lie in U , so the presheaf V 7→ 0 gives (j!F)p = 0. Since for any open set V in X,
the sections (j!F)(V ) are explicitly defined as the maps s → ∐

p∈V (j!F)p, the sheaf j!F is the
only sheaf satisfying the given conditions (see 1.2).

(c) When p ∈ U , the sequence becomes

0 → Fp → Fp → 0 → 0,

and when p 6∈ U , the sequence becomes

0 → 0 → Fp → Fp → 0.

So the given short sequence is exact (see 1.2.1).
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Ex II.1.21
p 68

Some Examples of Sheaves on Varieties. Let X be a variety over an algebraically closed
field k, as in Ch. I. Let OX be the ring of regular functions on X (1.0.1).
(a) Let Y be a closed subvariety of X. For each open set U ⊆ X, let IY (U) be the ideal

in the ring OX(U) consisting of those regular functions which vanish at all points of
Y ∩ U . Show that the presheaf U 7→ IY (U) is a sheaf. It is called the sheaf of ideals
IY of Y , and it is a subsheaf of the sheaf of rings OX .

(b) Show that the quotient sheaf OX/IY is isomorphic to i∗(OY ), where i : Y → X is the
inclusion, and OY is the sheaf of regular functions on Y .

(c) Now let X = P1, and let Y be the union of two distinct points P, Q ∈ X. Thus by (b)
we have an exact sequence of sheaves on X

0 → IY → OX → i∗OY → 0.

Show however that the induced map on the global sections Γ(X,OX) → Γ(X, i∗OY )
is not surjective. This shows that the global section functor Γ(X, ·) is not exact (cf.
(Ex. 1.8) which shows that it is left exact).

(d) Again let X = P1, let O be the sheaf of regular functions. Let K be the constant sheaf
on X associated to the function field K of X. Show that there is a natural injection
O → K. Show that the quotient sheaf K/O is isomorphic to the direct sum of sheaves∑

P∈X iP (IP ), where IP is the group K/OP , and iP (IP ) denotes the skyscraper sheaf
(Ex. 1.17) given by IP at the point P .

(e) Finally show that in the case of (d) the sequence

0 → Γ(X,O) → Γ(X,K) → Γ(X,K/O) → 0

is exact. (This is an analogue of what is called the “first Cousin problem” in several
complex variables. See Gunning and Rossi [1, p. 248].)

(a) Let U be an open subset of X covered by the open subsets Vi. Let s ∈ IY (U) be such that
s|Vi

= 0 for all i. Then considering s as an element of OX(U), we know that s = 0. Moreover
if for each i we have an si ∈ IY (Vi) such that si|Vi∩Vj

= sj|Vi∩Vj
for all i and j, then there is an

element in OX(U) such that s|Vi
= si. Since each si vanishes on Y , s also vanishes on Y and

is in IY (U). Hence IY is a sheaf.

(b) At each point p ∈ Y , the map (OX)p → (i∗(OY ))p is the restriction map and is surjective,
the kernel being (IY )p. Thus the quotient sheaf OX/IY is isomorphic to the sheaf OY .

(c) Global regular functions on P1 are constants. Restriction of this to Y gives a function
whose value at P and Q are the same. However we can clearly have functions on Y with
different values at P and Q. Hence the global section functor is not exact.
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(d) Let S denote the sheaf
∑

p∈X iP (IP ). We construct a short sequence

0 → O → K φ→ S → 0

and show that on the germ level it is an exact sequence, which establishes the required isomor-
phism.

Let q ∈ X and f a germ in the stalk Kq. φq(f) = 0 if and only if f is regular at q. Hence it
remains to show that φq is surjective. An element of Iq is an equivalence class of elements of
the form h/zn for some positive integer n, where z is a local coordinate centered at q and h is
a rational function of z regular at q. If cn = h(q), then there are a polynomial h1, h2 such that
h/zn = cn/z

n + h1/(z
mh2) for some m < n, where h2(q) 6= 0. Proceeding inductively there are

constants cn, . . . , c1 and a polynomial h0 such that h/zn = cn/z
n + · · · + c1/z + h0/h2. But

h0/h2 is regular at q, so h/zn in Iq is in the same equivalence class of g = cn/zn + · · · + c1/z.
This function g then represents an element of the stalk Kq, and note that the only pole of g is
at q. This shows that φq is surjective (we actually showed more than necessary but we will use
this in (e)). This completes the proof that the above short sequence is exact and the required
isomorphism now follows.

(e) The global sections functor is left exact, see (Ex. 1.8). So it suffices to show surjectivity
on the right.

Let f ∈ Γ(X,K/O). From part (d) we can consider f as an element of Γ(X,
∑

p∈X iP (IP )).
f = f1 + · · ·+ fr where each fi is equivalent to a principal part of the form cn/z

n + · · ·+ c1/z,
as in (d), where z is a local coordinate centered at some qi. For each such principal part there
is a rational function gi as in (d) which is regular everywhere except at pi and differs from f
by a regular function at pi. Let g = g1 + · · ·+ gr. Then g is an element of Γ(X,K) which maps
to f , giving the right exactness.

This is a Cousin problem in the sense that given a finite number of points in P1 and principal
parts at those points, then there exists a rational function which is regular everywhere except
the given points and has precisely the assigned principal parts at those points.
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Ex II.6.5
p 147

Quadric Hypersurfaces. Let char k 6= 2, and let X be the affine quadric hypersurface
Spec k[x0, . . . , xn]/(x2

0 + x2
1 · · ·+ x2

r)-cf. (I, Ex. 5.12).
(a) Show that X is normal if r ≥ 2 (use (Ex. 6.4)).
(b) Show by a suitable linear change of coordinates that the equation of X could be

written as x0x1 = x2
2 + · · ·+ x2

r. Now imitate the method of (6.5.2) to show that:
(1) If r = 2, then Cl X ∼= Z/2Z;
(2) If r = 3, then Cl X ∼= Z (use (6.6.1) and (Ex. 6.3) above);
(3) If r ≥ 4, then Cl X = 0.

(c) Now let Q be the projective quadric hypersurface in Pn defined by the same equations.
Show that:
(1) If r = 2, then Cl Q ∼= Z, and the class of a hyperplane section Q.H is twice the
generator;
(2) If r = 3, then Cl Q ∼= Z⊕ Z;
(3) If r ≥ 4, then Cl Q ∼= Z, generated by Q.H.

(d) Prove Klein’s theorem, which says that if r ≥ 4, and if Y is an irreducible subvariety
of codimension 1 on Q, then there is an irreducible hypersurface V ⊆ Pn such that
V ∩Q = Y , with multiplicity one. In other words, Y is a complete intersection. (First
show that for r ≥ 4, the homogeneous coordinate ring S(Q) = k[x0, . . . , xn]/(x2

0 +
· · ·+ x2

r) is a UFD.)

(a) If r ≥ 2, and the characteristic of k is 6= 2, then f = −(x2
1 + · · ·+ x2

r) is square free. The
quotient ring k[x0, . . . , xn]/(x2

0 − f) is now integrally closed by (Ex. 6.4) page 147.

(b) Replacing x0 + ix1 by x0 and −x0 + ix1 by x1, we can write −x0x1 for x2
0 + x2

1. Then
x2

0 + · · ·+ x2
r = 0 becomes x0x1 = x2

2 + · · ·+ x2
r.

(b-1) This is basically Example 6.5.2 on page 133; Let A = k[x0, . . . , xn]/(x0x1 + x2
2), and set

Y : x1 = x2 = 0. Y is a prime divisor and by 6.5 p.133 there is an exact sequence

Z→ Cl X → Cl(X − Y ) → 0,

where the first map is 1 7→ 1 ·Y . Y can be cut out set theoretically by x1 = 0. The prime ideal
corresponding to Y in Spec A is generated by x1 and x2. Localizing A at this prime ideal, which
is the generic point corresponding to Y , we see that x0 becomes invertible and x1 = x2/x0. All
xi with i > 2 also becomes invertible. Hence the maximal ideal of this local ring is generated by
x2. Since x1 = 0 gives x2

2 = 0 in this local ring, we have 2 · Y = 0. Moreover X − Y correspond
to Spec Ay, and since x0 = x2

2/x1 in Ay, we have Ay
∼= k[x1, x

−1
1 , x2, x3, . . . , xn] which is a UFD.

By 6.2 p.131 Cl(X−Y ) = 0. Thus Cl X is generated by Y and 2 ·Y = 0. Hence Cl X ∼= Z/2Z.

(b-2) By a change of variables we can write x2
0 + · · · + x2

3 as x0x1 − x2x3. Let V be the
projective variety in P3 defined by this equation. By 6.6.1 p.135, Cl V ∼= Z⊕Z. Let X ′ be the
affine cone over V in A4. By (Ex. 6.3.b) p.147, Cl X ′ ∼= Z. Now X ∼= X ′ × An−4, and by 6.6
p.134, Cl X ∼= Cl X ′ ∼= Z.
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(b-3) We first prove a technical result about the irreducibility of x2
0 + · · ·+ x2

r for r ≥ 2.

Let fr = α0x
2
0 + · · ·+ αrx

2
r, where α0 · · ·αr 6= 0. If fr is reducible then it can be written as the

product of two linear forms.

Let r = 2. We will show that f2 is irreducible. Then it will follow by induction that fr is
irreducible for all r ≥ 2, since otherwise putting x3 = · · · = xr = 0 would give a decomposition
of f2. To show the irreducibility of f2 assume to the contrary that

f2 = (a0x0 + a1x1 + a2x2)(b0x0 + b1x1 + b2x2)

=
2∑

i=0

aibix
2
i +

∑
0≤i<j≤2

(aibj + ajbi)xixj.

Then we have the following two linear equations




a0 0 0
0 a1 0
0 0 a2







b0

b1

b2


 =




α0

α1

α2


 ,




a1 a0 0
a2 0 a0

0 a2 a1







b0

b1

b2


 =




0
0
0


 .

The first matrix equation implies that a0a1a2 6= 0 and b0b1b2 6= 0. For the second matrix
equation to have a nonzero solution the determinant of the coefficient matrix must be zero but
that gives a0a1a2 = 0, a contradiction. Thus we conclude, with the above induction argument,
that fr is irreducible for r ≥ 2.

Now let X be defined by the equation x0x1+x2
2+ · · ·+x2

r = 0, and let A = k[x0, . . . , xr]/(x0x1+
x2

2 + · · · + x2
r). To calculate Cl X, let Y be the divisor in X cut out by the equation x0 = 0.

By 6.5 p.131 we have the usual exact sequence

Z→ Cl X → Cl (X − Y ) → 0

where the first map is given by 1 7→ 1·Y . Since Y is given by x0 = 0 in A, X−Y = SpecAx0 . But
in Ax0 , x1 = −x−1

0 (x2
2 + · · ·+ x2

r), so we can eliminate x1. Then Ax0
∼= k[x0, x

−1
0 , x2, x3, . . . , xr]

which is a UFD, and consequently Cl (X − Y ) =Cl SpecAx0 = 0.

From the above exact sequence we now conclude that Cl X is generated by Y . Depending on
the nature of Y we have two cases:

• If Y is principal, then Cl X = 0.

• If Y is not principal then
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– If d · Y = 0 for some positive integer d, then Cl X = Z/dZ.

– If d · Y 6= 0 for any positive integer d, then Cl X = Z.

The prime ideal ℘ of Y in A is generated by x0 and by gr−2 = x2
2 + · · ·+ x2

r. The divisor class
of X now depends on the value of r as follows:

• If r ≥ 4, then gr−2 is irreducible as proved at the beginning. In A, x0 = −gr−2 so ℘ is
principal being generated by only x0. In this case Cl X = 0.

• If r = 3, then by a change of variables not affecting x0 we can write gr−2 = x2x3. Since ℘
is prime, both x2 and x3 must be in ℘. Now ℘ = (x2, x3) is not principal and since there
is no multiplicity, Cl X = Z.

• If r = 2, then x2
2 ∈ ℘ implies x2 ∈ ℘ and as argued above x2 generates the maximal ideal

of the local ring at the generic point of Y . In this case Cl X = 2 · Y .

Note that by 6.5 p.131 we have shown that k[x0, . . . , xn]/(x2
0 + · · ·+x2

r) is a UFD when r ≥ 4.

(c) We use (Ex. 6.3) p.146. What is called V and X in (Ex. 6.3) is Q and X respectively in
this problem. We use the short exact sequence

0 → Z→ CL Q → CL X → 0

of (Ex. 6.3.b).

(c-1) When r = 2, Cl X = Z/2Z. From (Ex. 6.3.b) we know that the first map of the above
exact sequence sends 1 to a hyperplane section of Q. Since this must be in the kernel, it is
twice the generator. Moreover since the first map is injective, we have Cl Q = Z.

(c-2) When r = 3, Cl X = Z, and from the above exact sequence we have Cl Q = Z⊕ Z.

(c-3) When r ≥ 4, Cl X = 0, and using the above exact sequence one last time we conclude
that Cl Q = Z. Here again from the nature of the first map we know that 1 is send to a
hyperplane section which generates Cl Q.

(d) The homogeneous coordinate ring S(Q) = k[x0, . . . , xn]/(x2
0 + · · · + x2

r) is also the affine
coordinate ring of X. We showed in b-3 above that Cl X = 0. By (Ex. 6.4) p.147, it is
integrally closed so by 6.2 p.131 it is a UFD. By 1.12A p.7 every prime ideal of height 1 is
principal in S(Q). Hence the prime ideal corresponding to Y , being of height 1, is principal.
The generator then gives the hypersurface V .


