Take-Home Exam \# 01
Math 633 Algebraic Geometry
Due on: 5 November 2019 Tuesday - Class Time
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let X be the projective twisted cubic in \mathbb{P}_{k}^{3}, where k is an algebraically closed field.
(i) Find an ideal J in $k[x, y, z, w]$, where we take $[x: y: z: w]$ as homogeneous coordinates for \mathbb{P}^{3}, such that $Z(J)=X$.
(ii) Calculate $I(X)$ in $k[x, y, z, w]$.

Solution:

(i) The twisted cubic is given as

$$
X=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \in \mathbb{P}^{3} \mid[s: t] \in \mathbb{P}^{2}\right\}
$$

Now consider the polynomials

$$
f_{1}=x z-y^{2}, f_{2}=y w-z^{2}, f_{3}=x w-y z,
$$

and let $J=\left(f_{1}, f_{2}, f_{3}\right)$ be the ideal generated by these polynomials.
We claim that

$$
Z(J)=X
$$

where $Z(J)$ denotes the zero set of the ideal J.
By the direct substitution of $x=s^{3}, y=s^{2} t, z=s t^{2}, w=t^{3}$ into the generators of J, we see that $X \subseteq Z(J)$.

For the other inclusion let $[x: y: z: w] \in Z(J)$.
If $x=0$, then $f_{1}=0$ gives $y=0$, and $f_{2}=0$ gives $z=0$. Now $f_{3}=0$ already holds and we see that the only point in $Z(J)$ with $x=0$ is $[0: 0: 0: 1]$ and this point is clearly in X.

Next assume, without loss of generality that $x=1$. Now the generators of J can be written as

$$
f_{1}=z-y^{2}, f_{2}=y w-z^{2}, f_{3}=w-y z
$$

Setting y free, we see that $f_{1}=0$ gives $z=y^{2}$, and $f_{3}=0$ gives $w=y z$ or equivalently $w=y^{3}$. These make $f_{2}=0$. So all points in $Z(J)$ of the form $x \neq 0$ are of the form $\left[1: y: y^{2}: y^{3}\right]$, and all such points are in X. Thus $Z(J) \subseteq X$ and the equality follows.
(ii) We claim that $I(X)=J$.

Since $Z(J)=X$, by Hilbert's nullstellensatz we have $J \subseteq \sqrt{J}=I(X)$. Therefore we need to show that $I(X) \subseteq J$. For this we first observe that there is no linear polynomial in $I(X)$.

To continue we need to use a common trick.
We claim that any homogeneous polynomial $h \in k[x, y, z, w]$ of degree $n \geq 2$ can be written as

$$
\begin{equation*}
a_{n}(x, w)+b_{n-1}(x, w) y+c_{n-1}(x, w) z+g_{n} \tag{*}
\end{equation*}
$$

where $a_{\ell}, b_{\ell}, c_{\ell}$ are homogeneous polynomials of degree ℓ, and g_{n} is a homogeneous polynomial in J of degree n.

For a moment let us assume this statement and assume that this is a polynomial in $I(X)$. Then putting in $x=s^{3}, y=s^{2} t, z=s t^{2}, w=t^{3}$, we get

$$
a_{n}\left(s^{3}, t^{3}\right)+b_{n-1}\left(s^{3}, t^{3}\right) s^{2} t+c_{n-1}\left(s^{3}, t^{3}\right) s t^{2}=0
$$

Now observe that the s-degree of $a_{n}\left(s^{3}, t^{3}\right)$ is either 0 or $3 n$, that of $b_{n-1}\left(s^{3}, t^{3}\right) s^{2} t$ is either 0 or $3 n-1$, and that of $c_{n-1}\left(s^{3}, t^{3}\right) s t^{2}$ is either 0 or $3 n-2$. Then the only way for these to add up to zero is to have their s-degrees equal to zero, i.e. these are polynomials only in t. Then we compare their t-degrees which similarly forces all t-degrees to be zero. Then these are constant polynomials which add up to zero. This says that the only homogeneous polynomial of degree n inside $I(X)$ is of the form g_{n}, where $g_{n} \in J$. This shows $I(X) \subseteq J$, and completes the proof of equality.

Now we prove ($*$) by induction on n.
When $n=2$, any homogeneous polynomial f in $k[x, y, z, w]$ of degree 2 can be written as

$$
\begin{aligned}
f= & \alpha_{1} x^{2}+\alpha_{2} x y+\alpha_{3} x z+\alpha_{4} x w+\alpha_{5} y^{2}+\alpha_{6} y z+\alpha_{7} y w+\alpha_{8} z^{2}+\alpha_{z w}+\alpha_{10} w^{2} \\
= & {\left[\alpha_{1} x^{2}+\left(\alpha_{4}+\alpha_{6}\right) x w+\alpha_{10} w^{2}\right]+\left[\alpha_{2} x+\left(\alpha_{7}+\alpha_{8}\right) w\right] y+\left[\left(\alpha_{3}+\alpha_{5}\right) x+\alpha_{9} w\right] z } \\
& +\alpha_{5}\left(y^{2}-x z\right)+\alpha_{6}(y z-x w)+\alpha_{8}\left(z^{2}-y w\right),
\end{aligned}
$$

which is of the claimed form.
Now assume that $(*)$ holds for n. Any homogeneous polynomial f in $k[x, y, z, w]$ of degree $n+1$ can be written as

$$
f=u_{n} x+u_{n}^{\prime} y+u_{n}^{\prime \prime} z+u_{n}^{\prime \prime \prime} w
$$

where $u_{n}, u_{n}^{\prime}, u_{n}^{\prime \prime}, u_{n}^{\prime \prime \prime}$ are homogeneous polynomial of degree n in the variables x, y, z, w. By the induction hypothesis each of these polynomials can be written as claimed in $(*)$. Hence we have, notation being self-explanatory,

$$
\begin{aligned}
f= & \left(a_{n}+b_{n-1} y+c_{n-1} z+g_{n}\right) x+\left(a_{n}^{\prime}+b_{n-1}^{\prime} y+c_{n-1}^{\prime} z+g_{n}^{\prime}\right) y \\
& +\left(a_{n}^{\prime \prime}+b_{n-1}^{\prime \prime} y+c_{n-1}^{\prime \prime} z+g_{n}^{\prime \prime}\right) z+\left(a_{n}^{\prime \prime \prime}+b_{n-1}^{\prime \prime \prime} y+c_{n-1}^{\prime \prime \prime} z+g_{n}^{\prime \prime \prime}\right) w
\end{aligned}
$$

where $g_{n}, g_{n}^{\prime}, g_{n}^{\prime \prime}, g_{n}^{\prime \prime \prime}$ are in J. By rearranging terms, we can rewrite f as

$$
\begin{aligned}
f= & {\left[a_{n} x+c_{n-1}^{\prime} x w+b_{n-1}^{\prime \prime} x w+a_{n}^{\prime \prime \prime} w\right]+\left[b_{n-1} x+a_{n}^{\prime}+c_{n-1}^{\prime \prime} w+b_{n-1}^{\prime \prime \prime} w\right] y } \\
& +\left[c_{n-1} x+b_{n-1}^{\prime} x+a_{n}^{\prime \prime}+c_{n-1}^{\prime \prime \prime} w\right] z \\
& +b_{n-1}^{\prime}\left(y^{2}-x z\right)+c_{n-1}^{\prime}(y z-x w)+b_{n-1}^{\prime \prime}(y z-x w)+c_{n-1}^{\prime \prime}\left(z^{2}-y w\right) \\
& +g_{n} x+g_{n}^{\prime} y+g_{n}^{\prime \prime} z+g_{n}^{\prime \prime \prime} w,
\end{aligned}
$$

which is of the required form, and this completes the induction.

