Take-Home Exam \# 02
Math 633 Algebraic Geometry
Due on: 7 November 2019 Thursday - Class Time Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Show that the d-uple embedding of \mathbb{P}^{n} is an isomorphism onto its image.

Solution:

We first show that ρ_{d} is one-to-one. Let $c=\left[c_{0}: \cdots: c_{n}\right]$ and $e=\left[e_{0}: \cdots: e_{n}\right]$ are points of \mathbb{P}^{n} such that $\rho_{d}(c)=\rho_{d}(e)$. At least one of the homogeneous coordinates e_{i} is different than zero. For convenience of notation assume $e_{0} \neq 0$. Since the images of c and e agree under ρ_{d}, we must have $c_{0}^{d}=e_{0}^{d}$ and $c_{0}^{d-1} c_{i}=e_{0}^{d-1} e_{i}$ for $i=1, \ldots, n$. From $c_{0}^{d}=e_{0}^{d}$, we get $c_{0}=\omega e_{0}$, where $\omega^{d}=1$. From the other equations we get $c_{i}=\omega e_{i}$ for $i=1, \ldots, n$. This shows that $c=e$ and hence ρ_{d} is one-to-one.

Let \mathfrak{a} be the prime ideal with $\rho_{d}\left(\mathbb{P}^{n}\right)=Z(\mathfrak{a})$ in \mathbb{P}^{N}.
Next we show that ρ_{d} is continuous. In fact if $Z\left(f_{1}, \ldots, f_{m}\right)$ is a closed subset of $Z(\mathfrak{a})$, where f_{1}, \ldots, f_{m} are homogeneous polynomials in y_{0}, \ldots, y_{N}, then $\rho_{d}^{-1}\left(Z\left(f_{1}, \ldots, f_{m}\right)\right)=Z\left(f_{1} \circ \rho_{d}, \ldots, f_{m} \circ\right.$ ρ_{d}) is closed. Thus ρ_{d} is continuous.

We now have a continuous isomorphism from $\rho_{d}\left(\mathbb{P}^{n}\right)$ onto $Z(\mathfrak{a})$. It is well known that a continuous isomorphism is not necessarily a homeomorphism. Therefore we have to check separately if ρ_{d} is a homeomorphism in this case.

What remains to be shown for ρ_{d} to be a homeomorphism is that it maps closed sets to closed sets. Since every ideal in $k\left[x_{0}, \ldots, x_{n}\right]$ is finitely generated, every closed set is an intersection of finitely many hypersurfaces. It therefore suffices to show that a hypersurface is mapped under ρ_{d} to a closed set in $Z(\mathfrak{a})$. And for this we need to show that for any homogeneous polynomial $g \in k\left[x_{0}, \ldots, x_{n}\right]$, there corresponds a homogeneous polynomial $G \in k\left[y_{0}, \ldots, y_{N}\right]$ such that $\rho_{d}(Z(g))=Z(\mathfrak{a}) \cap Z(G)$. We now describe a way of obtaining G from g.

Let $g \in k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree m. Let

$$
w_{t}=x_{0}^{i_{0 t}} x_{1}^{i_{1 t}} \cdots x_{n}^{i_{n t}}, t=1, \ldots, d
$$

be homogeneous monomials, not necessarily distinct, occurring in g with non-zero coefficients, where $i_{0 t}, \ldots, i_{n t}$ are non-negative integers with $i_{0 t}+\cdots+i_{n t}=m$ for $t=1, \ldots, d$. A typical monomial occurring in the polynomial g^{d} is of the form

$$
w=w_{1} \cdots w_{d}=x^{i_{01}+\cdots+i_{0 d}} \cdots x^{i_{n 1}+\cdots+i_{n d}} .
$$

For $s=0, \ldots, n$, let

$$
i_{s 1}+\cdots+i_{s d}=u_{s} d+v_{s}
$$

where $0 \leq u_{s}$ and $0 \leq v_{s}<d$. Then we can write

$$
w=\left(x_{0}^{d}\right)^{u_{0}} \cdots\left(x_{n}^{d}\right)^{u_{n}}\left(x_{0}^{v_{0}} \cdots x_{n}^{v_{n}}\right)
$$

Since the degree of the monomial w is $d m$, we see that $v_{0}+\cdots+v_{n}=\ell d$, where $\ell \geq 0$ is a non-negative integer. Since each $v_{s}<d$, we have that $0 \leq \ell \leq n$. Therefore there exist integers $0 \leq j_{0}<\cdots<j_{\ell} \leq n$ such that we can write

$$
v_{j_{e}}=v_{j_{e}}^{\prime}+v_{j_{e}}^{\prime \prime}, e=0, \ldots, \ell
$$

in such a way that

$$
\begin{aligned}
v_{0}+\cdots+v_{n} & =\left(v_{0}+\cdots+v_{j_{0}-1}+v_{j_{0}}^{\prime}\right)+\left(v_{j_{0}}^{\prime \prime}+v_{j_{0}+1}+\cdots+v_{j_{1}-1}+v_{j_{1}}^{\prime}\right)+ \\
& \cdots+\left(v_{j_{\ell}}^{\prime \prime}+v_{j_{\ell}+1}+\cdots+v_{n}\right)
\end{aligned}
$$

in such a way that each parenthesis adds up to d. Then

$$
x_{0}^{v_{0}} \cdots x_{n}^{v_{n}}=\left(x_{0}^{v_{0}} \cdots x_{j_{0}}^{v_{j_{0}}^{\prime}}\right) \cdots\left(x_{j_{\ell}}^{v_{\nu_{\ell}^{\prime \prime}}^{\prime \prime}} \cdots x_{n}^{v_{n}}\right)
$$

This proves that the monomial w of degree $d m$ can be written as a product of monomials of degree d in the variables x_{0}, \ldots, x_{n}. In fact let M_{0}, \ldots, M_{N} be a list of monomials of degree d in x_{0}, \ldots, x_{n}, and let ϕ be the map

$$
\phi: k\left[M_{0}, \ldots, M_{N}\right] \rightarrow k\left[y_{0}, \ldots, y_{N}\right],
$$

sending each M_{i} to y_{i}, then $\phi(w)$ is a monomial of degree m in the variables y_{0}, \ldots, y_{N}. Define the polynomial G as

$$
G\left(y_{0}, \ldots, y_{N}\right)=\phi\left(g^{d}\left(x_{0}, \ldots, x_{n}\right) \in k\left[y_{0}, \ldots, y_{N}\right]\right.
$$

where the above process of writing g^{d} as a polynomial in M_{i} is understood, before ϕ is applied. Then G is uniquely defined and is homogeneous of degree m.

It is now clear from the description of the maps that for any point $a=\left[a_{0}: \cdots: a_{n}\right] \in \mathbb{P}^{n}$,

$$
G\left(\rho_{d}(a)\right)=\phi\left(g^{d}(a)\right) .
$$

It follows from this that $a \in Z(g)$ if and only if $\rho_{d}(a) \in Z(G) \cap Z(\mathfrak{a})$. This shows that the closed set $Z(g)$ is mapped onto the closed set $Z(G) \cap Z(\mathfrak{a})$, which completes the proof that ρ_{d} is a closed map.

Thus ρ_{d} is a homeomorphism from \mathbb{P}^{n} onto $Z(\mathfrak{a})$

