

Bilkent University

Take-Home Exam # 02 Math 633 Algebraic Geometry Due on: 7 November 2019 Thursday - Class Time Instructor: Ali Sinan Sertöz Solution Key

Q-1) Show that the *d*-uple embedding of \mathbb{P}^n is an isomorphism onto its image.

Solution:

We first show that ρ_d is one-to-one. Let $c = [c_0 : \cdots : c_n]$ and $e = [e_0 : \cdots : e_n]$ are points of \mathbb{P}^n such that $\rho_d(c) = \rho_d(e)$. At least one of the homogeneous coordinates e_i is different than zero. For convenience of notation assume $e_0 \neq 0$. Since the images of c and e agree under ρ_d , we must have $c_0^d = e_0^d$ and $c_0^{d-1}c_i = e_0^{d-1}e_i$ for $i = 1, \ldots, n$. From $c_0^d = e_0^d$, we get $c_0 = \omega e_0$, where $\omega^d = 1$. From the other equations we get $c_i = \omega e_i$ for $i = 1, \ldots, n$. This shows that c = e and hence ρ_d is one-to-one.

Let \mathfrak{a} be the prime ideal with $\rho_d(\mathbb{P}^n) = Z(\mathfrak{a})$ in \mathbb{P}^N .

Next we show that ρ_d is continuous. In fact if $Z(f_1, \ldots, f_m)$ is a closed subset of $Z(\mathfrak{a})$, where f_1, \ldots, f_m are homogeneous polynomials in y_0, \ldots, y_N , then $\rho_d^{-1}(Z(f_1, \ldots, f_m)) = Z(f_1 \circ \rho_d, \ldots, f_m \circ \rho_d)$ is closed. Thus ρ_d is continuous.

We now have a continuous isomorphism from $\rho_d(\mathbb{P}^n)$ onto $Z(\mathfrak{a})$. It is well known that a continuous isomorphism is not necessarily a homeomorphism. Therefore we have to check separately if ρ_d is a homeomorphism in this case.

What remains to be shown for ρ_d to be a homeomorphism is that it maps closed sets to closed sets. Since every ideal in $k[x_0, \ldots, x_n]$ is finitely generated, every closed set is an intersection of finitely many hypersurfaces. It therefore suffices to show that a hypersurface is mapped under ρ_d to a closed set in $Z(\mathfrak{a})$. And for this we need to show that for any homogeneous polynomial $g \in k[x_0, \ldots, x_n]$, there corresponds a homogeneous polynomial $G \in k[y_0, \ldots, y_N]$ such that $\rho_d(Z(g)) = Z(\mathfrak{a}) \cap Z(G)$. We now describe a way of obtaining G from g.

Let $g \in k[x_0, \ldots, x_n]$ be a homogeneous polynomial of degree m. Let

$$w_t = x_0^{i_{0t}} x_1^{i_{1t}} \cdots x_n^{i_{nt}}, \ t = 1, \dots, d.$$

be homogeneous monomials, not necessarily distinct, occurring in g with non-zero coefficients, where i_{0t}, \ldots, i_{nt} are non-negative integers with $i_{0t} + \cdots + i_{nt} = m$ for $t = 1, \ldots, d$. A typical monomial occurring in the polynomial g^d is of the form

$$w = w_1 \cdots w_d = x^{i_{01} + \cdots + i_{0d}} \cdots x^{i_{n1} + \cdots + i_{nd}}.$$

For $s = 0, \ldots, n$, let

$$i_{s1} + \dots + i_{sd} = u_s d + v_s,$$

where $0 \le u_s$ and $0 \le v_s < d$. Then we can write

$$w = (x_0^d)^{u_0} \cdots (x_n^d)^{u_n} (x_0^{v_0} \cdots x_n^{v_n}).$$

Since the degree of the monomial w is dm, we see that $v_0 + \cdots + v_n = \ell d$, where $\ell \ge 0$ is a non-negative integer. Since each $v_s < d$, we have that $0 \le \ell \le n$. Therefore there exist integers $0 \le j_0 < \cdots < j_\ell \le n$ such that we can write

$$v_{j_e} = v'_{j_e} + v''_{j_e}, \ e = 0, \dots, \ell$$

in such a way that

$$v_0 + \dots + v_n = (v_0 + \dots + v_{j_0-1} + v'_{j_0}) + (v''_{j_0} + v_{j_0+1} + \dots + v_{j_{1-1}} + v'_{j_1}) + \dots + (v''_{j_{\ell}} + v_{j_{\ell}+1} + \dots + v_n)$$

in such a way that each parenthesis adds up to d. Then

$$x_0^{v_0}\cdots x_n^{v_n} = (x_0^{v_0}\cdots x_{j_0}^{v_{j_0}'})\cdots (x_{j_\ell}^{v_{j_\ell}'}\cdots x_n^{v_n}).$$

This proves that the monomial w of degree dm can be written as a product of monomials of degree d in the variables x_0, \ldots, x_n . In fact let M_0, \ldots, M_N be a list of monomials of degree d in x_0, \ldots, x_n , and let ϕ be the map

$$\phi: k[M_0, \ldots, M_N] \to k[y_0, \ldots, y_N],$$

sending each M_i to y_i , then $\phi(w)$ is a monomial of degree m in the variables y_0, \ldots, y_N . Define the polynomial G as

$$G(y_0,\ldots,y_N) = \phi(g^d(x_0,\ldots,x_n) \in k[y_0,\ldots,y_N]$$

where the above process of writing g^d as a polynomial in M_i is understood, before ϕ is applied. Then G is uniquely defined and is homogeneous of degree m.

It is now clear from the description of the maps that for any point $a = [a_0 : \cdots : a_n] \in \mathbb{P}^n$,

$$G(\rho_d(a)) = \phi(g^d(a)).$$

It follows from this that $a \in Z(g)$ if and only if $\rho_d(a) \in Z(G) \cap Z(\mathfrak{a})$. This shows that the closed set Z(g) is mapped onto the closed set $Z(G) \cap Z(\mathfrak{a})$, which completes the proof that ρ_d is a closed map.

Thus ρ_d is a homeomorphism from \mathbb{P}^n onto $Z(\mathfrak{a})$