

Take-Home Exam # 04 Math 633 Algebraic Geometry Due on: 5 December 2019 Thursday - Class Time Instructor: Ali Sinan Sertöz

	Name & Lastname:
Department:	Student ID:

Q-1) Hartshorne Exercise II.1.13 page 67.

Espace Étale of a presheaf. (This exercise is included only to establish the connection between our definition of a sheaf and another definition often found in the literature. See for example Godement [Topologie Algébrique et Théorie des Faisceaux Hermann, Paris (1958), Ch. II, §1.2].) Given a presheaf \mathcal{F} on X, we define a topological space $\mathrm{Sp\acute{e}}(\mathcal{F})$, called the espace étalé of \mathcal{F} , as follows. As a set $\mathrm{Sp\acute{e}}(\mathcal{F}) = \bigcup_{P \in X} \mathcal{F}_P$. We define a projection map $\pi \colon \mathrm{Sp\acute{e}}(\mathcal{F}) \to X$ by sending $s \in \mathcal{F}_P$ to s. For each open set s and each section $s \in \mathcal{F}(S)$, we obtain a map s is s and each section s and each section s are in the property that s and s are in other wors, it is a "section" of s over s and each section at the property that s and each section in a map s and each section in the property that s and s and s are in other wors, it is a "section" of s over s and each section a topological space by giving it the strongest topology such that all the maps s and s are into a topological space by giving it the strongest topology such that all the maps s and s are into a topological space by giving it the strongest topology such that all the maps s and s are into a topological space by giving it the strongest topology such that all the maps s and s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by giving it the strongest topology such that all the maps s are into a topological space by s and s are into a topological space by s and s are into a topological space s and s are into a to

Solution:

The key observation here is the following. A subset W of $\operatorname{Sp\'e}(\mathcal{F})$ is open if and only if for every open subset $U \subset X$ and for every $s \in \mathcal{F}(U)$, the set

$$\{x \in U \mid \bar{s}(x) \in W\}$$

is open in X. Then we can see that for any open subset U in X, and for any section $s \in \mathcal{F}(U)$ the sets

$$(s, U) = \{s_x \in \mathcal{F}_x \mid x \in U\} \subset \bigsqcup_{x \in U} \mathcal{F}_x.$$

form a basis for a topology of open sets on $\mathrm{Sp}\acute{e}(\mathcal{F})$. With this topology, $\bar{s}:U\to\mathrm{Sp}\acute{e}(\mathcal{F})$ is continuous: For any $s_x\in(s,U)$, an open neighbourhood of s_x is of the form (s,V) where V is an open neighbourhood of x contained in V. Then $\bar{s}^{-1}((s,V))=V$, hence \bar{s}^{-1} pulls back open sets to open sets and thus is continuous.

Now undoing the definition of \mathcal{F}^+ shows that we obtain all the continuous sections of $\mathrm{Sp\'e}(\mathcal{F})$.