

Bilkent University

Take-Home Exam # 04	
Math 633 Algebraic Geometry	
Due on: 5 December 2019 Thursday - Class Time	
Instructor: Ali Sinan Sertöz	

	Name & Lastname:
Department:	Student ID:

Q-1) Hartshorne Exercise II.1.13 page 67.

Espace Étale of a presheaf. (This exercise is included only to establish the connection between our definition of a sheaf and another definition often found in the literature. See for example Godement [Topologie Algébrique et Théorie des Faisceaux Hermann, Paris (1958), Ch. II, §1.2].) Given a presheaf \mathcal{F} on X, we define a topological space $\operatorname{Spé}(\mathcal{F})$, called the *espace étalé* of \mathcal{F} , as follows. As a set $\operatorname{Spé}(\mathcal{F}) = \bigcup_{P \in X} \mathcal{F}_P$. We define a projection map $\pi \colon \operatorname{Spé}(\mathcal{F}) \to X$ by sending $s \in \mathcal{F}_P$ to P. For each open set $U \subseteq X$ and each section $s \in \mathcal{F}(U)$, we obtain a map $\overline{s} \colon U \to \operatorname{Spé}(\mathcal{F})$ by sending $P \mapsto s_P$, its germ at P. This map has the property that $\pi \circ \overline{s} = \operatorname{Id}_U$, in other wors, it is a "section" of π over U. We now make $\operatorname{Spé}(\mathcal{F})$ for all U, and all $s \in \mathcal{F}(U)$, are continuous. Now show that the sheaf \mathcal{F}^+ associated to \mathcal{F} can be described as follows: for any open set $U \subseteq X$, $\mathcal{F}^+(U)$ is the set of *continuous* sections of $\operatorname{Spé}(\mathcal{F})$ over U. In particular, the original sheaf \mathcal{F} was a sheaf if and only if for each $U, \mathcal{F}(U)$ is equal to the set of all continuous sections of $\operatorname{Spé}(\mathcal{F})$ over U.

Solution: