Take-Home Exam \# 06
Math 633 Algebraic Geometry

## Due on: 31 December 2019 Thuesday

Instructor: Ali Sinan Sertöz

## Solution Key

Q-1) Explain in detail the calculation of $H^{1}\left(\mathbb{C}^{2} \backslash\{0\}, \mathcal{O}\right)$
This is Computation 4 in Griffiths \& Harris, Principles of Algebraic Geometry, on page 49, where the main lines of the argument are listed. Fill in the missing details.

## Solution:

By Hartog's theorem (p. 7) we have $\mathcal{O}\left(\mathbb{C}^{2} \backslash\{0\}\right)=\mathcal{O}\left(\mathbb{C}^{2}\right)$.
Let

$$
U_{1}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \backslash\{0\} \mid z_{1} \neq 0\right\} \text { and } U_{2}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \backslash\{0\} \mid z_{2} \neq 0\right\}
$$

Then $U=\left\{U_{1}, U_{2}\right\}$ is an open covering of $\mathbb{C}^{2} \backslash\{0\}$.
Notice that with respect to this covering $C^{2}(U, \mathcal{O})=0$ by definition, since there are no three distinct open sets in the cover. Therefore the first cohomology will be calculated from the following sequence.

$$
C^{0}(U, \mathcal{O}) \xrightarrow{\delta} C^{1}(U, \mathcal{O}) \rightarrow 0
$$

where $\delta$ is the coboundary map which we now define.
A cochain $f \in C^{0}(U, \mathcal{O})$ is of the form $f=\left(f_{1}, f_{2}\right)$ where $f_{j} \in \mathcal{O}\left(U_{j}\right), j=1,2$.
We notice that $1 / z_{1}$ is a function in $\mathcal{O}\left(U_{1}\right)$ but not in $\mathcal{O}\left(U_{2}\right)$. Similarly $1 / z_{2}$ is a function in $\mathcal{O}\left(U_{2}\right)$ but not in $\mathcal{O}\left(U_{1}\right)$. Therefore $f_{1}$ and $f_{2}$ have the following Laurent expansions.

$$
f_{1}\left(z_{1}, z_{2}\right)=\sum_{\substack{m>-\infty \\ n \geq 0}} c_{m n}^{(1)} z_{1}^{m} z_{2}^{n}, \text { and } f_{2}\left(z_{1}, z_{2}\right)=\sum_{\substack{m \geq 0 \\ n>-\infty}} c_{m n}^{(2)} z_{1}^{m} z_{2}^{n},
$$

where $c_{m n}^{(1)}, c_{m n}^{(2)}$ are complex constants. We then have

$$
\delta f=\left.f_{2}\right|_{U_{1} \cap U_{2}}-\left.f_{1}\right|_{U_{1} \cap U_{2}} .
$$

On the other hand an element $g \in C^{1}(U, \mathcal{O})$ is of the form $g=\left(g_{12}\right)$ where $g_{12} \in \mathcal{O}\left(U_{1} \cap U_{2}\right)=$ $\mathcal{O}\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)$. Hence such a $g_{12}$ has a Laurent expansion of the form

$$
g_{12}\left(z_{1}, z_{2}\right)=\sum_{\substack{m>-\infty \\ n>-\infty}} c_{m n} z_{1}^{m} z_{2}^{n},
$$

where $c_{m n}$ are complex constants. This shows that $\delta C^{0}(U, \mathcal{O})$ does not cover all of $C^{1}(U, \mathcal{O})$ since Laurent series which contain terms of the form $z_{1}^{m} z_{2}^{n}$ where both $m$ and $n$ are negative are not in the image of $\delta$.

Therefore we found that

$$
\check{H}^{1}(U, \mathcal{O}) \cong \mathbb{C}\left[z_{1}^{-1}, z_{2}^{-1}\right] \backslash \mathbb{C} .
$$

Now we observe that $H^{1}\left(U_{j}, \mathcal{O}\right)=0, j=1,2$, (p. 46), so $U$ is a Leray covering of 1st order. Hence

$$
\check{H}^{1}\left(\mathbb{C}^{2} \backslash\{0\}, \mathcal{O}\right) \cong \check{H}^{1}(U, \mathcal{O}) \cong \mathbb{C}\left[z_{1}^{-1}, z_{2}^{-1}\right] \backslash \mathbb{C} .
$$

The version of Leray theorem we have just used is the following.
Theorem: Let $\mathcal{F}$ be a sheaf of abelian groups on a topological space $X$ and let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open covering of $X$ such that $\check{H}^{1}\left(U_{i}, \mathcal{F}\right)=0$ for every $i \in I$. Then $\check{H}^{1}(X, \mathcal{F}) \cong \check{H}^{1}(\mathcal{U}, \mathcal{F})$.

Proof: This is Theorem 12.8 on page 101 in Lectures on Riemann Surfaces by Otto Forster, SpringerVerlag (1981).

