Bilkent University

Take-Home Exam \# Final Math 633 Algebraic Geometry
Due on: 10 January 2010 Friday Instructor: Ali Sinan Sertöz

Solution Key

Q-1) In Griffiths \& Harris, Principles of Algebraic Geometry, on page 39, during the definition of the Čech cohomology, the authors claim that the induced map ρ on cohomology is independent of the choice ϕ. Prove this claim.

This is intended to give you a realistic taste of mathematics: you have to do some serious calculations before you say something simple as "the result is independent of the choice made".

Hint: You will find a reasonable calculation of this as the proof of Lemma 3.2 on page 117 in Complex Manifolds and Deformation of Complex Structures, by Kunihiko Kodaira, Springer-Verlag (1986). Even though the line of proof is correct, there are a few typos in the proof and some unexplained stages in the calculation. Your mission is to provide those missing explanations and carry out the calculations fully.

Solution:

We will follow Kodaira's proof, as cited above, and explain the missing steps.
Let M be a topological space, and \mathcal{F} a sheaf on M.
Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of M and $\mathcal{V}=\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ a refinement of \mathcal{U}. This means that there exists a map $k: \Lambda \rightarrow I$ such that for every $\lambda \in \Lambda$ we have $V_{\lambda} \subseteq U_{k(\lambda)}$.

If $\sigma=\left\{\sigma_{i_{0} \cdots i_{q}}\right\} \in C^{q}(\mathcal{U}, \mathcal{F})$, then we can define $\rho_{k} \sigma=\left\{\left(\rho_{k} \sigma\right)_{\lambda_{0} \cdots \lambda_{q}}\right\} \in C^{q}(\mathcal{V}, \mathcal{F})$ where

$$
\left(\rho_{k} \sigma\right)_{\lambda_{0} \cdots \lambda_{q}}=r_{V} \sigma_{k\left(\lambda_{0}\right) \cdots k\left(\lambda_{q}\right)},
$$

where $V=\bigcup_{s=0}^{q} V_{\lambda_{t}}$ and

$$
r_{V}: \mathcal{F}\left(U_{k\left(\lambda_{0}\right)} \cap \cdots \cap U_{k\left(\lambda_{q}\right)}\right) \rightarrow \mathcal{F}(V)
$$

is the usual restriction map. Thus k induces a map

$$
\rho_{k}: C^{q}(\mathcal{U}, \mathcal{F}) \rightarrow C^{q}(\mathcal{V}, \mathcal{F})
$$

Since the map ρ_{k} has the property $\delta \circ \rho_{k}=\rho_{k} \circ \delta$, it also induces a map

$$
\tilde{\rho_{k}}: \check{H}^{q}(\mathcal{U}, \mathcal{F}) \rightarrow \check{H}^{q}(\mathcal{V}, \mathcal{F})
$$

Now let $j: \Lambda \rightarrow I$ be another map such that for every $\lambda \in \Lambda$ we have $V_{\lambda} \subseteq U_{j(\lambda)}$.
We want to prove that $\tilde{\rho_{k}}=\tilde{\rho}_{j}$.
To show that $\tilde{\rho_{k}}=\tilde{\rho_{j}}$, clearly it suffices to show that for any $\sigma \in Z^{q}(\mathcal{U}, \mathcal{F})$, the equality $\rho_{j} \sigma-\rho_{k} \sigma \in$ $\delta C^{q-1}(\mathcal{V}, \mathcal{F})$ holds.

Let $\eta_{\lambda_{0} \cdots \lambda_{q}}=r_{V} \sigma_{j\left(\lambda_{0}\right) \cdots j\left(\lambda_{q}\right)}$ and $\tau_{\lambda_{0} \cdots \lambda_{q}}=r_{V} \sigma_{k\left(\lambda_{0}\right) \cdots k\left(\lambda_{q}\right)}$. We will define an element $\tilde{\kappa} \in C^{q-1}(\mathcal{V}, \mathcal{F})$ such that

$$
\left\{\eta_{\lambda_{0} \cdots \lambda_{q}}\right\}-\left\{\tau_{\lambda_{0} \cdots \lambda_{q}}\right\}=(\delta \tilde{\kappa})_{\lambda_{0} \cdots \lambda_{q}} .
$$

We first note that for any $t=1, \ldots, q$, and any $\nu_{1}, \ldots, \nu_{q} \in \Lambda$, we have we have

$$
\sigma_{k\left(\nu_{1}\right) \cdots k\left(\nu_{t}\right) j\left(\nu_{t}\right) \cdots j\left(\nu_{q}\right)} \in \mathcal{F}\left(U_{k\left(\nu_{1}\right)} \cap \cdots \cap U_{k\left(\nu_{t}\right)} \cap U_{j\left(\nu_{t}\right)} \cap \cdots \cap U_{j\left(\nu_{q}\right)}\right) .
$$

Moreover we have

$$
V_{\nu_{1}} \subseteq U_{k\left(\nu_{1}\right)}, \ldots, V_{\nu_{t}} \subseteq U_{k\left(\nu_{t}\right)}, V_{\nu_{t}} \subseteq U_{j\left(\nu_{t}\right)}, \ldots, V_{\nu_{q}} \subseteq U_{j\left(\nu_{q}\right)}
$$

and since $V_{\nu_{t}}$ is repeated, if we set $W=\bigcap_{t=1}^{q} V_{\nu_{t}}$, then

$$
W \subseteq U_{k\left(\nu_{1}\right)} \cap \cdots \cap U_{k\left(\nu_{t}\right)} \cap U_{j\left(\nu_{t}\right)} \cap \cdots \cap U_{j\left(\nu_{q}\right)}
$$

and the restriction map

$$
r_{W}: \mathcal{F}\left(U_{k\left(\nu_{1}\right)} \cap \cdots \cap U_{k\left(\nu_{t}\right)} \cap U_{j\left(\nu_{t}\right)} \cap \cdots \cap U_{j\left(\nu_{q}\right)}\right) \rightarrow \mathcal{F}(W)
$$

is well defined. Now set

$$
\kappa_{\nu_{1} \cdots \nu_{q}}=\sum_{t=1}^{q}(-1)^{t-1} r_{W} \sigma_{k\left(\nu_{1}\right) \cdots k\left(\nu_{t}\right) j\left(\nu_{t}\right) \cdots j\left(\nu_{q}\right)} .
$$

We define

$$
(\delta \kappa)_{\lambda_{0} \cdots \lambda_{q}}=\sum_{s=0}^{q}(-1)^{s} r_{V} \kappa_{\lambda_{0} \cdots \widehat{\lambda}_{s} \cdots \lambda_{q}} .
$$

We now claim that

$$
\begin{equation*}
(\delta \kappa)_{\lambda_{0} \cdots \lambda_{q}}=\eta_{\lambda_{0} \cdots \lambda_{q}}-\tau_{\lambda_{0} \cdots \lambda_{q}} . \tag{*}
\end{equation*}
$$

During the proof of this claim for ease of notation we write h_{s} for $k\left(\lambda_{s}\right)$, and j_{s} for $j\left(\lambda_{s}\right)$.

$$
\begin{align*}
(\delta \kappa)_{\lambda_{0} \cdots \lambda_{q}}= & \sum_{s=0}^{q}(-1)^{s} r_{V} \kappa_{\lambda_{0} \cdots \widehat{\lambda_{s}} \cdots \lambda_{q}} \\
= & \sum_{s=0}^{q}(-1)^{s}\left(\sum_{t=0}^{s-1}(-1)^{t} r_{V} \sigma_{h_{0} \cdots h_{t} j_{t} \cdots \widehat{j_{s}} \cdots j_{q}}+\sum_{t=s+1}^{q} r_{V} \sigma_{h_{0} \cdots \widehat{h_{s}} \cdots h_{t} j_{t} \cdots j_{q}}\right) \\
= & \sum_{t=0}^{q}(-1)^{t+1}\left(\sum_{s=0}^{t-1}(-1)^{s} r_{V} \sigma_{h_{0} \cdots \widehat{h_{s}} \cdots h_{t} j_{t} \cdots j_{q}}+\sum_{s=t+1}^{q}(-1)^{s+1} r_{V} \sigma_{h_{0} \cdots h_{t} j_{t} \cdots \hat{j}_{s} \cdots j_{q}}\right) \\
= & \sum_{t=0}^{q}(-1)^{t+1}\left(\sum_{s=0}^{t}(-1)^{s} r_{V} \sigma_{h_{0} \cdots \widehat{h_{s}} \cdots h_{t} j_{t} \cdots j_{q}}+\sum_{s=t}^{q}(-1)^{s+1} r_{V} \sigma_{h_{0} \cdots h_{t} j_{t} \cdots \widehat{j_{s}} \cdots j_{q}}\right) \\
& -\sum_{t=0}^{q}(-1)^{t+1}\left((-1)^{t} r_{V} \sigma_{h_{0} \cdots \widehat{h_{t}} j_{t} \cdots j_{q}}+(-1)^{t+1} r_{V} \sigma_{h_{0} \cdots h_{t} \widehat{j_{t} \cdots j_{q}}}\right) \\
= & \sum_{t=0}^{q}(-1)^{t+1}\left((\delta \sigma)_{h_{0} \cdots h_{t} j_{t} \cdots j_{q}}\right)+\sum_{t=0}^{q}\left(r_{V} \sigma_{h_{0} \cdots \widehat{h_{t}} j_{t} \cdots j_{q}}-r_{V} \sigma_{h_{0} \cdots h_{t} \widehat{j_{t} \cdots j_{q}}}\right) \tag{৫}\\
= & \eta_{\lambda_{0} \cdots \lambda_{q}}-\tau_{\lambda_{0} \cdots \lambda_{q}},
\end{align*}
$$

where we notice that the last summation is a telescoping sum, and recall the assumption that $\delta \sigma=0$. The $\kappa_{\nu_{1} \cdots \nu_{q}}$ that we used is not skew symmetric in its indices so we define

$$
\tilde{\kappa}_{\nu_{1} \cdots \nu_{q}}=\frac{1}{q!} \sum \operatorname{sgn}\binom{\nu_{1} \cdots \nu_{q}}{\mu_{1} \cdots \mu_{q}} \kappa_{\mu_{1} \cdots \mu_{q}},
$$

where the summation is over all permutations of ν_{1}, \ldots, ν_{q}.
Thus $\tilde{\kappa}=\left\{\tilde{\kappa}_{\nu_{1} \cdots \nu_{q}}\right\} \in C^{q-1}(\mathcal{V})$.
Since $\eta_{\lambda_{0} \cdots \lambda_{q}}$ and $\tau_{\lambda_{0} \cdots \lambda_{q}}$ are skew-symmetric on their indices, and from equation $(*)$ we have

$$
\begin{aligned}
\eta_{\lambda_{0} \cdots \lambda_{q}}-\tau_{\lambda_{0} \cdots \lambda_{q}} & =\frac{1}{(q+1)!} \sum \operatorname{sgn}\binom{\lambda_{0} \cdots \lambda_{q}}{\nu_{0} \cdots \nu_{q}}\left(\eta_{\nu_{0} \cdots \nu_{q}}-\tau_{\nu_{0} \cdots \nu_{q}}\right) \\
& =\frac{1}{(q+1)!} \sum \operatorname{sgn}\binom{\lambda_{0} \cdots \lambda_{q}}{\nu_{0} \cdots \nu_{q}}(\delta \kappa)_{\nu_{0} \cdots \nu_{q}} \\
& =\frac{1}{(q+1)!} \sum \operatorname{sgn}\binom{\lambda_{0} \cdots \lambda_{q}}{\nu_{0} \cdots \nu_{q}} \sum_{s=0}^{q}(-1)^{s} \kappa_{\nu_{0} \cdots \widehat{\nu_{s}} \cdots \nu_{q}},
\end{aligned}
$$

where the summations are taken over all permutations of $\lambda_{0}, \ldots, \lambda_{q}$.
We rewrite the last line as a sum $A_{0}+\cdots+A_{q}$ where

$$
A_{i}=\frac{1}{(q+1)!} \sum_{s=0}^{q}(-1)^{s} \sum_{\nu_{s}=\lambda_{i}} \operatorname{sgn}\binom{\lambda_{0} \cdots \lambda_{q}}{\nu_{0} \cdots \nu_{q}} \kappa_{\nu_{0} \cdots \widehat{\nu_{s}} \cdots \nu_{q}},
$$

where we considered only those permutations of $\lambda_{0}, \ldots, \lambda_{q}$ into ν_{0}, \ldots, ν_{q} with $\nu_{s}=\lambda_{i}$, so that the omitted index of κ is always λ_{i}.

To better understand the nature of each A_{i} we undo A_{0} first. Let $\left\{\lambda_{0}, \mu_{1}, \ldots, \mu_{q}\right\}=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{q}\right\}$. Then a permutation as in the summation of A_{0} is of the form

$$
\left(\begin{array}{cccccccc}
\lambda_{0} & \lambda_{1} & \cdots & \lambda_{s-1} & \lambda_{s} & \lambda_{s+1} & \cdots & \lambda_{q} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{s} & \lambda_{0} & \mu_{s+1} & \cdots & \mu_{q}
\end{array}\right),
$$

which we can write as the composition of two permutations

$$
\left(\begin{array}{cccccccc}
\lambda_{0} & \mu_{1} & \cdots & \mu_{s-1} & \mu_{s} & \mu_{s+1} & \cdots & \mu_{q} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{s} & \lambda_{0} & \mu_{s+1} & \cdots & \mu_{q}
\end{array}\right) \circ\left(\begin{array}{cccccccc}
\lambda_{0} & \lambda_{1} & \cdots & \lambda_{s-1} & \lambda_{s} & \lambda_{s+1} & \cdots & \lambda_{q} \\
\lambda_{0} & \mu_{1} & \cdots & \mu_{s-1} & \mu_{s} & \mu_{s+1} & \cdots & \mu_{q}
\end{array}\right),
$$

This gives

$$
\operatorname{sgn}\left(\begin{array}{cccccccc}
\lambda_{0} & \lambda_{1} & \cdots & \lambda_{s-1} & \lambda_{s} & \lambda_{s+1} & \cdots & \lambda_{q} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{s} & \lambda_{0} & \mu_{s+1} & \cdots & \mu_{q}
\end{array}\right)=(-1)^{s} \operatorname{sgn}\left(\begin{array}{ccc}
\lambda_{1} & \cdots & \lambda_{q} \\
\mu_{1} & \cdots & \mu_{q}
\end{array}\right)
$$

Hence we will have

$$
\begin{aligned}
A_{0} & =\frac{1}{(q+1)!} \sum_{s=0}^{q}(-1)^{s} \sum_{\nu_{s}=\lambda_{0}} \operatorname{sgn}\binom{\lambda_{0} \cdots \lambda_{q}}{\nu_{0} \cdots \nu_{q}} \kappa_{\nu_{0} \cdots \hat{\nu}_{s} \cdots \nu_{q}} \\
& =\frac{1}{(q+1)!} \sum_{s=0}^{q}(-1)^{s} \sum_{\substack{\text { Permutations } \\
\text { on } \lambda_{1}, \ldots, \lambda_{q}}}(-1)^{s} \operatorname{sgn}\binom{\lambda_{1} \cdots \lambda_{q}}{\mu_{1} \cdots \mu_{q}} \kappa_{\mu_{1} \cdots \mu_{q}} \\
& =\frac{1}{q!} \sum_{\substack{\text { Permutations } \\
\text { on } \lambda_{1}, \ldots, \lambda_{q}}} \operatorname{sgn}\binom{\lambda_{1} \cdots \lambda_{q}}{\mu_{1} \cdots \mu_{q}} \kappa_{\mu_{1} \cdots \mu_{q}} \\
& =\tilde{\kappa}_{\mu_{1} \cdots \mu_{q}} .
\end{aligned}
$$

A similar calculation will give, for $i=0, \ldots, q$,

$$
A_{i}=(-1)^{i} \tilde{\kappa}_{\mu_{0} \cdots \widehat{\mu_{i}} \cdots \mu_{q}} .
$$

Since $\left\{\mu_{0}, \ldots, \mu_{q}\right\}=\left\{\lambda_{0}, \ldots, \lambda_{q}\right\}$ and since $\sum_{i=0}^{q}(-1)^{i} \tilde{\kappa}_{\mu_{0} \cdots \widehat{\mu}_{i} \cdots \mu_{q}}$ is skew-symmetric in its indices, we get

$$
\begin{aligned}
\eta_{\lambda_{0} \cdots \lambda_{q}}-\tau_{\lambda_{0} \cdots \lambda_{q}} & =A_{0}-A_{1}+\cdots+(-1)^{q} A_{q} \\
& =\sum_{i=0}^{q}(-1)^{i} \tilde{\kappa}_{\mu_{0} \cdots \widehat{\mu_{i}} \cdots \mu_{q}} \\
& =\sum_{i=0}^{q}(-1)^{i} \tilde{\kappa}_{\lambda_{0} \cdots \widehat{\lambda_{i}} \cdots \lambda_{q}} \\
& =(\delta \widehat{\kappa})_{\lambda_{0} \cdots \lambda_{q}} .
\end{aligned}
$$

This finally establishes equation ($\boldsymbol{\oplus}$) which was our aim in this note.
Remark: The first summation in equation ($($) was zero since we chose σ as a cocycle. If instead we chose σ as a cochain only, and if we denote by $h: C^{q}(\mathcal{U}, \mathcal{F}) \rightarrow C^{q-1}(\mathcal{V}, \mathcal{F})$ the process of obtaining $\tilde{\kappa}$ from σ, then the above calculations would show that we have

$$
\rho_{j}-\rho_{k}=\delta h+h \delta,
$$

which says that ρ_{j} and ρ_{k} are chain homotopic, and hence induce the same map in cohomology. This is in fact what was asked from the reader in Griffiths and Harris's book on page 39. ©

$$
\rho_{\varphi}: C^{p}(\underline{U}, \mathscr{F}) \rightarrow C^{p}\left(\underline{U}^{\prime}, \mathscr{F}\right)
$$

given by

$$
\left(\rho_{\varphi} \sigma\right)_{\beta_{0} \cdots \beta_{p}}=\left.\sigma_{\varphi \beta_{0} \cdots \varphi \beta_{p}}\right|_{U_{\beta_{0}}^{\prime} \cap \cdots \cap U_{\beta_{p}}^{\prime}}
$$

Evidently $\delta \circ \rho_{\varphi}=\rho_{\varphi} \circ \delta$, and so ρ_{φ} induces a homomorphism

$$
\rho: H^{p}(\underline{U}, \mathscr{F}) \rightarrow H^{p}\left(\underline{U^{\prime}}, \mathscr{F}\right),
$$

which is independent of the choice of φ. (The reader may wish to check that the chain maps ρ_{φ} and ρ_{ψ} associated to two inclusion associations φ and ψ are chain homotopic and thus induce the same map on cohomology.) We define the $\mathrm{p}^{\text {th }}$ Cech cohomology group of \mathscr{F} on M to be the direct limit of the $H^{P}(\underline{U}, \mathscr{F})$'s as \underline{U} becomes finer and finer:

$$
H^{p}(M, \mathscr{F})=\underset{U}{\underset{\sim}{\lim }} H^{p}(\underline{U}, \mathscr{F}) .
$$

