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Branche Algébrique
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The sequence of multiplicities of successive points of an algebraic branch can (p 256)1

be defined through purely algebraic notions. In what follows we present such a
definition which does not differ from the geometric definition except by its form.
We hope that this definition will constitute an answer to a question posed by P.
Du Val∗ on the relation which exists between his results and the power series2

expansion of the branch under consideration.

Section 1: 3

k being any field, we consider a ring H formed by some power series of a
single variable t with coefficients in k. Let

W (H) = {i0 = 0, i1, i2, . . . , ir, ir+1, . . . }4

∗P. Du Val, “The Jacobian algorithm and the multiplicity sequence of an algebraic branch”,
Rev. Faculté Sci. Univ. Istanbul (Série A), 7 (1942), 107-112.
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be the orders (i.e. the degrees of the first terms with non-zero coefficients) of
the elements of H . The integers i0, i1, . . . , , ir, . . . form a semigroup of the non-
negative5 integers. S0, Si1 , Si2 , . . . , Sir , . . . being elements of H of orders i0, i1,
. . . , ir, . . . respectively, any element of this ring is of the form

∞∑
`=0

α`Si` (α` ∈ k).

We assume that H contains all the series of this form. We denote by Ih the set of
elements of H of orders larger than or equal to h. Ih is clearly an ideal of H and
its elements are of the form

∞∑
i`≥h

α`Si` (α` ∈ k).

Lemma 1. 6 ν being the gcd of the elements of W (H), for r sufficiently large, (p 257)

one has
ir+1 = ir + ν, ir+2 = ir + 2ν, . . . , ir+` = ir + `ν, . . .

and there exists a power series of order 1,

τ = t

(
1 +

∞∑
`=1

δ`t
`

)
(δ` ∈ k)

such that every element of H is of the form
∑∞

j=0 αjτ
jν .

Proof. Let us denote the gcd of the integers i1, i2, . . . , i` by ν`. Each of these
numbers divides all those that come before it. It follows that for ρ sufficiently
large we have νρ = νρ+1 = νρ+2 = · · · = ν. Then let

ν = m1i1 +m2i2 + · · ·+mρiρ,

m1,m2, . . . ,mρ being integers which are positive, zero or negative. m being the
largest of the integers |mh(i1/ν − 1)|, the multiples of ν which are greater than

i = mi1 +mi2 + · · ·+miρ

are contained in W (H). In fact we have, for ` = 0, 1, 2 . . . , i1/ν − 1,

i+ `ν = (m+ `m1)i1 + (m+ `m2)i2 + · · ·+ (m+ `mρ)iρ

= n1i1 + n2i2 + · · ·+ nρiρ,
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with nh ≥ 0; since m ≥ |mh`|. For ` = i1/ν, we have i + i1 ∈ W (H). In
general, the multiples of ν which are greater than i can be written in the form
i + ji1 + `ν (` = 0, 1, 2, . . . , i1/ν − 1, j ≥ 0) and it is obvious that all of

these integers are of the form
ρ∑

h=1

nhih with nh ≥ 0; i.e. belong to W (H).

Si1 =
∞∑
`=i1

σ`t
` (σ` ∈ k, σi1 6= 0)7 being an element of order i1 in H , we can

choose a power series of the form τ = t

(
1 +

∞∑
`=1

δ`t
`

)
, (δ` ∈ k) in such

a way that we have Si1 = σi1τ
i1 . Under these conditions the power series in

t with coefficients in k may be written in the form of power series in τ with
coefficients in k. In particular the elements of H can be written in the form
∞∑
j=0

αjντ
jν . It suffices to prove this for the elements of H of orders greater than

i; since every element of H can be considered as a quotient of an element in
H of order greater than i by a suitably chosen power of Si1 = σi1τ

ν(i1/ν). The
orders of the elements of H being multiples of ν, any element of H is of the

form
∞∑

j=Nν

αjτ
j (αj ∈ k, αNν 6= 0). For Nν ≥ i, the ring H contains the ele-

ments, SNν+ν , SNν+2ν , . . . ,

(
SNν+`ν =

∞∑
j=Nν+`ν

α`,jτ
j, α`,j ∈ k, α`,Nν+`ν 6= 0

)
(p 258)

of orders Nν + ν,Nν + 2ν, . . . respectively. We can then choose the series
∞∑
`=1

β`SNν+`ν in such a way that the difference

SNν =
∞∑

j=Nν

αjτ
j −

∞∑
`=1

β`SNν+`ν = αNντ
Nν + α̃µτ

µ + · · ·

does not contain any terms of order divisible by ν, other than the first. Indeed
suppose that β1, β2, . . . , βh are chosen such that the terms of orders Nν+ν,Nν+
2ν, . . . , Nν + hν of the difference

∞∑
j=Nν

αjτ
j −

h∑
`=1

β`SNν+`ν = αNντ
Nν + α(h)

µh
τµh + · · ·
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vanish; it suffices then to set

βh+1 =
α
(h)
Nν+hν+ν

αh+1,Nν+hν+ν

so that the terms of orders Nν + ν,Nν + 2ν, . . . , Nν + hν,Nν + hν + ν of the
difference

∞∑
j=Nν

αjτ
j −

h+1∑
`=1

β`SNν+`ν = αNντ
Nν + α(h+1)

µh+1
τµh+1 + · · ·

vanish. Under these conditions the series SNν reduces to αNντNν . Otherwise the
difference

S
i1/ν
Nν − α

i1/ν
Nν

(
Si1
σi1

)N
=
i1
ν
α
i1/ν−1
Nν α̃µτ

Nν(i1/ν−1)+µ + · · ·

whose order is not divisible by ν will be in H . Therefore every element of H of
order greater then i is a linear combination with coefficients in k of elements of
the form αNντ

Nν = SNν . �8

Remark. After the preceding theorem, the ring H may be considered as a
subring of the ring of power series of the variable T = τ ν with coefficients in k.
Let us set ∗ih = ih/ν. The orders of the elements of H with respect to this new
variable will be ∗i0 = 0, ∗i1,

∗i2, . . . ,
∗ir, . . . , and for r sufficiently large, one will

have
∗ir+1 = ∗ir + 1, ∗ir+2 = ∗ir + 2, . . . .

Lemma 2. The inverse of every element of order zero of H is also an element of
H .

Proof. If the order of a =
∞∑
h=0

αhSih is zero, then α0 is different than zero. In fact

the coefficients βh of the product

α−10

∞∏
h=1

(1 + βhSih)

can be chosen such that we have (p 259)
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aα−10

n∏
h=1

(1 + βhSih) ≡ 1 mod tin+1.

Suppose now that this choice has been made for β1, β2, . . . , βn−1. We have

aα−10

n−1∏
h=1

(1 + βhSih) = 1 + γnSin + γn+1Sin+1 + · · ·

and it suffices to set βn = −γn to have

aα−10

n∏
h=1

(1 + βhSih) ≡ 1 mod tin+1.

For the coefficients βh chosen in this manner we obviously have

aα−10

∞∏
h=1

(1 + βhSih) = 1.

�

Remark.
∞∑
h=0

αhSih being an element of order zero in H , to each n-th root

of α0 contained in k corresponds an n-th root of
∞∑
h=0

αhSih contained in H . The

proof of this fact is similar to that of Lemma 2.

Section 2:

Lemma 3. If one denotes by Ih/Sh the set of quotients of elements of Ih by Sh,
and by [Ih/Sh] the ring generated by Ih/Sh, the ring [Ih/Sh] does not depend on
the choice of Sh among the elements of H of order h.

Proof. Let us first note that the set Ih/Sh contains the ring H and consequently
[Ih/Sh] ⊇ H .

Let S ′h = εSh be another element of order h in H . ε is then an element of
[Ih/Sh]. It follows from Lemma 2 that ε−1 is also an element of [Ih/Sh]. We then
have

Ih/S
′
h = Ih/εSh = ε−1(Ih/Sh) ⊆ [Ih/Sh]
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and therefore
[Ih/S

′
h] ⊆ [Ih/Sh].

We can obviously show in exactly the same manner that we also have

[Ih/Sh] ⊆ [Ih/S
′
h].

We then have [Ih/S
′
h] = [Ih/Sh]. �

The ring [Ih/Sh] being independent of the choice of Sh, we can denote it by
[Ih].

Remark. The semigroup W ([Ih]) clearly contains the semigroup generated
by the integers

ih − ih = 0, ih+1 − ih, ih+2 − ih, . . .

which are the orders of the elements of Ih/Sih . But as the following example (p 260)

shows, W ([Iih ]) is not necessarily equal to this semigroup:

Let us consider the ring H formed by all series of the form∑
i,j≥0

αijX
iY j (αij ∈ k),

where X = t4, Y = t10 + t15. One easily shows that W (H) is formed by the
integers

0,4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26

28, 29, 30, 32, 33, 34, 35, 36, 37, 38, . . . .

Then the orders of the elements of I4/X are the integers

0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22,

24, 25, 26, 28, 29, 30, 31, 32, 33, 34, . . .

which generate the semigroup

0,4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, . . .

while [I4] contains the element (Y/X)2 −X2 = 2t17 + t22 whose order is 17.
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Remark. If for some particular choice of Sh, the ring [Ih] is equal to Ih/Sh,
then it is the same for all choices of Sh. In fact, S ′h = εSh being another element
of order h of H , we have

Ih/S
′
h = ε−1Ih/Sh = ε−1[Ih] = [Ih];

since every element S of [Ih] is equal to an element εS of [Ih] multiplied by ε−1.

Definition. We say that the ring H is canonical9 if one has [Ih] = Ih/Sh for all
h ∈ W (H).

Remark. If H is a canonical ring, the integers

ih − ih = 0, ih+1 − ih, ih+2 − ih, . . .

form a semigroup for every h. A semigroup of non-negative integers

i0 = 0, i1, i2, . . . , ih, . . .

is called canonical if the sequence

ih − ih = 0, ih+1 − ih, ih+2 − ih, . . .

is a semigroup for each h. If the sequence of increasing integers

i0 = 0, i1, i2, . . . , ih, . . .

is a canonical semigroup, then the power series

∞∑
h=0

αht
ih (αh ∈ k),

clearly forms a canonical ring. W (H) can be canonical without it being the case (p 261)

for H: The ring formed by the series of the form
∑
i,j,`≥0

αij`X
iY jZ` (αij` ∈ k),

with X = t4, Y = t10 + t15, Z = t27, is such that the orders

0, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, . . .

of its elements form, as one can easily verify, a canonical semigroup, while H is
not a canonical ring, since [I4] an element of order 17, (Y/X)2−X3 = 2t17 + t22,
which is not contained in I4/X .
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Lemma 4. The intersection of several canonical rings is canonical.

Proof. It obviously suffices to prove the lemma only for the intersection of two
canonical rings. H and H ′ being two canonical rings, let S be a common element
of these two rings. Let h be the order of S let Ih and I ′h be the set of elements of
H and H ′ whose orders are not less than h. It suffices to show that

(Ih ∩ I ′h)/S = Ih/S ∩ I ′h/S

is a ring. Now Ih/S and I ′h/S being rings, it is the same for their intersection. �

Remark. If H is a canonical ring, then so is [Iih ]. Indeed consider the set of
elements of Iih . These elements are of the form

∞∑
ν=h

ανSiν (αν ∈ k).

H being a canonical ring, the ring [Iih ] consists of the set of series of the form
∞∑
ν=h

αν
Siν
Sih

whose orders are the numbers

0, j1 = ih+1 − ih, j2 = ih+2 − ih, . . . .

The set of elements of [Iih ] of order greater than or equal to j` is then the set of
series of the form

∞∑
ν=h+`

αν
Siν
Sih

(αν ∈ k).

Sih+`/Sih being an element of order j` = ih+` − ih of this set, the set of elements(
∞∑

ν=h+`

αν
Siν
Sih

)/
Sih+`
Sih

=
∞∑

ν=h+`

αν
Siν
Sih+`

is the ring [Iih+` ].

N being the set of all non-negative integers∗, we show in a similar manner that (p 262)

if
{0, i1, i2, . . . , ir + Nν}

∗In what follows N will always denote the set of all non-negative integers.10
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is a canonical semigroup, it is the same for

{0, ih+1 − ih, . . . , ir − ih + Nν}.

Remark. If the integers

i0 = 0, i1, i2, . . . , ih, . . .

form a canonical semigroup, then we have ih+1 − ih ≤ ih − ih−1. In fact, before
the integers ih−1 − ih−1 = 0, ih − ih−1, ih+1 − ih−1, . . . , ir − ih−1, . . . form a
semigroup, we must have ih+1 − ih−1 ≤ 2(ih − ih−1); from which the inequality
ih+1 − ih ≤ ih − ih−1 follows immediately.

Section 3:

From the remark which follows immediately Lemma 1, I(N−1)ν contains all
the power series whose orders in T = τ ν are greater than or equal to N − 1 pro-
vided that N is sufficiently large. [I(N−1)ν ] is then the ring k[T ] of all the power
series in T with coefficients in k. This remark leads to the following construc-
tion which allows us to obtain all the canonical rings as well as all the canonical
semigroups.

We begin by considering the ring [I(N−1)ν ] = k[T ] of all power series in T
and the semigroup Nν of multiples of ν by non-negative integers. We choose
an element Tr−1 of non-zero order in [I(N−1)ν ] , and a non-zero element νr−1(=
w(Tr−1)

∗) in Nν and we set

[Iir−1 ] = k + Tr−1[I(N−1)ν ] (ir = (N − 1)ν).

The ring [Iir−1 ] and the semigroup {0, νr−1 + Nν} (= W ([Iir−1 ])) are canonical.
Similarly we choose an element Tr−2 of non-zero order in [Iir−1 ] and a positive
integer νr−2 (= w(Tr−1)) in {0, νr−1 + Nν}, and we set

[Iir−2 ] = k + Tr−2[Iir−1 ]

= k + kTr−2 + Tr−2Tr−1k[T ],

W ([Iir−2 ]) = {0, νr−2, νr−2 + νr−1 + Nν}.

∗In what follows w

 ∞∑
i=µ

αit
i

 denotes the order of the series
∞∑
i=µ

αit
i in t.
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Thus we obtain a new canonical ring and also a canonical semigroup. Continuing
in this manner we finally obtain the canonical ring

k + kT1 + kT1T2 + · · ·+ kT1T2 · · ·Tr−2 + k[T ]T1T2 · · ·Tr−2Tr−1

and the canonical semigroup (p 263)

{0, ν1, ν1 + ν2, . . . , ν1 + ν2 + · · ·+ νr−1 + Nν}

with

Th ∈ kTh+1 + kTh+1Th+2 + · · ·+ k[T ]Th+1Th+2 · · ·Tr−1,
(w(Th) =) νh ∈ {νh+1, νh+1 + νh+2, . . . , νh+1 + νh+2 + · · ·+ νr−1 + Nν}.

Section 4:

Given a ring H , the intersection of all canonical rings containing H is a
canonical ring ∗H which we call the canonical closure11 of H . Similarly G =
{0, i1, i2, . . . , ir−1 +Nν} being a semigroup of non-negative integers (ν = (i1, i2,
. . . , ir−1 + ν)), the intersection of all canonical semigroups containing G is a
canonical semigroup ∗G; we call it the canonical closure of G.

It follows from this definition that W (∗H) contains the canonical semigroup
∗W (H); but these two semigroups12 are not necessarily equal, since W (H) may
be canonical without H being so.

Section 5:

Given a semigroup

G = {0, i1, i2, . . . , ir−1 + Nν} (ν = (i1, i2, . . . , ir−1, ir−1 + ν)),

the canonical closure ∗G of G is obtained as follows: We consider the semigroup
{0, i1 +G1} where G1 is the semigroup of integers of the form

α2(i2 − i1) + α3(i3 − i1) + · · ·+ αn(in − i1),

where the coefficients α1, α2, . . . , αn are non-negative integers. The semigroup
{0, i1 + G1} which then contains G is obviously contained in ∗G. Note that the
elements of G1 which are less than ih+1 − i1 are of the form

α2(i2 − i1) + α3(i3 − i1) + · · ·+ αh(ih − i1);
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the integers
α2(i2 − i1) + α3(i3 − i1) + · · ·+ αn(in − i1)

with n ≥ h+ 1, αn 6= 0 are in fact greater than or equal to ih+1− i1. In particular
the smallest element of G1 is i2 − i1. Furthermore it follows that the elements of
{0, i1 + G1} which are less than ih+1 depend only on i1, i2, . . . , ih, and are linear
combinations of these with integer coefficients. The semigroup {i1 + G1} being
contained in ∗G, it is the same for {i1 + ∗G1} which contains {i1 + G1} ⊇ G,
and is canonical. The construction of ∗G is thus reduced to the construction of the
canonical closure of a semi-group of the form

G1 = {0, i′1, i′2, . . . , i′r′−1 + Nν};

for which we have i′r′−1 ≤ ir−1−i1. The repetition of this construction reduces the
proposed construction to that of the canonical closure of a semigroup GN which
itself reduces, for N sufficiently large, to the semigroup Nν of all non-negative (p 264)

multiples of ν. Nν being its own canonical closure, the proposed procedure thus
terminates. Note that the elements of ∗G which are thus constructed depend only
on the elements of G which are not greater than themselves; and they are linear
combinations of them with integer coefficients. Suppose in fact that this is proved
for the closure ∗G1 of G1. The elements of ∗G1 which are smaller than ih+1 − ih
depend only on the elements of G1 which are smaller than ih+1 − ih, and they
are their linear combinations with integer coefficients; now these latter ones in
turn depend only on i1, i2, . . . , ih and are their linear combinations with integer
coefficients. It follows that the elements of {0, i1 + ∗G1} = ∗G which are smaller
than ih+1− ih depend only on i1, i2, . . . , ih, and they are their linear combinations
with integer coefficients.

Given a canonical semigroup

∗G = {0, i1, i2, . . . , ir−1 + Nν} (ν = (i1, i2, . . . , ir−1, ir−1 + ν)),

there exist only a finite number semigroups g such that ∗g = ∗G. In fact let

g = {0, j1, j2, . . . , js, js+1, . . . }

be such a semigroup. Let j1, j2, . . . , jn of the integers j1, j2, . . . , js, . . . be smaller
than ir+1 = ir−1 + 2ν. Since ir−1 and ir−1 + ν are linear combinations of
j1, j2, . . . , jn with integer coefficients, the gcd of these numbers is ν. Now to
each system of positive integers smaller than ir+1 = ir−1 + 2ν whose gcd is ν, we
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can associate a multiple jν of ν such that every semigroup of non-negative inte-
gers containing the system, contains all the multiples of ν larger than jν. Let Lν
be the largest of the integers jν which are thus associated to systems of positive
multiples of ν smaller than ir+1 = ir−1 + 2ν. The semigroups g for which we
have ∗g = ∗G contain then all the multiples of ν which are larger than Lν and they
differ among themselves only by those elements which are smaller than Lν.

Theorem 1. The intersection of all the semigroups g such that ∗g = ∗G is a semi-
group gχ such that ∗gχ = ∗G.

Proof. Let g be a semigroup such that we have ∗g = ∗G and that no proper sub
semigroup of g has this property; we will show that g = gχ. Let i be the smallest
element of g not in gχ. Let i0 = 0, i1, i2, . . . , ih be the elements of g and gχ which
are smaller than i. Since i is not contained in gχ, the number i is not of the form

α1i1 + α2i2 + · · ·+ αhih,

where α1, α2, . . . , αh are non-negative integers. On the other hand gχ being the
intersection of all semigroups whose canonical closure is ∗G, there exists a semi-
group g′ such that ∗g′ = ∗G and which does not contain the number i. Since the
elements of ∗G = ∗g which are smaller than i depend only on i1, i2, . . . , ih, the (p 265)

semigroup g′′ obtained by removing from g′ all the the positive integers smaller
than i except i1, i2, . . . , ih still has the property that ∗g′′ = ∗G. It follows that the
elements of ∗G which are smaller than or equal to i depend only on the numbers
i1, i2, . . . , ih; since g′′ does not contain the number i. Therefore the canonical
closure of the sub-semigroup of g obtained by removing from it the number i is
still equal to ∗G. This contradicts the choice of g. We then have gχ = g and and
consequently ∗gχ = ∗G. �

The semigroup gχ defined in the statement of Theorem 1 is called the charac-
teristic sub-semigroup of all the g such that ∗g = ∗G. It is clear that the semigroup
gχ is such that every proper sub-semigroup of gχ has a canonical closure different
than ∗gχ = ∗G. Conversely if gχ is such that for every sub-semigroup g′ of gχ we
have ∗g′ 6= ∗gχ, then gχ is its own characteristic sub-semigroup.

gχ = {0, i1, i2, . . . , ir−1, ir, . . . } being the characteristic sub-semigroup of
g, let us consider the integers χ1, χ2, . . . , χh defined in the following manner:
χ1 = i1; χ2 is the smallest of the integers i1, i2, . . . , ir, . . . which is not of the
form α1χ1 where α1 is a non-negative integer; χ3 is the smallest of the integers
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i1, i2, . . . , ir, . . . which is not of the form α1χ1 + α2χ2 where α1, α2 are non-
negative integers; finally χ1, χ2, . . . , χn being defined, χn+1 is the smallest of the
integers i1, i2, . . . , ir, . . . which is not of the form

α1χ1 + α2χ2 + · · ·+ αnχn

where α1, α2, . . . , αn are non-negative integers. The numbers χ1, χ2, . . . , χh de-
fined in this manner are called the characters of g.

Theorem 2. γ1 < γ2 < · · · < γ` being a collection of positive integers, the set of
characters of the semigroup g of integers of the form

α1γ1 + α2γ2 + · · ·+ α`γ`,

where α1, α2, . . . , α` are non-negative integers, is contained in the collection
γ1, γ2, . . . , γ`.

Proof. Let χi be the smallest of the characters χ1, χ2, . . . , χh of g which is not
contained in the set γ1, γ2, . . . , γ`. It follows from the definition of gχ that χi is
of the form α1γ1 + α2γ2 + · · · + α`′γ`′ where α1, α2, . . . , α`′ are non-negative
integers and where γ1, γ2, . . . , γ`′ are those integers among γ1, γ2, . . . , γ` which
are smaller than χi. Since γ1, γ2, . . . , γ` are elements of the canonical closure
of gχ, every semigroup containing χ1, χ2, . . . , χi−1 contains also γ1, γ2, . . . , γ`′ .
This implies that the canonical closure of the semigroup of linear combinations
with non-negative integer coefficients of χ1, χ2, . . . , χi−1, χi+1, . . . , χh contains
χi, and it follows that gχ is not a characteristic semigroup. Therefore the set
γ1, γ2, . . . , γ` necessarily contains the set χ1, χ2, . . . , χh. �

Theorem 3. g being the semigroup of linear combinations of [the integers]13 0 < (p 266)

γ1 < γ2 < · · · < γ` with non-negative integer coefficients, the integers

ν1, ν2, . . . , νN−2, νN−1, ν

with the property that

∗g = {0, ν1, ν1 + ν2, . . . , ν1 + ν2 + · · ·+ νN−1 + Nν},

are obtained from γ1, γ2, . . . , γ` by the quasi-Jacobian algorithm of Du Val.∗ The
integers ν1, ν2, . . . , νN−1, ν appear there as divisors, while the partial quotients

∗Du Val, loc. cit.
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represent the number of times each divisor appears in the sequence ν1, ν2, . . . ,
νN−1, ν. Conversely if the numbers

ν1, ν2, . . . , νN−1, ν

are obtained from γ1, γ2, . . . , γ` by the quasi-Jacobian algorithm of Du Val, the
partial quotients being the number of times each divisor appear in the sequence
ν1, ν2, . . . , νN−1, ν, then the canonical closure of the semigroup of the integers of
the form

α1γ1 + α2γ2 + · · ·+ α`γ`,

where α1, α2, . . . , α` are non-negative integers, is ∗g.

Proof. ν being the greatest common divisor of the elements of g, we have γ1 ≥ ν.
If γ1 = ν, the semigroup g consists of the set of all multiples of γ1 = ν, and
we have g = ∗g = {Nν}. In this case the algorithm terminates at the first step.
Let’s assume that the proposition is proved for every set γ′1, γ2,

′ , . . . , γ′`′ for which
γ′1 < γ1, and prove it for for the set γ1, γ2, . . . , γ`. Let γi be the smallest of the
integers γ1, γ2, . . . , γ` which is not divisible by γ1. Let q be the quotient of γi by
γ1 and let us consider the semigroup Γ of linear combinations of γi − qγ1, γi+1 −
qγ1, . . . , γ` − qγ1, γ1 with non-negative integer coefficients. The semigroup ∗g
clearly contains the semigroup {0, γ1, 2γ1, . . . , qγ1 + Γ} which contains g. We
then have

∗g = {0, γ1, 2γ1, . . . , qγ1 + ∗Γ},
ν1 = γ1, ν2 = γ1, . . . , νq = γ1

i.e.
∗Γ = {0, νq+1, νq+1 + νq+2, . . . , νq+1 + · · ·+ νN−1 + Nν}.

The integers γi − qγ1, γi+1 − qγ1, . . . , γ` − qγ1, γ1 being the remainders of the
(i − 1)-st division of the algorithm applied to the numbers γ1, γ2, . . . , γ`, it suf-
fices to show that the integers νq+1, νq+2, . . . , νN−1, ν are obtained by applying
the algorithm to the integers γi − qγ1, γi+1 − qγ1, . . . , γ` − qγ1, γ1. Now γi −
qγ1 being smaller than γ1, this was assumed done. Conversely, if the numbers (p 267)

ν1, ν2, . . . , νN−1, ν are obtained from γ1, γ2, . . . , γ` by the quasi-Jacobian algo-
rithm of Du Val, the canonical closure of the semigroup of linear combinations of
γ1, γ2, . . . , γ` where coefficients are non-negative integers is

{0, ν1, ν1 + ν2, . . . , ν1 + ν2 + · · ·+ νN−1 + Nν},
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which follows from the proposition we have just proved. �

χ1, χ2, . . . , χh being the characters of g, the semigroup of linear combinations
of χ1, χ2, . . . , χh with coefficients being non-negative integers is the character-
istic sub semigroup gχ of g. It follows from theorems 3 and 2 that the integers
ν1, ν2, . . . , νN−1 are obtained from the characters of g by the quasi-Jacobian al-
gorithm of Du Val, and all the systems of non-negative integers γ1, γ2, . . . , γ` for
which the algorithm produces the same result are obtained from the system of
characters of g by adjoining to it numbers arbitrarily chosen from ∗g.

Section 6:

Now let us consider a ring H and its canonical closure ∗H . The ring H being
of the form

H = k + kSi1 + kSi2 + · · ·+ k[T ]Sih

its canonical closure ∗H can be constructed as follows: Denote by H1 the ring

[Ii1 ] =
∑

k

(
Si2
Si1

)α2
(
Si3
Si1

)α3

· · ·
(
Sih−1

Si1

)αh−1

+ k[T ]
Sih
Si1

,

where the summation is over all exponent systems of non-negative integers α2, α3,
. . . , αh−1 such that α2(i2 − i1) + α3(i3 − i1) + · · ·+ αh−1(ih−1 − i1) is less than
ih − i1. The canonical closure ∗H of H clearly contains

k +H1Si1

which contains H and we have ∗H = k + ∗H1Si1 , where we denoted by ∗H1 the
canonical closure of H1. In general, Hi being defined, denote by Hi+1 the ring
obtained from Hi in the same way H1 is obtained from H . It is clear that for N
sufficiently large, HN is isomorphic to K[T ]. Let Ti+1 be an element of positive
order in Hi. Then we obviously have

∗H = k + kT1 + ∗H2T1T2 (with T = Si)
= k + kT1 + kT1T2 + ∗H3T1T2T3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
= k + kT1 + kT1T2 + · · ·+ kT1T2 · · ·TN−1 + ∗HNT1T2 · · ·TN−1TN
= k + kT1 + kT1T2 + · · ·+ kT1T2 · · ·TN−1 + k[T ]T1T2 · · ·TN−1TN .
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Remark. For any integer n, the ring k + H1Si1 mod tn depends only on H
mod tn. To prove this it suffices to show that H1 mod tn−i1 depends only on H (p 268)

mod tn.Similarly the ring k+H2T2 mod tn−i2 depends only on H1 mod tn−i1 .
The ring k+kT1+H2T1T2 mod tn then depends only onH mod tn. Continuing
in this manner we obtain eventually that

∗H = k + kT1 + kT1T2 + · · ·+ kT1T2 · · ·TN−1 +HNT1T2 · · ·TN mod tn

depends only on H mod tn.

Lemma 5. If H mod tn is equal to ∗H mod tn, then the set ∗H mod tn+1 is
equal to one of the sets

k + kSi1 + kSi2 + · · ·+ kSi`−1
+ [Ii` ]Si` mod tn+1 (i` < n+ 1).

Proof. The set ∗H mod tn being the same as H mod tn, the set ∗H mod tn+1,
which contains the set H mod tn+1, consists of the elements of the form

S + α∗Sn mod tn+1

where S is an element of H , ∗Sn a fixed element of order n belonging to ∗H ,
and α an element of k. Hence every ring H ′ mod tn+1, contained in the ring H
mod tn+1 is identical to H mod tn+1, if it is contained in ∗H mod tn+1 without
it being identical. Consider now the ring

k + Si1 [Ii1 ] mod tn+1

which contains H mod tn+1 and which is contained in ∗H mod tn+1. After
what we have just noted, the ring k + Si1 [Ii1 ] mod tn+1 is identical to one of the
two rings

∗H mod tn+1, H mod tn+1.

If it is not identical to the first, we have [Ii1 ] = Ii1/Si1 mod tn+1−i1 . As ∗[Ii1 ]
mod tn+1−i1 depends only on [Ii1 ] mod tn+1−i1 , the sets

∗[Ii1 ] mod tn+1−i1 , k +
Si2
Si1

∗[Ii2 ] mod tn+1−i1

will be identical, since Ii2/Si1 is the set of elements of positive order in Ii1/Si1 . It
follows that ∗H mod tn+1 is identical to one of the rings

k + Si1 [Ii1 ] mod tn+1, k + kSi1 + ∗[Ii2 ]Si2 mod tn+1.

16



If ∗H mod tn+1 is neither identical to k + Si1 [Ii1 ] mod tn+1 nor to

k + kSi1 + ∗[Ii2 ]Si2 mod tn+1

these two rings are identical to H mod tn+1. Under these conditions we have
[Ii2 ] ≡ Ii2/Si2 mod tn+1−i2 , from which we can conclude the identity of the two
sets

∗[Ii2 ] mod tn+1−i2 , k + ∗[Ii2 ]
Si2
Si1

mod tn+1−i2 .

∗H mod tn+1 is then identical to one of the sets (p 269)

k + [Ii1 ]Si1 mod tn+1, k + kSi1 + [Ii2 ]Si2 mod tn+1,

k + kSi1 + kSi2 + ∗[Ii3 ]Si3 mod tn+1.

Continuing in this manner we can show that ∗H mod tn+1 is identical to one of
the sets

k + [Ii1 ]Si1 mod tn+1

k + kSi1 + [Ii2 ]Si2 mod tn+1

. . . . . . . . . . . . . . . . . . . . . .
k + kSi1 + kSi2 + · · ·+ [Ii` ]Si` mod tn+1

k + kSi1 + kSi2 + · · ·+ kSi` + ∗[Ii`+1
]Si`+1

mod tn+1.

Now for i`+1 ≥ n + 1, the last one of these sets is H mod tn+1. Then ∗H
mod tn+1 is identical to one of the sets

k + kSi1 + kSi2 + · · ·+ [Ii` ]Si` mod tn+1

for i` ≤ n. �

X1, X2, . . . , Xn being power series in t with positive orders, we denote by
k[X1, X2, . . . , Xn] the ring formed by the series of the form∑

αj1j2···jnX
j1
1 X

j2
2 · · ·Xjn

n

where αj1j2···jn ∈ k and the summation is over all systems of non-negative integers
j1, j2, . . . jn.
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Lemma 6. The elements Y1, Y2, . . . , Yν of ∗H being chosen such that w(Yj) is
the smallest element of W (∗H) which is not contained in W (k[Y1, Y2, . . . , Yj−1]),
if the elements Y ′1 , Y

′
2 , . . . , Y

′
ν−1 are respectively congruent to Y1, Y2, . . . , Yν−1

mod tw(Yν), then the smallest element of W (∗H) not contained in
W (k[Y ′1 , Y

′
2 , . . . , Y

′
ν−1]) is w(Yν).

Proof. The rings

∗H mod tw(Yν), k[Y1, Y2, . . . , Yν−1] mod tw(Yν), k[Y ′1 , . . . , Y
′
ν−1] mod tw(Yν)

being clearly identical, it suffices to show that k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] does not contain

an element of order w(Yν). Every element of k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] mod tw(Yν)+1

being of the form
P (Y ′1 , Y

′
2 , . . . , Y

′
ν−1) mod tw(Yν)+1

where P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1) is a polynomial with coefficients in k, it suffices to

show that w(P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1)) cannot be equal to w(Yν). If the polynomial

P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1) contains a [nonzero]14 constant term, then Y ′1 , Y

′
2 , . . . , Y

′
ν−1

being elements of positive order we have w(P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1)) = 0 6= w(Yν).

If
P (Y ′1 , Y

′
2 , . . . , Y

′
ν−1)

contains terms of degree 1 without containing a [nonzero] constant term, then we (p 270)

can write it in the form

P1(Y
′
1 , Y

′
2 , . . . , Y

′
j−1) + βY ′j + P2(Y

′
1 , Y

′
2 , . . . , Y

′
ν−1)

with β 6= 0; P2(Y
′
1 , Y

′
2 , . . . , Y

′
ν−1) being the sum of terms of positive degree with

respect to the set Y ′j , Y
′
j+1, . . . , Y

′
ν−1 except the term βY ′j . w(P2(Y

′
1 , Y

′
2 , . . . , Y

′
ν−1))

is then greater than w(Y ′j ) which is by definition different than the order of

P1(Y
′
1 , Y

′
2 , . . . , Y

′
j−1) ≡ P1(Y1, Y2, . . . , Yj−1) mod tw(Yν).

We then have

w(P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1)) = min(w(Y ′j )), w(P1(Y

′
1 , Y

′
2 , . . . , Y

′
j−1)) < w(Yν).

Finally if P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1) contains neither a term of degree 1 nor of degree 0,

then we can write

P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1) ≡ P (Y1, Y2, . . . , Yν−1) mod tw(Yν)+1.

18



w(P (Y1, Y2, . . . , Yν−1)) being different than w(Yν), it is the same for

w(P (Y ′1 , Y
′
2 , . . . , Y

′
ν−1)).

�

Lemma 7. Y1, Y2, . . . , Yν−1, Yν and Y ′1 , Y
′
2 , . . . , Y

′
ν−1 having the same properties

as in the statement of Lemma 6, if the canonical closure of k[Y1, Y2, . . . , Yν−1]
does not contain an element of order w(Yν), then it is the same for the canonical
closure of k[Y ′1 , Y

′
2 , . . . , Y

′
ν−1].

Proof. Let i0 = 0, i1, i2, . . . , iµ, . . . be the orders of the elements of k[Y ′1 , Y
′
2 , . . . ,

Y ′ν−1] written in increasing order and let I ′iµ be the set of elements of k[Y ′1 , Y
′
2 , . . . ,

Y ′ν−1] whose orders are not smaller than iµ. Denote by S ′i` an element of order i`
of k[Y ′1 , Y

′
2 , . . . , Y

′
ν−1], and by H′ 15 the canonical closure of k[Y ′1 , Y

′
2 , . . . , Y

′
ν−1].

The rings

∗H mod tw(Yν), H′ mod tw(Yν), k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] mod tw(Yν)

being identical, it follows from Lemma 5 that the ring H′ mod tw(Yν)+1 is iden-
tical to one of the rings

k + kS ′i1 + kS ′i2 + · · ·+ [I ′i` ]S
′
i`

mod tw(Yν)+1

with i` < w(Yν). Let µ be the smallest of these integers ` for which this iden-
tity holds. If µ = 0, then H′ mod tw(Yν)+1 is identical to k[Y ′1 , Y

′
2 , . . . , Y

′
ν−1]

mod tw(Yν)+1 which does not contain an element of order w(Yν). Suppose then
that µ is positive. To show that H′ does not contain an element of order w(Yν), it
suffices to show that [I ′iµ ] does not contain an element of order w(Yν) − iµ. Let
Iiµ and ∗Iiµ be the sets of elements of order not smaller than iµ of k[Y1, . . . , Yν−1]
and ∗H . The rings

∗H mod tw(Yν), k[Y1, Y2, . . . , Yν−1] mod tw(Yν), k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] mod tw(Yν)

being identical, it is the same for the sets (p 271)

[∗Iiµ ] mod tw(Yν)−iµ

Iiµ/Siµ mod tw(Yν)−iµ , I ′iµ/S
′
iµ mod tw(Yν)−iµ ,
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where Siµ is an element of k[Y1, Y2, . . . , Yν−1], such that we have

Siµ ≡ S ′iµ mod tw(Yν).

It follows that we can associate to every element Z ′ of I ′iµ/S
′
iµ an element Z of

Iiµ/Siµ in such a way that we have

Z = Z ′ mod tw(Yν)−iµ .

Let us consider in particular a set of elements Z ′1, Z
′
2, . . . , Z

′
ρ of I ′iµ/S

′
iµ chosen in

the following way:
(1) Z ′1 is an element of smallest positive order in I ′iµ/S

′
iµ ,

(2) Z ′1, Z
′
2, . . . , Z

′
j−1 being chosen, we choose Z ′j in such a way that w(Z ′j) is

the smallest positive element of W (I ′iµ/S
′
iµ) which is not contained in W (k[Z ′1,

Z ′2, . . . , Z
′
j−1]),

(3) w(Z ′ρ) < w(Yν) − iµ + 1 and every element of W (I ′iµ/S
′
iµ) smaller than

w(Yν)− iµ + 1 is contained in W (k[Z ′1, Z
′
2, . . . , Z

′
ρ]).

k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] mod tw(Yν)+1 being distinct thanH′ mod tw(Yν)+1 while

k[Y ′1 , Y
′
2 , . . . , Y

′
ν−1] mod tw(Yν)+1 is identical toH′ mod tw(Yν), the ring k[Y ′1 , Y

′
2 ,

. . . , Y ′ν−1] cannot contain elements of orders w(Yν). It follows that the numbers
w(Z ′1), w(Z ′2), . . . , w(Z ′ρ) are smaller than w(Yν)− iµ.The conditions imposed on
the choice of Z ′1, Z

′
2, . . . , Z

′
ρ implies further the identity of the rings

[I ′iµ ] mod tw(Yν)−iµ+1, k[Z ′1, Z
′
2, . . . , Z

′
ρ] mod tw(Yν)−iµ+1;

It suffices then to show that k[Z ′1, Z
′
2, . . . , Z

′
ρ] does not contain an element of order

w(Yν)− iµ. Now let Z1, Z2, . . . , Zρ be elements of Iiµ/Siµ such that we have

Zj ≡ Z ′j mod tw(Yν)−iµ (j = 1, 2, . . . , ρ).

The canonical closure of k[Y1, Y2, . . . , Yν−1] not containing any element of order
w(Yν), the ring k[Z1, Z2, . . . , Zρ] does not contain any element of order w(Yν)−
iµ. The elements Z1, Z2, . . . , Zρ, Zρ+1 = Yν/Siµ of [∗Iiµ ] and Z ′1, Z

′
2, . . . , Z

′
ρ

fulfill the conditions of the statement of Lemma 6 with respect to the canoni-
cal ring [∗Iiµ ]. The ring k[Z ′1, Z

′
2, . . . , Z

′
ρ] then cannot contain elements of order

w(Zρ+1) = w(Yν)− iµ. �

Let us now consider a set of elements X1, X2, . . . , Xm of ∗H chosen as fol-
lows: X1 is an element of smallest positive order in ∗H; X1, X2, . . . , X`−1 be-
ing chosen, X` is an element of ∗H such that w(X`) is the smallest element of
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W (∗H) which is not contained in W (H`−1), where H`−1
16 is the canonical clo- (p 272)

sure of k[X1, X2, . . . , X`−1]. The elements of W (∗H) being linear combinations
with non-negative integer coefficients of some finite number of elements, the ele-
ments X1, X2, . . . , X`, . . . chosen in this manner can only be finite. A set of such
elements (X1, X2, . . . , Xm) will be called in what follows a base of ∗H .

Theorem 4. (X1, X2, . . . , Xm) being a base of ∗H , the integers

w(X1), w(X2), . . . , w(Xm)

depend on H and they constitute a subset of the characters of H .

Let us first prove the following proposition which will facilitate the proof of
this theorem.

Lemma 8. H` being the canonical closure of k[X1, X2, . . . , X`] where X1, X2,
. . . , Xm is a base of ∗H , one can choose the elements Y1, Y2, . . . , Yν , . . . ofH` sat-
isfying the conditions of the statement of Lemma 6 considered for the ringH` (i.e.
w(Yj) is the smallest element of w(H`) not contained in W (k[Y1, Y2, . . . , Yj−1]))
in such a manner that the sequence Y1, Y2, . . . , Yν , . . . contains the set X1, X2,
. . . , X`.

Proof. For ` = 1, we clearly have H1 = k[X1] and we can set Y1 = X1. Assume
that the proposition is proved for ` and let us prove it for `+ 1. Let Y1, Y2, . . . , Yν
be the elements chosen from H` whose orders are smaller than w(X`+1). The
elements of W (H`) which are smaller than w(X`+1) are then the same as those of
W (k[Y1, Y2, . . . , Yν ]). The smallest element of W (H`+1) not contained in W (H`)
being w(X`+1), set Yν+1 = X`+1, and choose Yν+2, Yν+3, . . . fromH`+1 in accor-
dance with the statement of Lemma 6 with respect toH`+1. The sequence

Y1, Y2, . . . , Yν , Yν+1, . . .

then satisfies forH`+1 the conditions of the statement of the proposition which we
wanted to prove. �

Proof of Theorem 4. Let X1, X2, . . . , Xm and X ′1, X
′
2, . . . , X

′
m′ be two bases

of ∗H . If the integers w(X1), w(X2), . . . , w(Xm) and the integers w(X ′1), w(X ′2),
. . . , w(X ′m) are not the same, then at least one of the integers (w(X1), w(X2), . . . ,
w(Xm), w(X ′1), w(X ′2), . . . , w(X ′m)) does not belong to one of the sets (w(X1),
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w(X2), . . . , w(Xm)), (w(X ′1), w(X ′2), . . . , w(X ′m)). Let w(X ′`+1) be the small-
est of these integers which do not belong to one of these sets, and consider the
canonical closuresH`,H′` of the rings k[X1, X2, . . . , X`], k[X ′1, X

′
2, . . . , X

′
`]. Be-

cause of the way X ′j, Xj are chosen, it follows that the rings H` mod tw(X`+1),
H′` mod tw(X

′
`+1) are respectively identical to the rings ∗H mod tw(X`+1), ∗H

mod tw(X
′
`+1). w(X`+1) being by definition larger than w(X ′`+1), the ring H`

must contain an element of order w(X ′`+1). Now let (Y1, Y2, . . . , Yν , . . . ) be a
set of elements of H` chosen in accordance with the statement of Lemma 8 and (p 273)

let Y1, Y2, . . . , Yν be those elements of this set whose orders are smaller than
w(X ′`+1). The rings

∗H mod tw(X
′
`+1), H` mod tw(X`+1), H′` mod tw(X

′
`+1)

k[Y1, Y2, . . . , Yν ] mod tw(X
′
`+1)

being identical, there exist elements Y ′1 , Y
′
2 , . . . , Y

′
ν ofH′` such that

Y ′j = Yj mod tw(X
′
`+1) (j = 1, 2, . . . , ν).

The canonical closure of k[Y ′1 , Y
′
2 , . . . , Y

′
ν ] which is contained in H′` cannot con-

tain any element of order w(X ′`+1). Therefore the canonical closure of k[Y1, Y2,
. . . , Yν ] which is none other than H` (since the set (Y1, Y2, . . . , Yν) contains the
set (X1, X2, . . . , X`)) does not contain an element of order w(X ′`+1) (Lemma 7).
Therefore w(X`+1) is equal to w(X ′`+1) which contradicts the hypothesis.

That the numbers w(X1), w(X2), . . . , w(Xn) constitutes a subset of the char-
acters of ∗H is established as follows: w(X1) being the smallest element ofW (∗H)
we have w(X1) = χ1. Assume that w(X`) is the smallest of the numbers
w(X1), w(X2), . . . , w(Xn)17 which is not a character of ∗H . w(X`) would then
be contained in the canonical closure of the semigroup generated by the elements
of W (∗H) which are smaller than w(X`). Now the elements of W (∗H) which are
smaller than w(X`) are contained in W (H`−1). We then have w(X`) ∈ W (H`−1)
which contradicts the choices of the Xj . �

In what follows we will call the numbers

w(X1) = ∗χ1, w(X2) = ∗χ2, . . . , w(Xm) = ∗χm

the base characters of ∗H . It follows immediately from the definition of a base of
∗H and from Theorem 4 that every system of elements ∗X1,

∗X2, . . . ,
∗Xm of ∗H
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such that w(∗X1) = ∗χ1, w(∗X2) = ∗χ2, . . . , w(∗Xm) = ∗χm constitutes a base of
∗H .

A set of elements Y1, Y2, . . . , Yν of H is called a system of generators, if ∗H
is the canonical closure of k[Y1 − η1, Y2 − η2, . . . , Yν − ην ] where η1, η2, . . . , ην
denote the constant terms of Y1, Y2, . . . , Yν .

X1, X2, . . . , Xmbeing a base of ∗H , let us consider a set of elements Y1, Y2,
. . . , Ym chosen in the following manner:

Y1 = X1 +X ′1 X ′1 ∈k
Y2 = X2 +X ′2 X ′2 ∈H1

· · · · · · · · · · · · · · · · · ·
Ym = Xm +X ′m X ′m ∈Hm−1

whereHi denotes the canonical closure of k[X1, X2, . . . , Xi]; the elements Y1, Y2, (p 274)

. . . , Ym clearly constitutes a system of generators for ∗H . Conversely every sys-
tem of generators contains a subset chosen in this manner. In fact Y1, Y2, . . . , Yν
being a system of generators for ∗H , denote by η1, η2, . . . , ην the constant terms of
Y1, Y2, . . . , Yν . At least one of the integers w(Y1−η1), w(Y2−η2), . . . , w(Yν−ην)
is then equal to ∗χ1, let’s say w(Y1 − η1) = ∗χ1. We can then set X1 = Y1 − η1.
Since W (H1) contains all the elements of W (∗H) which are smaller than ∗χ2, we
can choose X ′i ∈ H1 in such a way that we have

w(Yi −X ′i) ≥ ∗χ2 (i = 2, 3, . . . , ν).

At least one of the integers w(Yi − X ′i) is equal to ∗χ2; otherwise the canonical
closure of k[X1, Y2 − X ′2, . . . , Yν − X ′ν ] which is by definition is identical to ∗H
does not contain any element of order ∗χ2. Let w(Y2−X ′2) = ∗χ2. We can then set
X2 = Y2 −X ′2 and so on. It follows from these considerations that every system
of generators of ∗H contains at least m elements, m being the number of the base
characters of ∗H; we call this number the dimension of ∗H .

Section 7: ∗H = k + kT1 + kT1T2 + · · ·+ k[T ]T1T2 · · ·TN−1 being a canonical
ring, the characters, as well as the base characters, for the rings

[Iih ] = ∗Hh = k + kTh+1 + · · ·+ k[T ]Th+1Th+2 · · ·TN−1

are invariants of ∗H . The characters of ∗Hh are clearly determined by those of ∗H .
But it is not so for the base characters of ∗Hh.
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Consider for example the rings

∗H = k + kt4ν(1 + t) + kt6ν(1 + t) + kt7ν(1 + t) + k[t]t8ν ,
∗H ′ = k + kt4ν + kt6ν(1 + t) + kt7ν(1 + t) + k[t]t8ν .

}
(ν > 1)

It can easily be checked that these two rings are canonical and that their characters
which are also those of the semigroup

W (∗H) = W (∗H ′) = {0, 4ν, 6ν, 7ν, 8ν + 1, 8ν + 2, 8ν + 3, . . . }

are the same. These characters are clearly 4ν, 6ν, 7ν, 8ν+ 1. Let us now construct
a base for ∗H: We can clearly set X1 = t4ν(1 + t); k[X1] is a canonical ring and
the smallest element of W (∗H) not contained in W (k[X1]) is 6ν; we can then set
X2 = t6ν(1 + t). The canonical closure of k[X1, X2] is

k[X1, X2] = k + kt4ν(1 + t) + kt6ν(1 + t) + k[t]t8ν .

We can then choose X3 = t7ν(1 + t) as the third element of the base of ∗H . The
canonical closure of k[X1, X2, X3] then being equal to ∗H , the base characters of (p 275)
∗H are 4ν, 6ν, 7ν. In a similar manner, we observe that the elements X ′1 = t4ν ,
X ′2 = t6ν(1 + t), X ′3 = t7ν(1 + t) constitutes a base for ∗H ′. The base characters
of ∗H and ∗H ′ are then the same. Let us now calculate the base characters of the
rings

∗H1 = k + kt2ν + kt3ν + k[t]t4ν ,
∗H ′1 = k + kt2ν(1 + t) + kt3ν(1 + t) + k[t]t4ν .

A base of ∗H1
18 is formed by t2ν , t3ν , t4ν+1, while the elements t2ν(1+t), t3ν(1+t)

form a base of ∗H ′1, since the canonical closure of k[t2ν(1 + t), t3ν(1 + t)] contains
the element

t4ν(1 + t)2 − t2ν(1 + t)

(
t3ν(1 + t)

t2ν(1 + t)

)2

= t4ν+1(1 + t)

whose order is 4ν + 1. The base characters of ∗H1 are then 2ν, 3ν, 4ν + 1 while
those of ∗H ′1 are 2ν, 3ν.

The base characters of the rings [Iih ] = ∗Hh constitute then new invariant
elements for ∗H .

The following considerations allow us to determine successively the base char-
acters of the ∗Hh. Consider an arbitrary element of positive order in ∗H . Let T be
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this element and let (X1, X2, . . . , Xm) be a base of ∗H . Denote by ∗χi the smallest
of the numbers

∗χ1 = w(X1),
∗χ2 = w(X2), . . . ,

∗χm = w(Xm), ∗χm+1 =∞19

such that the canonical closure of k[X1, X2, . . . , Xi−1, T ] contains20 an element
of order ∗χi. The elements T, TX1, TX2, . . . , TXi−1, TXi+1, . . . , TXm constitute
then a base of k + ∗HT which is canonical. In fact

k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm, T ]

being the canonical closure of k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm, T ], the canon-
ical closure of k[T, TX1, . . . , TXi−1, TXi+1, . . . , TXm] clearly contains the ring

k + Tk[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm, T ].

As k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm, T ] contains an element of order ∗χi, we
have

k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm, T ] = ∗H.

The canonical closure of k[T, TX1, . . . , TXi−1, TXi+1, . . . , TXm] is then identi-
cal to

k + T ∗H

which it contains; since the ring k[T, TX1, . . . , TXi−1, TXi+1, . . . , TXm] is itself
contained in k + T ∗H . Then to show that the elements

T, TX1, . . . , TXi−1, TXi+1, . . . , TXm

constitute a base of k+ T ∗H , it suffices to show that the canonical closures of the (p 276)

rings

k[T, TX1, . . . , TXj] (1 ≤ j < i− 1)

k[T, TX1, . . . , TXi−1]

k[T, TX1, . . . , TXi−1, TXi+1, . . . , TXh] (n > h ≥ i+ 1)

do not contain elements of orders, respectively,

w(TXj+1), w(TXi+1), w(TXh+1).
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Now these closures are identical respectively to

k + Tk[X1, X2, . . . , Xj, T ]

k + Tk[X1, X2, . . . , Xi−1, T ]

k + Tk[X1, X2, . . . , Xi−1, Xi+1, . . . , Xh, T ],

where the overline symbol denote always the canonical closure of the correspond-
ing ring. It then suffices to show that the canonical closures of the rings k[X1, . . . ,
Xj, T ], k[X1, . . . , Xi−1, T ], k[X1, . . . , Xi−1, Xi+1, . . . , Xh, T ] do not contain ele-
ments of orders w(Xj+1), w(Xi+1), w(Xh+1), respectively. Now the fact that the
canonical closure of k[X1, . . . , Xj, T ] for j < i− 1 does not contain any element
of order w(Xj+1) follows from the definition of i. If the ring

k[X1, . . . , Xi−1, T ]

contains an element of order w(Xi+1) or the ring

k[X1, . . . , Xi−1, Xi+1, . . . , Xh, T ]

an element of order w(Xh+1), the canonical closure of one of the rings

k[X1, X2, . . . , Xi−1, Xi+2, . . . , Xm, T ],

k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xh, Xh+2, . . . , Xm, T ], for h < m− 1,

k[X1, X2, . . . , Xi−1, Xi+1, . . . , Xm−1, T ], for h = m− 1,

contains a system of elements of orders ∗χ1,
∗χ2, . . . ,

∗χm and as a consequence a
base of ∗H . This implies the existence of a system of generators of ∗H containing
only m−1 elements, contrary to what has been established above (see Section 6).

The base characters of k + T ∗H are then

w(T ), w(T )+∗χ1, w(T )+∗χ2, . . . , w(T )+∗χi−1, w(T )+∗χi+1, . . . , w(T )+∗χm.

As the base characters of k + T ∗H do not depend on the choice of the elements
X1, X2, . . . , Xm, the numbers ∗χi depend only on T and ∗H . We are going to
denote them by ∗χi = ∗χ(T, ∗H).

In a similar manner the characters of k + T ∗H are obtained from those of ∗H (p 277)

by the expressions

w(T ), χ1 + w(T ), χ2 + w(T ), . . . , χ` + w(T ), for w(T ) 6= χ1, χ2, . . . , χ`,
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and

w(T ), χ1+w(T ), . . . , χj−1+w(T ), χj+1+w(T ), . . . , χ`+w(T ), for w(T ) = χj,

where we denote the characters of ∗H by χ1, χ2,· · ·χ`.

In particular in the case when all the characters of ∗H are also its base charac-
ters, all the characters of k+T ∗H are also its base characters ifw(T ) is a character
of ∗H or if χ(T, ∗H) is infinite.

Remark. ρ being an arbitrary element of W (∗H), we can always choose an
element T of order w(T ) = ρ of ∗H , in such a way that χ(T, ∗H) is equal to
one of the numbers ∗χ1,

∗χ2, . . . ,
∗χm,

∗χm+1 =∞ which exceeds ρ, provided that
ρ is different from the numbers ∗χi. Suppose in fact that ρ is distinct from the
numbers ∗χ1 <

∗χ2 < · · · < ∗χm and let ∗χ` be such that we have ∗χ` < ρ < ∗χ`+1.
If X1, X2, . . . , Xm is a base of ∗H , the canonical closure of k[X1, X2, . . . , X`]
contains, by definition elements of orders ρ. Let T ′ be one of these elements, and
set T = T ′ +Xh (with h > `, Xm+1 = 0). For ` ≤ j < h− 1 the sets

k[X1, X2, . . . , Xj, T ] mod t
∗χh , k[X1, X2, . . . , Xj, T ′] mod t

∗χh ,

k[X1, X2, . . . , Xj] mod t
∗χh

being identical, the ring k[X1, X2, . . . , Xj, T ] does not have elements of order
w(Xj+1) = ∗χj+1. For j < `, ρ = w(T ) being greater than ∗χj+1, the sets

k[X1, X2, . . . , Xj] mod t
∗χj+1+1, k[X1, X2, . . . , Xj, T ] mod t

∗χj+1+1

are identical and consequently k[X1, X2, . . . , Xj, T ] does not contain elements of
order w(Xj+1). However the ring

k[X1, X2, . . . , Xh−1, T ],

which contains the element T ′, contains also the element T − T ′ = Xh. We then
have χ(T, ∗H) = ∗χh.

Let us now consider a canonical semigroup

∗G = ∗G0 = {0, ν1, ν1 + ν2, . . . , ν1 + ν2 + · · ·+ νN−1 + Nν} (νN−1 6= ν).

The semigroup
∗GN−1 = Nν
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clearly has only one character which is χ(N−1)
1 = ν. The characters of

∗GN−2 = {0, νN−1 + Nν}

are then, after the rule indicated above,

χ
(N−2)
1 = νN−1, χ

(N−2)
2 = νN−1 + ν.

The characters of ∗GN−3 are obtained from the previous ones according to the (p 278)

same rule:

χ
(N−3)
1 = νN−2, χ

(N−3)
2 = νN−2 + νN−1,

χ
(N−3)
3 = νN−2 + νN−1 + ν,

}
for νN−2 > νN−1 + ν,

χ
(N−3)
1 = νN−2, χ

(N−3)
2 = νN−2 + νN−1, for νN−2 = νN−1 + ν

χ
(N−3)
1 = νN−2, χ

(N−3)
2 = νN−2 + νN−1 + ν, for νN−2 = νN−1.

We obtain successively, by applying always the same rule, the characters

χ
(i)
1 , χ

(i)
2 , . . . , χ

(i)
`i

of all the semigroups ∗Gi = {0, νi+1 +Gi+1}.

Now let

∗̀
N−1 = 1, ∗χ

(N−1)
1 = ν;

∗̀
N−2 = 2, ∗χ

(N−2)
1 = νN−1,

∗χ
(N−2)
2 = νN−1 + ν;

and in general

∗̀
i−1 = ∗̀

i,
∗χ

(i−1)
1 = νi,

∗χ
(i−1)
2 = νi + ∗χ

(i)
1 , . . . ,

∗χ
(i−1)
hi

= νi + ∗χ
(i)
∗hi−1,

∗χ
(i−1)
∗hi+1 = νi + ∗χ

(i)
∗hi+1, . . . ,

∗χ
(i−1)
∗̀
i−1

= νi + ∗χ
(i)
∗̀
i
, for ∗hi ≤ ∗̀ i,

∗̀
i−1 = ∗̀

i + 1, ∗χ
(i−1)
1 = νi,

∗χ
(i−1)
2 = νi + ∗χ

(i)
1 , . . . ,

∗χ
(i−1)
h = νi + ∗χ

(i)
h−1,

∗χ
(i−1)
h+1 = νi + ∗χ

(i)
h , . . . ,

∗χ
(i−1)
∗̀
i−1

= νi + ∗χ
(i)
∗̀
i
, for ∗hi = ∗̀

i + 1,

where ∗hi is any of the positive integers h ≤ ∗̀
i + 1 for which we have νi <

∗χ
(i)
h with ∗χ(i)

∗̀
i+1 = ∞, if νi 6= ∗χ

(i)
1 , . . . ,

∗χ
(i)
∗̀
i
; if not ∗χ(i)

∗hi
is the one among

∗χ
(i)
1 ,
∗χ

(i)
2 , . . . ,

∗χ
(i)
∗̀
i

which is equal to νi.
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It follows immediately from the preceding remarks and the considerations be-
fore them that we can always choose the elements Ti ∈ ∗Hi in such a manner that
the characters and the base characters of the rings

∗HN−1 = k[T ], w(T ) = ν,
∗HN−2 = k + ∗HN−1TN−1, w(TN−1) = νN−1

· · · · · · · · · · · ·
∗Hi−1 = k + ∗HiTi, w(Ti) = νi,

· · · · · · · · · · · ·
∗H = ∗H0 = k + ∗H1T1, w(T1) = ν1

are respectively

The characters The base characters

χ
(N−1)
1 ; ∗χ

(N−1)
1 ;

χ
(N−2)
1 , χ

(N−2)
2 ; ∗χ

(N−2)
1

∗χ
(N−2)
2 ;

· · · · · · · · · · · ·
χ
(i−1)
1 , χ

(i−1)
2 , . . . , χ

(i−1)
`i−1

; ∗χ
(i−1)
1 , ∗χ

(i−1)
2 , . . . , ∗χ

(i−1)
∗̀
i−1;

· · · · · · · · · · · ·
χ
(0)
1 , χ

(0)
2 , . . . , χ

(0)
`0

; ∗χ
(0)
1 , ∗χ

(0)
2 , . . . , ∗χ

(0)
∗̀

0
.

In particular the base characters of ∗H = ∗H0 coincide with its characters if (p 279)

and only if we choose ∗hi = ∗̀
i + 1 every time we had to make a choice; the

dimension of ∗H will then be the greatest of the dimensions of the canonical rings
having the same characters.

Theorem 5. If the base characters

∗χ
(N−1)
1 ; ∗χ

(N−2)
1 , ∗χ

(N−2)
2 ; . . . ; ∗χ

(i−1)
1 , ∗χ

(i−1)
2 , . . . , ∗χ

(i−1)
∗
`i−1

, . . . ; ∗χ
(0)
1 , . . . , ∗χ

(0)
∗
`0

are constructed by setting

∗χ
(j)
∗
hj

= the smallest of the numbers ∗χ(j)
1 , ∗χ

(j)
2 , . . . , ∗χ

(j)
∗
`j+1

which are not less than νj,

the dimension of the ring corresponding to ∗H is the smallest possible among the
dimensions of canonical rings having the same characters.

29



Proof. Let

†χ
(N−1)
1 ; †χ

(N−2)
1 , †χ

(N−2)
2 ; . . . ; †χ

(i−1)
1 , †χ

(i−1)
2 , . . . , †χ

(i−1)
†
`i−1

; . . .

be another system of base characters, obtained from the same numbers νj . We
have to show that we have †̀ i ≥ ∗̀

i (i = N − 1, N − 2, . . . , 0). ν being an
arbitrary integer, denote by ∗̀ i(ν) the number of those

∗χ
(i)
1 ,
∗χ

(i)
2 , . . . ,

∗χ
(i)
∗̀
i

which are not smaller than ν. Similarly let †̀ i(ν) be the number of those †χ(i)
1 ,

†χ
(i)
2 , . . . ,

†χ
(i)
†̀
i

which are not smaller than ν. We will prove, at the same time, that
we have

†̀
i(ν)− ∗̀ i(ν) ≤ †̀ i − ∗̀ i.

The equalities

†̀
N−1 = ∗̀

N−1 = 1, †̀
N−2 = ∗̀

N−2 = 2,
†̀
N−1 − ∗̀ N−1 = †̀

N−1(ν)− ∗̀ N−1(ν) = 0,
†̀
N−2 − ∗̀ N−2 = †̀

N−2(ν)− ∗̀ N−2(ν) = 0

being obvious, it suffices to conclude from

†̀
i ≥ ∗̀ i, †̀

i(ν)− ∗̀ i(ν) ≤ †̀ i − ∗̀ i

the inequalities

†̀
i−1 ≥ ∗̀ i−1, †̀

i−1(ν)− ∗̀ i−1(ν) ≤ †̀ i−1 − ∗̀ i−1.

We distinguish the following cases:

(1) †̀ i = ∗̀
i,

†χ
(i)
†hi

is finite;

(2) †̀ i ≥ ∗̀ i, †χ
(i)
†hi

is infinite, ∗χ
(i)
∗hi

is finite;

(3) †̀ i ≥ ∗̀ i, †χ
(i)
†hi

is infinite, ∗χ
(i)
∗hi

is infinite;

(4) †̀ i >
∗̀
i,

†χ
(i)
†hi

is finite, ∗χ
(i)
∗hi

is infinite;

(5) †̀ i >
∗̀
i,

†χ
(i)
†hi

is finite, ∗χ
(i)
∗hi

is finite.;

(1) †χ(i)
†hi

being finite, †̀ i(νi) is not zero. †̀ i(νi) − ∗̀ i(νi) being less than or equal (p 280)
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to †̀ i − ∗̀ i = 0 the number ∗̀ i(νi) is not zero. Then ∗χ(i)
∗hi

is finite. It follows that
we have

†̀
i−1 = †̀

i = ∗̀
i = ∗̀

i−1.

Let us show that we still have

†̀
i−1(ν)− ∗̀ i−1(ν) ≤ †̀ i−1 − ∗̀ i−1 (= 0)

for all ν. According to the recursive formulas

†χ
(i−1)
1 = νi,

†χ
(i−1)
2 = νi + †χ

(i)
1 , . . . ,

†χ
(i−1)
†hi

= νi + †χ
(i)
†hi−1,

†χ
(i−1)
†hi+1

= νi + †χ
(i)
†hi+1

, . . . , †χ
(i−1)
†̀
i−1

= νi + †χ
(i)
†̀
i
,

∗χ
(i−1)
1 = νi,

∗χ
(i−1)
2 = νi + ∗χ

(i)
1 , . . . ,

∗χ
(i−1)
∗hi

= νi + ∗χ
(i)
∗hi−1,

∗χ
(i−1)
∗hi+1 = νi + ∗χ

(i)
∗hi+1, . . . ,

∗χ
(i−1)
∗̀
i−1

= νi + ∗χ
(i)
∗̀
i
;

it is clear that we have

†̀
i−1(ν) = †̀

i, for ν ≤ νi,

†̀
i−1(ν) = †̀

i(ν − νi)− 1, for νi < ν ≤ νi + †χ
(i)
†hi
,

†̀
i−1(ν) = †̀

i(ν − νi), for νi + †χ
(i)
†hi
< ν,

∗̀
i−1(ν) = ∗̀

i, for ν ≤ νi,

∗̀
i−1(ν) = ∗̀

i(ν − νi)− 1, for νi < ν ≤ νi + ∗χ
(i)
∗hi
,

∗̀
i−1(ν) = ∗̀

i(ν − νi), for νi + ∗χ
(i)
∗hi
< ν.

It follows that, for

ν ≤ νi + min(†χ
(i)
†hi
, ∗χ

(i)
∗hi

) and for ν > ν1 + max(†χ
(i)
†hi
, ∗χ

(i)
∗hi

),

we have
†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i(ν − νi)− ∗̀ i(ν − νi) ≤ 0.

If ∗χ(i)
∗hi
< †χ

(i)
†hi

, we have min(∗χ
(i)
∗hi
, †χ

(i)
†hi

) = ∗χ
(i)
∗hi

, max(†χ
(i)
†hi
, ∗χ

(i)
∗hi

) = †χ
(i)
†hi

and

†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i(ν−νi)− ∗̀ i(ν − νi)− 1 < 0

(for νi + ∗χ
(i)
∗hi
< ν ≤ νi + †χ

(i)
†hi

).
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If †χ(i)
†hi
< ∗χ

(i)
∗hi

, νi being less than or equal to †χ(i)
†hi

, there is no number ∗χ(i)
j between

†χ
(i)
†hi

and ∗χ(i)
∗hi

. We then have for νi + †χ
(i)
†hi
< ν ≤ νi + ∗χ

(i)
∗hi

†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i(ν − νi)− ∗̀ i(ν − νi) + 1

= †̀
i(ν − νi)− ∗̀ i(†χ(i)

†hi
) + 1

< †̀ i(
†χ

(i)
†hi

)− ∗̀ i(†χ(i)
†hi

) + 1 ≤ 1.

(2) †̀ i ≥ ∗̀
i,
†χ

(i)
†hi

is infinite ∗χ
(i)
∗hi

is finite. In this case we obviously have
†̀
i−1 = †̀

i + 1, ∗̀ i−1 = ∗̀
i, and therefore †̀ i−1 > ∗̀

i−1. The recurrence formulas (p 281)

which provide the numbers †χ(i−1)
j and ∗χ(i−1)

j leads to others where we have

†̀
i−1(ν) = †̀

i + 1, for ν ≤ νi,
†̀
i−1(ν) = †̀

i(ν − νi), for νi < ν,
∗̀
i−1(ν) = ∗̀

i, for ν ≤ νi,

∗̀
i−1(ν) = ∗̀

i(ν − νi)− 1, for νi < ν ≤ νi + ∗χ
(i)
∗hi
,

∗̀
i−1(ν) = ∗̀

i(ν − νi), for νi + ∗χ
(i)
∗hi
< ν,

from which we easily obtain the inequality

†̀
i−1(ν)− ∗̀ i−1(ν) ≤ †̀ i−1 − ∗̀ i−1 ≤ 1.

(3) For †̀ i ≥ ∗̀
i, †χ

(i)
†hi

infinite, ∗χ(i)
∗hi

infinite, it is clear that we have †̀ i−1 =
†̀
i + 1, ∗̀ i−1 = ∗̀

i + 1 and hence †̀ i−1 ≥ ∗̀
i−1. The recurrence formulas which

give the numbers †χ(i−1)
j , ∗χ

(i−1)
j produce on the other hand

†̀
i−1(ν) = †̀

i + 1, ∗̀
i−1(ν) = ∗̀

i + 1, for ν ≤ νi,
†̀
i−1(ν) = †̀

i(ν − νi), ∗̀
i−1(ν) = ∗̀

i(ν − νi), for νi < ν,

from which we get

†̀
i−1(ν)− ∗̀ i−1(ν) ≤ †̀ i−1 − ∗̀ i−1.

(4) †̀ i > ∗̀ i, †χ
(i)
†hi

finite, ∗χ(i)
∗hi

infinite. We then have

†̀
i−1 = †̀

i,
∗̀
i−1 = `i + 1,
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†̀
i−1(ν) = †̀

i,
∗̀
i−1(ν) = ∗̀

i + 1, for ν ≤ νi,

†̀
i−1(ν) = †̀

i(ν − νi)− 1, ∗̀
i−1(ν) = ∗̀

i(ν − νi), for νi < ν ≤ ν1 + †χ
(i)
†hi
,

†̀
i−1(ν) = †̀

i(ν − νi), ∗̀
i−1(ν) = ∗̀

i(ν − νi), for νi + †χ
(i)
†hi
< ν,

and hence

†̀
i−1 ≥ ∗̀ i−1,
†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i−1 − ∗̀ i−1, for ν ≤ νi,

†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i(ν − νi)− ∗̀ i(ν − νi)− 1, for νi < ν ≤ νi + †χ
(i)
†hi
,

≤ †̀ i−1 − ∗̀ i−1,

†χ
(i)
†hi

being finite but greater than or equal to νi while ∗χ(i)
∗hi

is finite, we have

∗̀
i−1(ν) = ∗̀

i(ν − νi) = 0, for ν ≥ νi + †χ
(i)
†hi
,

and hence

†̀
i−1(ν)− ∗̀ i−1(ν) = †̀

i−1(ν) ≤ †̀ i−1(νi + †χ
(i)
†hi

), for νi + †χ
(i)
†hi
< ν,

≤ †̀ i−1(νi + †χ
(i)
†hi

)− ∗̀ i−1(νi + †χ
(i)
†hi

)

≤ †̀ i−1 − ∗̀ i−1.

(5) †̀ i > ∗̀ i, †χ
(i)
†hi

is finite, †χ(i)
∗hi

is finite. In this case the inequalities (p 282)

†̀
i−1 ≥ ∗̀ i, †̀

i−1(ν)− ∗̀ i−1(ν) ≤ †̀ i−1 − ∗̀ i−1

are obtained from †̀
i ≥ ∗̀ i−1, †̀ i(ν)− ∗̀ i(ν) < †̀ i− ∗̀ i in exactly the same manner

as in the case (1). �

`0 being the number of characters of

∗G = {0, ν1, ν1 + ν2, . . . , ν1 + ν2 + · · ·+ νN−1 + Nν},

∗̀
0 the number of base characters ∗χ(0)

1 , ∗χ
(0)
2 , . . . obtained from ∗G in accordance

with the statement of Theorem 5, we will see that the number of base characters
of a canonical ring †H , such that W (†H) = ∗G, is between ∗̀ 0 and `0. Conversely
one has
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Theorem 6. n being any integer between ∗̀ 0 and `0, there exists a canonical ring
of dimension n whose characters are those of ∗G.

Proof. It suffices to show the existence of a canonical ring of dimension n from
the existence of a canonical ring of dimension n− 1. Suppose then there exists a
system of base characters

†χ
(N−1)
1 ; †χ

(N−2)
1 , †χ

(N−2)
2 ; . . . ; †χ

(0)
1 , †χ

(0)
2 , . . . , †χ

(0)
†
`0

obtained from ∗G following the rules mentioned before and that we have †̀ 0 =

n− 1. The number †̀ 0 being smaller than `0, there exist integers i for which †χ(i)
†hi

is finite without being equal to νi; let µ be the smallest of these integers. We can
assume that the system of base characters

†χ
(N−1)
1 ; †χ

(N−2)
1 , †χ

(N−2)
2 ; . . . ; †χ

(0)
1 , . . . , †χ

(0)
†̀

0

has been chosen among the systems which satisfy the same conditions, in such a
way that µ is largest possible. This being the case, let

†̀ ′
N−1 = †̀

N−1 = 1, †χ ′1
(N−1)

= †χ
(N−1)
1 ,

†̀ ′
N−2 = †̀

N−2 = 2, †χ ′1
(N−2)

= †χ
(N−2)
1 , †χ ′2

(N−2)
= †χ

(N−2)
2 ,

· · · · · · · · · · · ·
†̀ ′
µ = †̀

µ,
†χ ′1

(µ)
= †χ

(µ)
1 , †χ ′2

(µ)
= †χ

(µ)
2 , . . . , †χ′

(µ)
†̀
µ
′ = †χ

(µ)
†̀
µ
′ ,

†̀ ′
µ−1 = †̀

µ−1 + 1, †χ ′1
(µ−1)

= †χ
(µ−1)
1 , †χ ′2

(µ−1)
= †χ

(µ−1)
2 ,

. . . , †χ ′
(µ−1)
†hµ = †χ

(µ−1)
†hµ

,
†χ ′

(µ−1)
†hµ+1 = νµ + †χ

(µ)
†hµ
, †χ ′

(µ−1)
†hµ+2 = †χ

(µ−1)
†hµ+1

, . . .

with †χ′
(µ)
†hµ =∞. The collection †χ ′

(µ−1)
1 , †χ ′

(µ−1)
2 , . . . , †χ ′

(µ−1)
†̀ ′
µ−1

is clearly equal to

the collection †χ
(µ−1)
1 , †χ

(µ−1)
2 , . . . , †χ

(µ−1)
†̀
µ−1

and the number †χ ′
(µ−1)
†hµ+1 = νµ + †χ

(µ)
†hµ

.

The number νµ−1 cannot be equal to †χ ′
(µ−1)
†hµ+1. Because otherwise we would have

†χ
(µ−1)
†hµ−1

=∞, †χ ′(µ−1)†h′µ−1
= †χ ′

(µ−1)
†hµ+1 and the corresponding system

†χ ′1
(µ−2)

= νµ−1,
†χ ′

(µ−2)
2 = †χ ′

(µ−1)
1 + νµ−1, . . .

†χ ′
(µ−2)
†hµ+1 = †χ ′

(µ−1)
†hµ + νµ−1,

†χ ′
(µ−2)
†hµ+2 = †χ ′

(µ−1)
†hµ+2 + νµ−1, . . .
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will be composed of the same numbers as the system (p 283)

†χ
(µ−2)
1 = νµ−1,

†χ
(µ−2)
2 = †χ

(µ−1)
1 + νµ−1, . . . ,

†χ
(µ−2)
†hµ+1

= †χ
(µ−1)
†hµ

+ νµ−1,
†χ

(µ−2)
†hµ+2

= †χ
(µ−1)
†hµ+1

+ νµ−1, . . . .

This then allows us to construct, by letting

†χ ′
(µ−3)

1 = †χ
(µ−3)
1 , . . . , †χ ′

(µ−3)
†̀
µ−3

= †χ
(µ−3)
†̀
µ−3

;

†χ ′
(µ−4)

1 = †χ
(µ−4)
1 , . . . , †χ ′

(µ−4)
†̀
µ−4

= †χ
(µ−4)
†̀
µ−4

;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

†χ ′
(0)

1 = †χ
(0)
1 , . . . , †χ ′

(0)
†̀
0

= †χ
(0)
†̀
0
;

a system of base characters †χ ′
(N−1)

1 ; . . . ; †χ ′
(0)

1 , †χ ′
(0)

2 , . . . , †χ ′
(0)
†̀
0

satisfying the

same conditions as the system †χ
(N−1)
1 ; . . . ; †χ

(0)

1 , †χ
(0)

2 , . . . , †χ
(0)
†̀
0

except that †χ ′
(i)
†h′i

are infinite or equal to νi for i = 1, 2, . . . , µ − 1 and µ. Therefore if †χ ′
(µ′)
†h′
µ′

is the

first of the numbers †χ ′
(i)
†h′i

which is neither infinite nor equal to νµ′ , we would have
µ′ > µ, contrary to the choice of the system

†χ
(N−1)
1 ; †χ

(N−2)
1 , †χ

(N−2)
2 ; . . . ; †χ

(0)

1 , †χ
(0)

2 , . . . , †χ
(0)
†̀
0
.

Thus νµ−1 being different than †χ ′
(µ−1)
†hµ+1 which is the only number among †χ ′

(µ−1)
i

which is not equal to a number †χ(µ−1)
i we can set †χ ′

(µ−1)
†h′µ−1

= †χ
(µ−1)
†hµ−1

and consider
the set

†χ ′
(µ−2)

1 = νµ−1,
†χ ′

(µ−2)
2 = νµ−1 + †χ ′

(µ−1)
1 , . . .

which then is composed of the numbers

†χ
(µ−2)
1 , †χ

(µ−2)
2 , . . . , †χ

(µ−2)
†̀
µ−2

and of †χ ′
(µ−1)
†hµ+1+νµ−1 = †χ

(µ)
†hµ +νµ+νµ−1. Similarly we show that νµ−2 is distinct

than †χ ′
(µ−1)
†hµ+1 + νµ−1; which allows us to set †χ ′

(µ−2)
†h′µ−2

= †χ
(µ−2)
†hµ−2

. Continuing in this
manner we finally construct the system

†χ ′
(0)

1 , †χ ′
(0)

2 , . . . , †χ ′
(0)
†̀
0
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which is composed of
†χ

(0)

1 , †χ
(0)

2 , . . . , †χ
(0)
†̀
0

and the number †χ(µ)
†hµ

+ νµ + νµ−1 + · · ·+ ν1. We then have

†̀ ′
0 = †̀

0 + 1 = n− 1 + 1 = n.

�

The following table shows the systems of base characters which correspond to
the semigroup

∗G = {0, 702,1404, 1620, 1836, 2052, 2106, 2160, 2214, 2268,

2322, 2340, 2358, 2376, 2383, 2390, 2394, 2397 + N};
the first column of the table being at the same time the system of characters of ∗G.

(p 284)1st column 2nd column 3rd column 4th column 5th column
H17 1 1 1 1 1
H16 3 4 3 4 3 4 3 4 3 4
H15 4 7 4 7 4 7 4 7 4 7
H14 7 11 7 11 7 11 7 11 7 11
H13 7 18 7 18 7 18 7 18 7 18
H12 18 25 18 25 18 25 18 25 18 25
H11 18 43 18 43 18 43 18 43 18 43
H10 18 61 18 61 18 61 18 61 18 61

H9 54 72 115 54 72 115 54 72 115 54 72 54 72
H8 54 126 169 54 126 169 54 126 169 54 126 54 126
H7 54 180 223 54 180 223 54 180 223 54 180 54 180
H6 54 234 277 54 234 277 54 234 277 54 234 54 234
H5 54 288 331 54 288 331 54 288 331 54 288 54 288

H4 216 270 504 547 216 270 547 216 270 504 216 270 504 216 270
H3 216 486 720 763 216 486 763 216 486 720 216 486 720 216 486
H2 216 702 936 979 216 702 979 216 702 936 216 702 936 216 702
H1 702 918 1638 1681 702 918 1681 702 918 1638 702 918 1638 702 918
H 702 1620 2340 2383 702 1620 2383 702 1620 2340 702 1620 2340 702 1620

As examples of rings H whose characters are 702, 1620, 2340, 2383 we can
quote the following:

k[t702, t1620, t2340, t2383]

k[t702(1 + t72)3, t1620(1 + t72)7, t2383(1 + t72)9]

k[t702(1 + t115)3, t1620(1 + t115)7, t2340(1 + t115)9]

k[t702(1 + t7)13, t1620(1 + t7)30, t2340(1 + t7)44]

k[t702(1 + t7)13(1 + t79)3, t1620(1 + t7)3(1 + t79)7]
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whose base character sequences are given by the above five columns respectively.

Finally let us point out that the characters of ∗H and the base characters of
∗H, ∗H1, . . . ,

∗HN−1 which are, as we have seen above, are invariants of ∗H , do
not constitute a complete system of invariants. That is to say we can construct
canonical rings ∗H and ∗H ′ which cannot be transformed into each other by a
substitution of the form

t→ t(α0 + α1t+ · · ·+ αnt
n + · · ·), (α0 6= 0)

in such a way that the characters of ∗H and ∗H ′, as well as the base characters of
∗H, ∗H1, . . . ,

∗HN−1 and ∗H ′, ∗H ′1, . . . ,
∗H ′N−1 are equal respectively. For example

let

∗H = k + kt4ν(1 + t) + kt6ν(1 + t) + kt7ν(1 + t) + k[t]t8ν ,
∗H ′ = k + kt4ν(1 + t+ t2) + kt6ν(1 + t+ t2) + kt7ν(1 + t+ t2) + k[t]t8ν

where ν > 2. These rings have the same characters which are

4ν, 6ν, 7ν, 8ν + 1.

Their base characters are also the same: (p 285)

4ν, 6ν, 7ν.

The rings ∗H1,
∗H ′1 both being identical to

k + kt2ν + kt3ν + k[t]t4ν ,

base characters of ∗H ′1,
∗H ′2,

∗H ′3,
∗H ′4 are respectively the same as those of ∗H1,

∗H2,
∗H3,

∗H4. On the other hand there exists no substitution of the form

(α) t→ t(α0 + α1t+ α2t
2 + · · ·)

which transforms ∗H to ∗H ′. In fact such a transformation which maps ∗H to ∗H ′

should map ∗H1 to ∗H ′1, i.e. onto itself. Now assuming that 2ν is not divisible by
the characteristic of k, the substitutions of the form (α), which transform the ring

∗H1 = k + kt2ν + kt3ν + k[t]t4ν
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onto itself, are of the form

t→ t(α0 + ανt
ν + α2νt

2ν + α2ν+1t
2ν+1 + · · ·)

none of which transforms the element

t4ν + t4ν+1

of ∗H to an element of the same order in ∗H ′ which is of the form

ξ0(t
4ν + t4ν+1 + t4ν+2) + ξ1(t

6ν + t6ν+1 + t6ν+2) + · · · .

Section 8:

Let us consider now an algebraic branch passing through the origin and is
defined by

Y1 = Y1(t), Y2 = Y2(t), . . . , Yn = Yn(t),

where Y1(t), Y2(t), . . . , Yn(t) are power series in t, whose constant terms are zero.
Let us consider the ring k[Y1(t), Y2(t), . . . , Yn(t)]. We can assume that this ring
contains all elements whose orders are greater than a sufficiently large number
(Lemma 2).

Theorem 7. ∗H being the canonical closure of of k[Y1(t), Y2(t), . . . , Yn(t)], let
W (∗H) = {0, ν1, ν1+ν2, . . . , ν1+ν2+· · ·+νN−1+N}. The multiplicity sequence
of the successive points of the branch Y1(t), Y2(t), . . . , Yn(t) is

ν1, ν2, . . . , νN−1, 1, 1, . . . .

Proof. Let w(Y1(t)) be the smallest of the numbers

w(Y1(t)), w(Y2(t)), . . . , w(Yn(t)).

The point O = (0, 0, . . . , 0) is then a multiple point of order w(Y1(t)). On the (p 286)

other hand it is clear that w(Y1(t)) = ν1. It suffices then to show that the multi-
plicity sequence of the successive points (t = 0) of the branch∗

Y ′1(t) = Y1(t), Y
′
2(t) =

Y2(t)

Y1(t)
, . . . , Y ′n(t) =

Yn(t)

Y1(t)

∗See P. Du Val, loc. cit. and J. G. Semple, ”Singularities of space algebraic curves”, Proc.
London Math. Soc. (2), 44 (1938), 149-174.
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which is obtained from Y1(t), Y2(t), . . . , Yn(t) by resolving it at the point O, are

ν2, ν3, . . . , νN−1, 1, 1, . . . .

We move the origin of the coordinates to the point t = 0 of the branch Y ′1(t), Y ′2(t),
. . . , Y ′n(t), which then becomes

Y ′1(t)− η1, Y ′2(t)− η2, . . . , Y ′n(t)− ηn

where η1, η2, . . . , ηn denote the constant terms of the series Y ′1(t), Y ′2(t), . . . , Y ′n(t).
Iν1 being the ideal of k[Y1(t), Y2(t), . . . , Yn(t)] formed by its elements of orders
greater than or equal to ν1, it is obvious that

[Iν1 ] = k[Y ′1(t)− η1, Y ′2(t)− η2, . . . , Y ′n(t)− ηn].

Now we know that
∗H = k + Y1(t)[Iν1 ]

and that

W ([Iν1 ]) = {0, ν2, ν2 + ν3, . . . , ν2 + ν3 + · · ·+ νN−1 + N}.

Therefore the origin is a multiple point of order ν2 for the branch

Y ′1(t)− η1, Y ′2(t)− η2, . . . , Y ′n(t)− ηn;

In other words, the smallest of the integers

w(Y ′1(t)− η1), w(Y ′2(t)− η2), . . . , w(Y ′n(t)− ηn)

is ν2. We complete the proof of theorem 7 by repeating this argument several
times21. �

It follows from theorem 3 that the numbers ν1, ν2, . . . , νN−1, . . . are obtained
from the characters of ∗H in exactly the same way that these numbers, considered
as the multiplicities of the branch, are obtained from the characters of Du Val
associated to the branch Y1(t), Y2(t), Y3(t), . . . , Yn(t). Therefore the characters of
Du Val of this branch are the same as those of k[Y1(t), Y2(t), . . . , Yn(t)].

It is obvious that if two branches

Y1(t), Y2(t), . . . , Yn(t); Z1(t), Z2(t), . . . , Zm(t)
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passing through the origin can be transformed one into the other by a birational
transformation which is regular at the origin, then the rings

k[Y1(t), Y2(t), . . . , Yn(t)], k[Z1(t), Z2(t), . . . , Zm(t)]

are the same or, more precisely, can be transformed one into the other by a substi- (p 287)

tution of the form t → t(α0 + α1t + · · ·), (α0 6= 0) and conversely. We then say
that these two branches are regularly equivalent two each other. For two regularly
equivalent branches , the rings

∗H = k[Y1(t), Y2(t), . . . , Yn(t)], ∗H ′ = k[Z1(t), Z2(t), . . . , Zm(t)]

can obviously be transformed among themselves by a substitution of the form
t → t(α0 + α1t + · · ·), (α0 6= 0); but from the identity ∗H = ∗H ′ we cannot
deduce the equality of

k[Y1(t), Y2(t), . . . , Yn(t)], k[Z1(t), Z2(t), . . . , Zm(t)].

We say that the two given branches are canonically equivalent if we have ∗H =
∗H ′. Two regularly equivalent branches are also canonically equivalent without
the converse necessarily being true.The characters of ∗H and the base characters
of ∗H1,

∗H2, . . . ,
∗HN−1 are then invariants of the branch Y1(t), Y2(t), . . . , Yn(t)

for canonical equivalence and consequently for regular equivalence. Let us note
however that the characters and the the base characters of ∗H, ∗H1,

∗H2, . . . ,
∗HN−1

constitute a complete system of invariants neither for canonical equivalence nor
for regular equivalence; since we saw above that these characters and base char-
acters do not suffice to determine ∗H .

The series Y1(t), Y2(t), . . . , Yn(t) clearly constitute a system of generators for
∗H = k[Y1(t), Y2(t), . . . , Yn(t)].

At the end of Section 6 we saw how one can construct the system of generators
of ∗H starting from its base elements. In particular we saw that, m being the
dimension of ∗H , i.e. the number of its base characters, every system of generators
of ∗H containsm elements which constitute themselves a system of generators for
∗H . This is expressed geometrically by saying that if m is the number of base
characters of k[Y1(t), Y2(t), . . . , Yn(t)], then one of the projections of dimension
m of the branch Y1(t), Y2(t), . . . , Yn(t) is canonically equivalent to it while none
of the projections of dimension less thanm is equivalent to Y1(t), Y2(t), . . . , Yn(t).

Istanbul University
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Translation Notes

1Here I will denote the number of the page where this line begins in the original text. (page 1)

2By a power series Arf always means the formal power series throughout this article. (page 1)

3Arf uses numerals to denote sections. For ease of reference I explicitly used the word Section.
(page 1)

4It should be understood throughout the article that we always have 0 = i0 < i1 < i2 < · · ·.
(page 1)

5Arf wrote positive here but he certainly means non-negative. (page 2)

6Arf uses the term Auxiliary Theorem but Lemma seems to be a better choice in English.
(page 2)

7Here Arf wrote Si = · · ·, but that being clearly a typo, I changed it to Si1 = · · · (page 3)

8Arf does not use end-of-proof symbol but I inserted this symbol to enhance readability.
(page 4)

9Canonical rings are now known as Arf rings. (page 7)

10Here Arf uses the Fraktur font G. I use N. (page 8)

11This is now known as the Arf closure. (page 10)

12Arf writes group here but certainly means semigroup. (page 10)

13Here Arf does not say integers but it is implied. (page 13)

14Here “nonzero” is intended but is not written in the original text. (page 18)

15Arf uses H′ here. I useH′. (page 19)

16Arf uses H`−1 here. I useH`−1. (page 21)

17Here Arf uses w(Xm), but w(Xn) is probably more correct. (page 22)

18 Here it is written ∗H ′1 but it is a typo. I wrote ∗H1. (page 24)

19Arf wrote here χm+1 =∞, but it should certainly be ∗χm+1 =∞. (page 25)
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20There was a serious typo here. Instead of “contains”, it should be “does not contain”.
(page 25)

21Here Arf writes ”theorem 5”, but it is clearly a typo. I wrote ”theorem 7”. (page 39)
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