A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
 MIDDLE EAST TECHNICAL UNIVERSITY

BY

NIL ŞAHİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
MATHEMATICS

SINGULARITY THEORY AND ARF RINGS

submitted by NİL ŞAHİN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department, Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mustafa Korkmaz
Head of Department, Mathematics
Assoc. Prof. Dr. Ahmet İrfan Seven
Supervisor, Mathematics Dept., METU
Assoc. Prof. Dr. Feza Arslan
Co-supervisor, Mathematics Dept., Mimar Sinan Fine Arts Univer-
sity

Examining Committee Members:

Prof. Dr. Ali Sinan Sertöz
Mathematics Dept., Bilkent University
Assoc. Prof. Dr. Ahmet İrfan Seven
Mathematics Dept., METU
Prof. Dr. Yıldıray Ozan
Mathematics Dept., METU
Prof. Dr. Mustafa Korkmaz
Mathematics Dept., METU

Prof. Dr. Hurşit Önsiper
Mathematics Dept., METU

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: NiL ŞAHİN

Signature

ABSTRACT
\section*{SINGULARITY THEORY AND ARF RINGS}
Şahin, Nil
Ph.D, Department of Mathematics
Supervisor : Assoc. Prof. Dr. Ahmet İrfan Seven
Co-Supervisor : Assoc. Prof. Dr. Feza Arslan
December 2012, 131 pages

Arf closure of a local ring corresponding to a curve branch, which carries a lot of information about the branch is an important object of study. Though both Arf rings and Arf semigroups are being studied by many mathematicians, there is not an implementable fast algorithm for constructing the Arf closure. The main aim of this thesis is to give an easily implementable fast algorithm to compute the Arf Closure of a given local ring. The speed of the algorithm is a result of the fact that the algorithm avoids computing the semigroup of the local ring. Moreover, in doing this, we give a bound for the conductor of the semigroup of the Arf Closure without computing the Arf Closure by using the theory of plane branches. We also give an exposition of plane algebroid curves and present the SINGULAR library written by us to compute the invariants of plane algebroid curves.

Keywords: Arf Rings, Multiplicity Sequence, Singularity Theory, Arf Closure, Hilbert Series

öZ

TEKİLLík TEORİSí VE ARF HALKALARI

Şahin, Nil
Doktora, Matematik Bölümü
Tez Yöneticisi : Doç. Dr. Ahmet İrfan Seven
Ortak Tez Yöneticisi : Doç. Dr. Feza Arslan
Aralık 2012, 131 sayfa

Bir eğri koluna karşılık gelen lokal halkanın Arf kapanışı, o eğri kolu ile ilgili birçok bilgi taşıyan, önemli bir çalışma objesidir. Arf Halkaları ve yarı grupları birçok matematikçi tarafından çalışılmasına rağmen, Arf kapanışını inşa eden, hızlı bir algoritma bulunmamaktadır. Bu tezin asıl amacı, Arf kapanışını hesaplamak için kolay uygulanabilir bir algoritma vermektir. Algoritmanın hızı, lokal halkanın yarıgrubunu hesaplamadan çalışmasının bir sonucudur. Bunların yanında, Arf kapanışının yarı grubunun kondaktörüne, düzlem eğri kollarının teorisini kullanarak, Arf kapanışını hesaplamadan bir sınır veriyoruz. Düzlem eğri kollarının teorisini açıklayıp, bizim tarafımızdan yazılan ve düzlem eğri kollarının invaryantlarını hesaplayan SINGULAR kütüphanesini tanıtıyoruz.

Anahtar Kelimeler: Arf Halkaları, Çok katlılık Dizisi, Tekillik Teorisi, Arf Kapanışı, Hilbert Serileri

ACKNOWLEDGMENTS

It is a great pleasure for me to thank people who made it possible to write this thesis.

I would like to express my heartfelt thanks to Professor Feza Arslan not only for his guidance about my research and mathematics, but also for his generous help in life. Because of his patience, I had the encourage to ask any questions that I have in my mind. Besides his mathematical intelligence, his humanity have provided a good example for me. One simply could not wish for a better or friendlier supervisor. I would also like to thank Professor Ahmet İrfan Seven and all the members of the department of mathematics of the Middle East Technical University who helped me in my supervisor's absence.

The thesis jury who kindly accepted to report on my work are also acknowledged.

I am deeply grateful to Prof. Dr. Gerhard Pfister for introducing me the library "spacecurve.lib" and helping me to understand it in every step. I have been extremely lucky to have a supervisor like him in Germany who cared so much about my work and who responded my questions patiently.

My sincere thanks also goes to Prof. Dr. Dr.h.c. Gert-Martin Greuel for giving me the opportunity to work with the SINGULAR group and introducing me with Professor Gerhard Pfister.

Completing this thesis with my sanity would definitely be harder without the support of my friends Zeynep, Köksal, Sevtap, Nuray, Hakan, Canan, Dürdane, Nagehan, Arzu and Sidre. I would like to thank all of them for helping me to get through the hard times and for all the fun we had together during these past seven years. I would like to thank Hakan and Köksal in advance for sharing their office with me, providing me a nice working environment and making me smile all the time. I am also grateful to Canan for tutoring me for an exam in the last minute and for all her advices about my future.

I wish to thank Christian Eder and Martin Lee from the mathematics department of Technische Universitat Kaiserslautern for helping me both in SINGULAR and my life in Kaiserslautern.

They have been perfect hosts, office mates and friends. I also thank Petra Basell for her kind and warm friendship. It was very nice to know there were people that I can talk to when I needed help. Without them, it wouldn't be possible for me to get used to living in Germany.

I especially thank my mom, dad and sister for their endless support, unconditional love and care. They have been my best friends and they have a big role in me completing this thesis. I love them so much.

Finally, I want to thank The Scientific and Technological Research Council of Turkey, TUBITAK for supporting me financially both in Turkey and Germany.

TABLE OF CONTENTS

ABSTRACT iv
ÖZ v
ACKNOWLEDGMENTS vii
TABLE OF CONTENTS ix
LIST OF TABLES xii
LIST OF FIGURES xiii
CHAPTERS
1 INTRODUCTION 1
2 THEORETICAL BACKGROUND 4
2.1 Curve Branches 4
2.1.1 Parametrization 5
2.2 Resolution of Singularities 8
2.2.1 Blowing up 8
2.2.1.1 \quad Blowing up of \mathbb{A}^{n} at a point 9
2.2.1.2 Blowing up of a variety at a point 10
2.2.2 Blowing up of a branch 11
2.2.3 Singularity Theory 12
3 PLANE CURVE SINGULARITIES 17
3.1 Plane Curve Branches 17
3.2 Reducible Plane Algebroid Curves 30
4 HAMBURGER NOETHER EXPANSIONS AND MATRICES 39
4.1 Hamburger Noether Expansions Of Plane Curve Branches 39
4.1.1 Intersection Multiplicity, Contact numbers and Hamburger- Noether expansions 46
4.1.2 Characteristic Exponents and Hamburger-Noether expan- sions 47
4.2 Hamburger-Noether Expansions For General Curve Branches 48
4.2.1 Hamburger-Noether Matrices 51
5 ARF THEORY 54
5.1 Notation and Basic Definitions 54
5.2 Arf Rings, Arf Semigroups 56
5.3 Characteristic Semigroup, Arf Characters 58
5.4 Computation of the Arf Closure 59
5.4.1 Computation of the Arf Closure of a Semigroup 59
5.4.2 The modified Jacobian Algorithm 59
5.4.3 Computation of the Arf Closure of a ring 60
5.4.4 Examples 61
5.5 Arf Closure and Hamburger-Noether matrices 64
6 A FAST ALGORITHM FOR COMPUTING THE ARF CLOSURE 68
6.1 Challenges 71
6.2 Solution 75
6.2.1 Conductor of the Arf Closure for the Plane Algebroid Branches 79
6.2.2 A Bound for the Conductor of the Arf Closure for Space Branches 82
7 HILBERT FUNCTIONS OF ARF RINGS 84
7.1 Conjecture 85
8 RESOLUTION AND PARAMETRIZATION OF REDUCIBLE CURVES GIVEN IN CLOSED FORM 89
8.1 Algorithms for the library "spacecurve.lib" 91
8.2 The new library "curvepar.lib" 95
8.3 Timings 96
9 CONCLUSION 98
REFERENCES 100
APPENDICES
A The Singular Library "curvepar.lib" 103
B The Singular Library "ArfClosure.lib" 124
VITA 129

LIST OF TABLES

TABLES

Table 7.1 Rings having the Arf Closure $k\left[\left[t^{4}+t^{6}, t^{9}, t^{10}, t^{11}\right]\right]$. 86
Table 7.2 Rings having the Arf Closure $k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}, t^{13}, t^{15}\right]\right] \ldots \ldots 86$
Table 7.3 Rings having the Arf Closure $k\left[\left[t^{7}, t^{23}, t^{25}, t^{27}, t^{29}, t^{31}, t^{33}\right]\right] \ldots \ldots . .$.
Table 7.4 Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}, t^{34}, t^{35}\right]\right]$. 87
Table 7.5 Rings having the Arf Closure $k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}, t^{22}, t^{23}\right]\right]$. 87
Table 7.6 Rings with Arf Cl. $k\left[\left[t^{14}, t^{21}, t^{30}, t^{32}, t^{34}, t^{36}, t^{37}, t^{38}, t^{39}, t^{40}, t^{41}, t^{43}, t^{45}, t^{47}\right]\right] \quad 87$
Table 7.7 Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{34}, t^{35}\right]\right]$. 88
Table 7.8 Rings having the Arf Closure $k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}, t^{33}, t^{34}, t^{36}, t^{37}, t^{39}\right]\right] \ldots 88$
Table 7.9 Rings with Arf Cl. $k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}, t^{33}, t^{34}, t^{35}, t^{37}, t^{38}, t^{39}, t^{41}, t^{42}\right]\right]$. 88

Table 8.1 Time Comparison . 97

LIST OF FIGURES

FIGURES

Figure 2.1 Nodal cubic 5
Figure 2.2 Blowing up of origin 9
Figure 2.3 Blowing up of the nodal cubic 10

CHAPTER 1

INTRODUCTION

In this thesis, we focus on space curve singularities. The study of singularities goes back to 1918's to Enriques-Chisini [26]. Together with Zariski's studies, singularities of plane curves had been been fully worked out with the theory of characteristic exponents. Du Val in 1942, showed that there are some special numbers, which he calls the characters of the branch. If the modified Jacobian Algorithm is applied to these characters, the multiplicity sequence of the curve branch is obtained [23]. Contrary to the well-known plane case, in which characteristic exponents, multiplicity sequence and characters determine each other, it was not known how to obtain the characters in space case, until Cahit Arf developed his theory [1]. In 1946, Arf showed that the characters of a space branch could be obtained from the completion of the local ring corresponding to the branch by constructing its canonical closure, later known as Arf closure [1]. His method was fully algebraic, but the results were also answering some very important geometric questions, The geometrical aspects of Arf's results were made clear by Du Val in 1949 [24]. Since then, many algebraic geometers and algebraists have worked on Arf rings, Arf closure and the the invariants of the curve singularities [3], [11], [12], [20]. Arf semigroups and their applications in coding theory have been a recent area of interest [7], [9], [14], [22], [35]. In the meantime, Hamburger-Noether expansions developed by Ancochea has been a major tool in the computation of the invariants of the curve singularities [10], [13]. Castellanos has also presented the construction of Arf closure by using Hamburger-Noether matrices [16].

In spite of the fact that many mathematicians are interested in Arf rings and Arf closure, there is not a fast implementable algorithm for the computation of Arf closure in the literature. The only implemented algorithm is given by Arslan [2]. The algorithm uses Arf's method and starts with determining the semigroup of values and the conductor of the branch. Determining
the semigroup of values and the conductor of the branch is a difficult problem, which has been studied by many mathematicians and different algorithms have been given [15], [28]. Noting that the special case of this problem is the famous Fobenius problem (or coin problem) makes it clear, why this problem is difficult, and it is unnecessary to mention that there is a vast literature on the Frobenius problem.

In this thesis, our main aim is to give a fast and easily implementable algorithm for the computation of the Arf closure, which does not need determining the semigroup of values and the conductor of the branch. Our second aim is to give codes in the computer algebra program SINGULAR both for the computation of the Arf closure and the invariants of a plane algebroid curve.

The thesis is organized as follows. In Chapter 2, we give the basic definitions and theory related with a space curve singularity or an algebroid curve. We also recall the necessary theory about the blowing up and desingularization process of the branches. We also explain the singularity theory and characters of curve branches as Du Val did in [23].

In Chapter 3, we focus on plane curve singularities. We consider both reducible and irreducible algebroid curves. This expository chapter contains the multiplicity sequence, characteristic exponents, semigroup of values, Puiseux pairs and resolution graphs of irreducible curve branches. The facts that are presented in this section for plane branches are used strongly in Chapter 6 to give a bound for the conductor of the value semigroup of the Arf closure of the local ring, which is crucial in our proposed fast algorithm. This chapter is also essential for understanding the importance of Arf theory. We also give the definitions of the contact numbers of branches of reducible algebroid curves and the resolution graph of reducible algebroid curves are defined.

Chapter 4 is devoted to the study of Hamburger-Noether expansions. We study the subject in two parts as 2-dimensional and n-dimensional case by using [10] and [13]. First, HamburgerNoether expansions for plane branches and the method of determining the invariants from the Hamburger-Noether expansions are explained. Moreover, obtaining the intersection multiplicity and the contact numbers of two branches from their Hamburger-Noether expansions is presented. Then, Hamburger-Noether expansions for curve branches in n-dimensional case is explained and Hamburger-Noether matrices are defined in the general case. The theory in this chapter is used in Chapter 8, while writing the codes in SINGULAR.

In Chapter 5, we describe Arf theory [1]. Arf rings, Arf semigroups, the computation of the Arf closure and Arf characters are presented with many examples. The construction of Arf closure by using Hamburger-Noether matrices is also presented.

In Chapter 6, we present our ideas and main contributions. We propose a new fast algorithm for constructing the Arf Closure of a local ring without determining the semigroup of values and the conductor. After giving the theoretical framework, explaining why the algorithm works, we give a bound for the conductor of the Arf closure of a local ring. In doing this, we combine the results in Chapter 3 with our results presented in this chapter.

In Chapter 7, we state some results about the Hilbert series of Arf rings and present a conjecture of Arslan and Sertoz about the Hilbert series of Arf rings having the same Arf Closure. We also present a lot of examples obtained by the algorithm given in Chapter 6 that support the conjecture.

In Chapter 8, we describe the SINGULAR library "curvepar.lib" written by us with Gerhard Pfister and Maryna Viazovska [18]. That library computes the resolution graph and the invariants of the branches of an algebroid plane curve. The library computes all the invariants for a reducible algebroid plane curve.

Finally, we conclude the thesis by some remarks and ideas about the future research.

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Curve Branches

Throughout this thesis, our main objects of interest are algebroid curve branches, so we start with its definition.

Definition 2.1.1 A space curve singularity or an algebroid curve is $C=\operatorname{Spec} R$, where (R, \mathfrak{m}, k) is a local ring, complete for the \mathfrak{m}-adic topology, with Krull dimension 1 and having k as a coefficient field $(k \subset R$ and $k \cong R / \mathfrak{m})$. Moreover, if R is also a domain, then C is called an irreducible algebroid curve or an algebroid curve branch, [13].

Definition 2.1.2 Let $C=\operatorname{Spec} R$ be an algebroid curve. The embedding dimension of C is defined to be the $\operatorname{dim}_{\mathrm{k}}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$ and it is denoted by $\operatorname{embdim}(\mathrm{R})$. The embedding dimension of R is also defined to be $\operatorname{embdim}(\mathrm{R})=\operatorname{dim}_{\mathrm{k}}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$.

Theorem 2.1.3 Let $C=\operatorname{Spec} R$ be an algebroid curve. Then the following holds.
(i)[17, Cohen's Structure Theorem] There exists an ideal I in $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with $R \cong k\left[\left[x_{1}, \ldots, x_{n}\right]\right] / I$ and $n=\operatorname{embdim}(\mathrm{R})$.
(ii) There exists prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with $\mathfrak{p}_{i} \not \subset \mathfrak{p}_{j}$ for $i \neq j$ and $I=\bigcap_{i=1}^{s} \mathfrak{p}_{i}$. $\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right.$ are minimal prime ideals. $)$

Thus, we will be working with local rings of the form $k\left[\left[x_{1}, \ldots, x_{n}\right]\right] / I$, and we can reformulate the algebroid curve branch definition as follows.

Definition 2.1.4 The algebroid curve $C=\operatorname{Spec} k\left[\left[x_{1}, \ldots, x_{n}\right]\right] / I$ is called an algebroid curve branch (or an irreducible algebroid curve), if I is a prime ideal in $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.

Example 2.1.5 Consider the nodal cubic curve defined as the zero set of the polynomial $y^{2}-x^{2}(1+x)$. Since we are interested in the behavior around the point $(0,0)$, we work with the algebroid curve $\operatorname{Spec} k[[x, y]] /\left\langle y^{2}-x^{2}(1+x)\right\rangle$. Observing that

$$
\sqrt{1+x}= \pm\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right)
$$

we have

$$
y^{2}-x^{2}(1+x)=\left(y-x-\frac{1}{2} x^{2}+\frac{1}{8} x^{3}-\ldots\right)\left(y+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{3}+\ldots\right)
$$

in the formal power series ring $k[[x, y]]$. Thus, we have two branches $\operatorname{Spec} k[[x, y]] / \mathfrak{p}_{1}$ and Spec $k[[x, y]] / \mathfrak{p}_{2}$, where $\mathfrak{p}_{1}=\left\langle y-x-\frac{1}{2} x^{2}+\frac{1}{8} x^{3}-\ldots\right\rangle$ and $\mathfrak{p}_{2}=\left\langle y+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{3}+\ldots\right\rangle$. This example clarifies, why we work with the completion of the local ring at the singularity. (See Figure 2.1.)

Figure 2.1: Nodal cubic

2.1.1 Parametrization

Let R be the local ring of an algebroid curve branch over an algebraically closed field k. Let us denote the integral closure of the local ring R in its ring of fractions by \bar{R}. Then, $\bar{R} \cong k[[t]]$, i.e. \bar{R} is a discrete valuation ring [10]. As a consequence, there is a natural valuation v_{R} on the elements of \bar{R} induced by this isomorphism. For an arbitrary element r of \bar{R} there exists
an element $f(t)$ of $k[[t]]$ such that $r=f(t)$ and $v_{R}(r)=v(f)$ where v is the natural valuation on $k[[t]]$, which is given by the order at t of the associated series defined below.

Definition 2.1.6 Let f be an element of the power series ring $k[[t]]$. The order of the power series f is defined to be the smallest power appearing in the series f and it is denoted by $\operatorname{ord}(f)$.

Example 2.1.7 Let $f(t)=t^{4}+t^{7}+t^{12}, g(t)=t^{21}+t^{12}+t^{31}$ and $h(t)=1+t^{3}+t^{11}$ be power series in $\mathbb{R}[[t]]$. Then $\operatorname{ord}(f)=4, \operatorname{ord}(g)=12$ and $\operatorname{ord}(h)=0$.

We can now introduce a parameterization of an algebroid curve.

Definition 2.1.8 Let $C=\operatorname{Spec} R$ be an algebroid curve singularity and $\left\{x_{1}, \ldots, x_{N}\right\}$ be the system of generators for the maximal ideal \mathfrak{m} of R, where $N=\operatorname{embdim}(R)$. An algebraic parametrization of C corresponding to $\left\{x_{1}, \ldots, x_{N}\right\}$ is a continuous k-algebra homomorphism

$$
\mathcal{P}: k\left[\left[X_{1}, \ldots, X_{N}\right]\right] \rightarrow k[[t]]
$$

where t is an indeterminate, $\operatorname{im}(\mathcal{P}) \not \subset \mathrm{k}$ and kernel of the map $\varsigma: k\left[\left[X_{1}, \ldots, X_{N}\right]\right] \rightarrow R$, which sends X_{i} to x_{i} is contained in the kernel of P (ς exists by Cohen's Theorem). In other words, an algebraic parametrization is the set of power series $\left\{x_{1}(t), \ldots, x_{N}(t)\right\}$, where each $x_{i}(t)$ is different than 0 and for each f in the kernel of $\varsigma, f\left(x_{1}(t), \ldots, x_{N}(t)\right)=0$.

Note that algebraic parameterizations are not unique for algebroid curves, so we answer the question next, how we distinguish between two parameterizations.

Definition 2.1.9 Let \mathcal{P} and \mathcal{P}^{\prime} be two parameterizations of the algebroid curve C. The parametrization \mathcal{P} is said to be derived from \mathcal{P}^{\prime} if there exists a power series $f(T) \in k[[T]]$ of positive order such that \mathcal{P} is given by $\left\{x_{1}(f(T)), \ldots, x_{N}(f(T))\right\}$, where the parametrization \mathcal{P}^{\prime} is given by $\left\{x_{1}(t), \ldots, x_{N}(t)\right\}$. In this case, we say $\mathcal{P}^{\prime}<\mathcal{P}$.

Proposition 2.1.10 The relation < is a partial order on the class of algebraic parameterizations of C.

Definition 2.1.11 Two parameterizations \mathcal{P} and \mathcal{P}^{\prime} is said to be equivalent, if $\mathcal{P}^{\prime}<\mathcal{P}$ and $\mathcal{P}<\mathcal{P}^{\prime}$ or equivalently, if they can be derived from each other.

Definition 2.1.12 A parametrization is said to be primitive, if it is minimal in the class of algebraic parameterizations of C up to the equivalence.

Remark 2.1.13 [10, 1.3.11] Let $\left\{x_{1}(t), . ., x_{N}(t)\right\}$ be a primitive parametrization of C. Then any other parametrization in the same basis is obtained by a substitution of type

$$
f(T)=c_{h} T^{h}+c_{h+1} T^{h+1}+\ldots, \quad h>0, \quad c_{i} \in k, \quad c_{h} \neq 0
$$

The new parametrization is primitive if and only if $h=1$.

Proposition 2.1.14 A parametrization given by $\left\{x_{1}(t), . ., x_{N}(t)\right\}$ is primitive if and only if the greatest common divisor of the powers of the terms appearing in series $x_{1}(t), \ldots, x_{N}(t)$ is 1 .

Proof. (\Rightarrow :)

Let \mathcal{P} be a primitive parametrization given by $\left\{x_{1}(t), \ldots, x_{N}(t)\right\}$ and assume that the greatest common divisor of the powers of the terms of $x_{1}(t), \ldots, x_{N}(t)$ is $k \neq 1$, which implies that $x_{i}^{\prime}(t)=x_{i}\left(t^{\frac{1}{k}}\right)$ is again a power series for $i=1, \ldots, N$. Hence, \mathcal{P} is derived from the parametrization given by the series $x_{1}^{\prime}(T), \ldots, x_{N}^{\prime}(T)$ by substituting $T=f(t)=t^{k}$, which contradicts the primitiveness of \mathcal{P}.
$(\Leftarrow:)$

Let the greatest common divisor of the powers of the terms appearing in the series is 1 and assume that the parametrization is not primitive. Then there exists a power series $f(T) \in$ $k[[T]]$ of positive order k, and a primitive parametrization \mathcal{P}^{\prime} such that \mathcal{P} is derived from \mathcal{P}^{\prime} by substituting $f(T)$ and is given by $\left.x_{1}(f(T)), \ldots, x_{N}(f(T))\right)$. This immediately implies that $k=1$ (Otherwise greatest common divisor can not be 1). Then from Remark 2.1.13, \mathcal{P} is also primitive, in other words \mathcal{P} is equivalent to \mathcal{P}^{\prime}.

The next proposition can be considered as a reformulation of the definition of an algebroid branch.

Proposition 2.1.15 [13, Proposition 1.3.1] For an algebroid curve $C=\operatorname{Spec} R$, and fixed set of generators for \mathfrak{m}, there is a bijection between the primitive parameterizations of C and the algebraic branches of C.

We can redefine an algebroid branch as an equivalence class of primitive parameterizations for an algebroid curve.

2.2 Resolution of Singularities

Before giving the definition of the blowing up of an algebroid curve $C=\operatorname{Spec} R$ at its maximal ideal, we give the basic theory of resolution of singularities of a variety. The general idea of the resolution of singularities of a variety V is determining a smooth variety V^{\prime} and a birational map $\phi: V^{\prime} \rightarrow V$ (i.e. ϕ has an inverse defined on the complement of finitely many subvarieties of V). The existence of such maps is first proved by Newton in the case of plane curves over the fields of characteristic 0 . Then Hironaka proved it for the varieties with arbitrary dimensions over the field of 0 characteristics in 1964. For the varieties of positive characteristic, resolution is known for the dimensions 1 (curves), 2 (surfaces) and 3 for the characteristic greater than five [19].

While there may be many nonsingular projective models for the varieties in higher dimensions, this is not the case for the curve singularities. Although there are several methods of proving the existence of resolution of curve singularities [31], they all construct the same nonsingular projective model. Among the ways of constructing the unique nonsingular projective model for the curves, we present the method of blowing up. We blow up the curve until, we obtain a smooth curve.

2.2.1 Blowing up

Blowing up of a variety $V \subset \mathbb{A}^{n}$ in a singular point P can be thought as just replacing the singular point P by a \mathbb{P}^{n-1}, which corresponds to the tangent directions of that point. To define the blowing up, we use Hartshorne's notation [27].

2.2.1.1 Blowing up of \mathbb{A}^{n} at a point

We first explain the notion of blowing up of the point $O=(0, \ldots, 0)$ in \mathbb{A}^{n}. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the affine coordinates in \mathbb{A}^{n} and let $y_{1}, y_{2}, \ldots, y_{n}$ be the homogeneous coordinates in \mathbb{P}^{n-1}. In the product space $\mathbb{A}^{n} \times \mathbb{P}^{n-1}$, the closed subsets are the polynomials in x_{i}, y_{j} which are homogeneous in y_{j}.

The blow up of \mathbb{A}^{n} at the point O is defined to be the closed subset of $\mathbb{A}^{n} \times \mathbb{P}^{n-1}$ defined by the equations $\left\{x_{i} y_{j}-x_{j} y_{i}\right\}$ for $1 \leq i, j \leq n$, and let us denote this by X.

Consider the natural morphism $\pi: X \rightarrow \mathbb{A}^{n}$ defined by the composition of the natural inclu$\operatorname{sion} \iota: X \hookrightarrow \mathbb{A}^{n} \times \mathbb{P}^{n-1}$ and the projection to the first factor from $\mathbb{A}^{n} \times \mathbb{P}^{n-1}$ to \mathbb{A}^{n}.

- For a point P of the affine n -space other than $O, \pi^{-1}(P)$ is a single point.
- $\pi^{-1}(O)=(0, \ldots, 0) \times\left[y_{1}: \ldots: y_{n}\right]$ so $\pi^{-1}(O)$ is isomorphic to \mathbb{P}^{n-1}.
- ϕ gives an isomorphism from $X-\pi^{-1}(O)$ to $\mathbb{A}^{n}-O$.
- The points of $\pi^{-1}(O)$ are in one to one correspondence with the lines of \mathbb{A}^{n} through O.

Definition 2.2.1 The fibre $E=\pi^{-1}(O)$ isomorphic to \mathbb{P}^{n-1} is called the exceptional divisor.

Figure 2.2: Blowing up of origin

2.2.1.2 Blowing up of a variety at a point

Definition 2.2.2 For a variety V of \mathbb{A}^{n} with singularity at the origin, blowing up of V at the origin is the Zariski closure of the inverse image $\pi^{-1}(V-O)$, where $\pi: X \rightarrow \mathbb{A}^{n}$ is the blowing up of \mathbb{A}^{n} at O. The restriction of $\pi: X \rightarrow \mathbb{A}^{n}$ is also denoted by $\pi: \tilde{Y} \rightarrow V$

Similar to the blowing up of \mathbb{A}^{n}, π induces an isomorphism from $\tilde{Y}-\pi^{-1}(O)$ to $Y-O$, that is, π is a birational morphism of Y on to \tilde{Y}.

Blowing up of a variety or \mathbb{A}^{n} at a point $P \neq O$ can be done in the same way, after a linear change of coordinates sending P to O.

Example 2.2.3 Let V be the nodal cubic curve given by the equation $y^{2}=x^{2}(1+x)$ in \mathbb{A}^{2}. It has a singularity at the origin $O=(0,0)$. If we set u, v to be the homogeneous coordinates of \mathbb{P}^{1}, the blow up of \mathbb{A}^{2} at the origin is given by $x v-y u$. Blowing up of the curve is given by this equation together with the equation of the curve. That is, if we look at the blown up curve in the chart $u \neq 0$, we have $y=x v$. Substituting this in the equation of the curve, we get $x^{2}\left(v^{2}-1-x\right)=0$, which says that the blow up has two components. One is $x=0$, which corresponds to the exceptional divisor, and the other is $v^{2}=1+x$. Observe that the two intersects at two points: $(0,0) \times[1:-1]$ and $(0,0) \times[1: 1]$, see Figure 2.3 .

Figure 2.3: Blowing up of the nodal cubic

Example 2.2.4 Let C be the cuspidal cubic with the defining equation $y^{2}=x^{3}$. The blow up
of C in the chart $u \neq 0$ is the smooth curve $v^{2}=x$ and it intersects the exceptional divisor at the point $(0,0) \times[1: 0]$.

Observe that we got a nonsingular curve after blowing up the nodal cubic and the cuspidal cubic curve, but this is not the case for all the curves. That is, we may get a singular curve even after blowing up a singular curve.

Example 2.2.5 Let C be the curve defined by the equation $y^{2}=x^{5}$. First blow up gives the curve $v^{2}=x^{3}$ in the first chart $u \neq 0$. The intersection of the blown up curve with the exceptional divisor is $(0,0) \times[1: 0]$ and the blown up curve is singular there. Relabeling the blown up curve as $y^{2}=x^{3}$ and blowing up again at the point $(0,0)$, we get a smooth curve $y^{2}=x$.

Observe that in the first example, we have started with a node, which has two local components around the point $(0,0)$ (branches), the blown up curve and the exceptional divisor had intersections at two different points. On the other hand, in the second and third examples, we had started with a branch, so that the exceptional divisor and the blown up curve had intersection at exactly one point, namely the singular point of the blown up curve. We can continue blowing up at that point.

Remark 2.2.6 [38] The blow up of an algebroid branch has intersection with exceptional divisor at most one point.

2.2.2 Blowing up of a branch

Let the algebroid curve branch $C=\operatorname{Spec} R$ be given by the parametrization

$$
\left\{x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t), \ldots, x_{n}=\varphi_{n}(t)\right\}
$$

with $\varphi_{1}(t)$ having the smallest order.

The blowing up of C at its maximal ideal is the algebroid branch $C_{1}=\operatorname{Spec} R_{1}$ given by the parametrization

$$
\left\{x_{1}=\varphi_{1}(t), x_{2}=\frac{\varphi_{2}(t)}{\varphi_{1}(t)}, \ldots, x_{n}=\frac{\varphi_{n}(t)}{\varphi_{1}(t)}\right\}
$$

Definition 2.2.7 [13, Remark 1.9.1] The multiplicity of the algebroid curve branch with parametrization $\left\{x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t), \ldots, x_{n}=\varphi_{n}(t)\right\}$ is the minimum of the orders of the series $\varphi_{i}(t)$ for $1 \leq i \leq n$.

Note that the multiplicity of an algebroid curve branch $C=\operatorname{Spec} R$ is also equal to the multiplicity of the local ring R and denoted by $e(R)$.

Example 2.2.8 Let C be the algebroid curve branch given by parametrization $\left\{x_{1}=t^{2}, x_{2}=\right.$ $\left.t^{3}\right\}$, and thus with multiplicity 2 . Note that the local ring $k\left[\left[t^{2}, t^{3}\right]\right]$ is the completion of the localization at the singular point $(0,0)$ of the coordinate ring of the cuspidal cubic. Then the blow up of C is given by the parametrization $\left\{x_{1}=t, x_{2}=t^{2}\right\}$ which has multiplicity 1 .

Remark 2.2.9 [29] Let V be a singular variety over a field of characteristic zero. The singularity can be resolved by applying finitely many blowing ups to V.

2.2.3 Singularity Theory

Let $C=C_{0}$ be a curve branch with singularity of multiplicity $m=m_{0}$ at the origin $O=O_{0}$. Blowing up C_{0} at O_{0}, we get a curve branch C_{1}, the blowing up map $\pi_{1}: C_{1} \rightarrow C_{0}$ and the exceptional divisor $E_{1}=\pi_{1}^{-1}\left(O_{0}\right)$ of the blow up. E_{1} and C_{1} meet at exactly one point, say O_{1}. Let m_{1} be the multiplicity of O_{1}. Now, blowing up C_{1} at O_{1}, we get a curve branch C_{2}, a map $\pi_{2}: C_{2} \rightarrow C_{1}$ and the exceptional divisor $E_{2}=\pi_{2}^{-1}\left(O_{1}\right) . E_{2}$ and C_{2} meet at a point O_{2} with multiplicity m_{2}. Continuing k steps in this way inductively, we get

$$
C_{k} \xrightarrow{\pi_{k}} C_{k-1} \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_{3}} C_{2} \xrightarrow{\pi_{2}} C_{1} \xrightarrow{\pi_{1}} C_{0}
$$

Definition 2.2.10 The sequence of points $\left(O_{0}, O_{1}, \ldots, O_{k}\right)$ is called the infinitely near points of C. The sequence of natural numbers $\left(m_{0}, m_{1}, \ldots, m_{k}\right)$ is called the multiplicity sequence of the curve branch. The sum $m_{0}+m_{1}+\ldots+m_{i}$ is said to be the ith multiplicity sum or the multiplicity sum corresponding to the point O_{i}.

Definition 2.2.11 Two curve branches are said to be equiresoluble or simply equivalent iff they have the same multiplicity sequence.

Our purpose is to classify curve branches up to their multiplicity sequences. In [23], Du Val showed that there are some 'special' numbers, which he called the characters of the curve. By applying the modified Jacobian algorithm to these numbers, we obtain the multiplicity sequence of the curve branch. We first give some necessary definitions to understand the geometric significance of these characters.

Definition 2.2.12 The point O_{i} is said to be proximate to the point O_{j} iff O_{i} is in the proper transform of E_{j} under the morphism $\pi_{i} \circ \pi_{i-1} \circ \cdots \circ \pi_{j+1}$ for $i>j+1$.

Remark 2.2.13 Let $\left(O_{0}, O_{1}, \ldots, O_{k}\right)$ be the infinitely near points of C. Then, O_{i} is proximate to O_{i-1} for any i.

Proposition 2.2.14 [23] Let $\left(O_{0}, O_{1}, \ldots, O_{k}\right)$ be the infinitely near points of C in n space. Then the following hold:

- If O_{i} is proximate to O_{j} and O_{s} with $s<j<i$, then O_{j} is also proximate to O_{s}.
- The number of points that O_{i} is proximate to can not be greater than n.
- The multiplicity of C at O_{i} is equal to the sum of the multiplicities of the points which are proximate to O_{i}.

Definition 2.2.15 The restriction of a point O_{i}, namely $r\left(O_{i}\right)$ is defined to be the number of points to which O_{i} is proximate to.

Definition 2.2.16 A point O_{i} is said to be a leading point iff its restriction is less than the restriction of O_{i+1}.

Definition 2.2.17 The multiplicity sum corresponding to a leading point is called a character of the curve branch.

Example 2.2.18 Consider the irreducible plane curve C defined by $y^{2}-x^{3}=0$.

Blowing up C, we get the curve C_{1} given by $y^{2}-x=0$ and the exceptional divisor E_{1} given with $(0,0) \times[1: v]$.

Now we have a smooth curve but the intersection of C_{1} and E_{1} is not transversal so we continue blowing up till we reach a good resolution. We get the curve C_{2} given by $y=x$ and the exceptional divisor $(0,0) \times[u: 1]$.

Again, intersection of C_{2} is not transversal with the exceptional divisor, blowing up once more, we reach:

So we see that E_{3} intersects E_{1}. This shows that O_{1} is on E_{3}, that is, O_{3} is proximate to O_{1}. We already know that O_{2} is proximate O_{1}. Then $r\left(O_{1}\right)=0, r\left(O_{2}\right)=1$ and $r\left(O_{3}\right)=2$ telling us that O_{1} and O_{2} are leading points. As the multiplicity sequence of the curve branch is $(2,1,1)$, the multiplicity sum corresponding to O_{1} is 2 and the multiplicity sum corresponding to O_{2} is $1+2=3$. So the characters of the curve branch are 2 and 3 .

Example 2.2.19 [21, Example 5.3.7] For the curve C with defining equation $y^{4}-2 x^{3} y^{2}-$ $4 x^{5} y+x^{6}-x^{7}=0$, we can see from [21] that the exceptional divisors look like:

We already know the proximity relations $O_{5} \rightarrow O_{4}, O_{4} \rightarrow O_{3}, O_{3} \rightarrow O_{2}$ and $O_{2} \rightarrow O_{1}$ as every point is proximate to its predecessor. But from the resolution process, we see from the graph that E_{3} intersects E_{1} so O_{3} is also proximate to O_{1} and O_{5} is also proximate to O_{3} as E_{5} intersects E_{3}. These all say that $r\left(O_{1}\right)=0, r\left(O_{2}\right)=1, r\left(O_{3}\right)=2, r\left(O_{4}\right)=1$ and $r\left(O_{5}\right)=2$ and the leading points of the curve branch are O_{1}, O_{2} and O_{4}. It can be shown that the multiplicity sequence of the curve branch is $(4,2,2,1,1)$ so the characters of the curve branch are, $4,4+2=6,4+2+2+1=9$.

Remark 2.2.20 Observe that we can check the proximity relations in Example 2.2.18 and

Example 2.2.19 by the help of Proposition 2.2.14. Indeed, for the Example 2.2.18, we know that the multiplicity sequence is $(2,1,1)$. That is, we have the relations $m_{1}=m_{2}+m_{3}$ and $m_{2}=m_{3}$. Then the last part of Proposition 2.2.14 tells us that O_{3} and O_{2} are proximate to O_{1} and O_{3} is proximate to O_{2}. In the same way, we can see that $m_{1}=m_{2}+m_{3}, m_{2}=m_{3}$, $m_{3}=m_{4}+m_{5}$ and $m_{4}=m_{5}$ for Example 2.2.19. Hence O_{2} and O_{3} are proximate to O_{1}, O_{3} is proximate to O_{2}, O_{4} and O_{5} are proximate to O_{3} and O_{5} is proximate to O_{4} which supports our previous results.

Proposition 2.2.21 If the characters of the curve branch are defined as above, the modified Jacobian algorithm applied to these characters gives the multiplicity sequence of the curve branch.

Example 2.2.22 For the curve branch defined by $y^{2}-x^{3}=0$, we now know that the characters are 2 and 3. Applying the modified jacobian algorithm to the characters, we indeed obtain the the multiplicity sequence $(2,1,1)$. In the same way, for the curve branch defined by $y^{4}-$ $2 x^{3} y^{2}-4 x^{5} y+x^{6}-x^{7}=0$, the characters are 4, 6, 9 and the modified jacobian algorithm applied to these numbers gives $(4,2,2,1,1)$, which is indeed the multiplicity sequence of the branch.

In his paper [23], Du Val explains the modified Jacobian Algorithm and proved the previous statement. However, it was not known how to compute the characters of a space curve branch. In [1], Cahit Arf found the algebraic pattern behind this geometric problem and presented a way to calculate these characters, which will be explained in Chapter 5.

CHAPTER 3

PLANE CURVE SINGULARITIES

In this chapter we give a summary of the results obtained in the study of plane algebroid curves. To understand the significance of Arf's contribution, we must understand the plane algebroid curve case. In the first section, we deal with irreducible plane (algebroid) curves, namely plane (algebroid) curve branches. Certain numbers and graphs which can be obtained from the local ring of an algebroid curve branch are said to be invariants. We introduce the invariants of plane curve branches and the relations between them. The invariants that we are interested in are the semigroup of values, Puiseux pairs, characteristic exponents, multiplicity sequence and resolution graph of the curve branch. We also present the Puiseux expansions and Hamburger-Noether expansions. In the second section, we deal with reducible algebroid plane curves, plane curves with multiple branches. We give the definition of the contact number of the branches of curve and the definition of resolution graph for reducible plane algebroid curves. These two are the invariants of reducible plane curves together with the ones we mention for the plane branches. We introduce the relation between the contact number and the intersection multiplicity of the branches. We also explain the relation between the contact numbers together with the resolution graph of branches and resolution graph of reducible plane curve. For most of the definitions and theorems, we follow [21].

3.1 Plane Curve Branches

In this section, we work with irreducible algebroid plane curves. The word irreducible here means that the curve does not have multiple branches, it has only one branch. That is, if $f(x, y)=0$ is the defining equation of an algebroid plane curve, f is irreducible in $k[[x, y]]$.

Let R be the local ring of the plane curve branch C and let \bar{R} be the integral closure of R in its ring of fractions. As we have already mentioned in 2.1.1, $\bar{R} \cong k[[t]]$.

Definition 3.1.1 The number $\operatorname{dim}_{k}(\bar{R} / R)$ is called the δ invariant of the branch and it is denoted by $\delta(R)$.

Definition 3.1.2 The set $W(R)=\{\operatorname{ord}(r) \mid r \in R\}$ consisting of the orders of the elements of R is called the semigroup of values or semigroup of orders of R.

Theorem 3.1.3 [21, Lemma 5.2.2] The δ invariant is equal to the number of gaps in the semigroup of values of R. That is, $\delta(R)$ is equal to the cardinality of the set $\mathbb{N}-W(R)$.

Definition 3.1.4 The number $\min \{h \in W(R) \mid h+\mathbb{N} \subset W(R)\}$ is called the conductor of the semigroup of values of R.

Theorem 3.1.5 (Gorenstein)[21, Theorem 5.2.4] Let c be the conductor of the semigroup of values of R. Then $c=2 \delta(R)$.

Remark 3.1.6 Note that this is true for plane algebroid curves. In general, for a space curve branch, $c \leq 2 \delta(R)$ [15]. For the curve branches with symmetric semigroup of values, $c=2 \delta(R)$.

Remark 3.1.7 [40, Theorem 2.1.1] Let C be a plane curve branch given by the primitive parametrization $x(t), y(t) \in k[[t]]$. With a coordinate change and interchanging x and y if necessary, we can assume that the parametrization is of Puiseux type. That is $x(t)=t^{n}$ and $y(t)=\sum a_{i} t^{i}$ with $\operatorname{ord}(y(t)) \geq n$ and $a_{i} \in k$.

Let C be a plane curve branch given in Puiseux form $x(t)=t^{n}$ and $y(t)=\sum a_{i} t^{i}$ with $n \leq$ $\operatorname{ord}(y(t))$. Let β_{0} be n and consider the powers of the terms appearing in the power series $y(t)$. Let β_{1} be the smallest power that is not divisible by n and let e_{1} be the greatest common divisor of β_{0} and β_{1}. Then define inductively β_{i} to be the smallest power for which $\operatorname{gcd}\left(\beta_{0}, \beta_{1}, \ldots, \beta_{i}\right)<$ $\operatorname{gcd}\left(\beta_{0}, \beta_{1}, \ldots, \beta_{i-1}\right)$ and $e_{i}=\operatorname{gcd}\left(\beta_{0}, \beta_{1}, \ldots, \beta_{i}\right)$. After finitely many steps, we get $e_{q}=1$ for some q and we stop.

Definition 3.1.8 The set $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right\}$ is called the characteristic exponents of the curve branch.

Definition 3.1.9 The number q is called the genus of C.

Example 3.1.10 Let C be a plane curve branch given with the parametrization $x(t)=t^{6}$ and $y(t)=t^{12}+t^{15}+t^{18}+t^{20}$. Then,

$$
\begin{aligned}
& \beta_{0}=6, \\
& \beta_{1}=15, \quad e_{1}=\operatorname{gcd}(6,15)=3 \\
& \beta_{2}=20, \quad e_{2}=\operatorname{gcd}(6,15,20)=1
\end{aligned}
$$

So the characteristic exponents are $\{6,15,20\}$.

Remark 3.1.11 Plane curve branches with only one characteristic exponent $\left\{\beta_{0}=1\right\}$ are smooth.

Theorem 3.1.12 [40, Theorem 3.5.5] Let C be a plane curve branch with local ring R and characteristic exponents $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right\}$ and let R_{1} be the local ring of the blowing-up of C. Then the characteristic exponents of the blown up curve is,
(i) $\left\{\beta_{1}, \beta_{1}-\beta_{0}, \ldots, \beta_{q}-\beta_{0}\right\}$ if $\beta_{1}>2 \beta_{0}$
(ii) $\left\{\beta_{1}-\beta_{0}, \beta_{0}, \beta_{2}-\beta_{1}+\beta_{0}, \ldots, \beta_{q}-\beta_{1}+\beta_{0}\right\}$ if $\beta_{1}<2 \beta_{0}$ and $\beta_{1}-\beta_{0}$ does not divide β_{0}
(iii) $\left\{\beta_{1}-\beta_{0}, \beta_{2}-\beta_{1}+\beta_{0}, \ldots, \beta_{q}-\beta_{1}+\beta_{0}\right\}$ if $\beta_{1}<2 \beta_{0}$ and $\beta_{1}-\beta_{0}$ divides β_{0}.

Example 3.1.13 Consider the plane curve branch C in Example 3.1.10. According to the Theorem 3.1.12, the plane curve branch C^{\prime}, that is obtained by blowing up C, will have characteristic exponents $(6,9,14)$ as $\beta_{1}=15>2 \beta_{0}=12$ for C.

Indeed, by blowing up C, we see that C^{\prime} is parameterized by $x=t^{6}$, and $y=t^{6}+t^{9}+t^{12}+t^{14}$ by 2.2.2. Now it is easy to see from the definition of characteristic exponents that C^{\prime} has characteristic exponents $(6,9,14)$.

Before explaining the connection of the multiplicity sequence and the characteristic exponents, we need to introduce a notation. Let m and n be two natural numbers with $m>n$. If
the Euclidian algorithm applied to m and n gives:

$$
\begin{array}{ll}
m & =q_{0} n+r_{1} \\
n & =q_{1} r_{1}+r_{2} \\
\ldots & \cdots \\
r_{s-1} & =q_{s} r_{s}
\end{array}
$$

The sequence $\underbrace{n, \ldots, n}_{q_{0} \text { times }}, \underbrace{r_{1}, \ldots, r_{1}}_{q_{1} \text { times }}, \ldots, \underbrace{r_{s}, \ldots, r_{s}}_{q_{s} \text { times }}$ is denoted by $M(n, m)$.
The next lemma expressed in a different way can be found in [10, Lemma 3.3.6], but the proof given belongs to us.

Lemma 3.1.14 Let n and m be two natural numbers, $e=\operatorname{gcd}(n, m)$ and also let d_{i} be the divisors obtained by applying the Euclidian algorithm to n and m. In this case $\sum_{i} d_{i}=n+m-e$

Proof. We prove the lemma by induction on $k=$ the number of different divisors. Without loss of generalization, assume $n<m$.

Let $k=2$.
$\left.\begin{array}{ll|l}n & m & n \\ n & m-n & n \\ \vdots & \vdots & \vdots \\ n & m-k_{1} n & m-k_{1} n \\ \left(k_{1}+1\right) n-m & m-k_{1} n & m-k_{1} n \\ \vdots & \vdots & \vdots \\ n-\left(k_{2}-1\right)\left(m-k_{1} n\right) & m-k_{1} n & m-k_{1} n\end{array}\right\} k_{2}$ times

Here, $k_{1} n<m<\left(k_{1}+1\right) n, n=k_{2}\left(m-k_{1} n\right)$ and $n-\left(k_{2}-1\right)\left(m-k_{1} n\right)=m-k_{1} n=\operatorname{gcd}(n, m)$.
Then the sum of divisors is $k_{1} n+k_{2}\left(m-k_{1} n\right)=k_{1} n+n=n+m-m+k_{1} n=n+m-\operatorname{gcd}(n, m)$.
Now assume we have k different divisors and assume also the claim is true for $\mathrm{k}-1$ different divisors. Then,
$\begin{array}{ll}n & m \\ \vdots & \vdots \\ n & m \\ n & m \\ \vdots & \vdots \\ e & e\end{array}$
n
$\left.\begin{array}{l}\vdots \\ n\end{array}\right\} k_{1}$ times
$\left.\begin{array}{l}m-k_{1} n \\ \vdots \\ e\end{array}\right\} k-1$ different divisors
$m-\left(k_{1}-1\right) n$
$n \quad m-k_{1} n$
$e \quad e$

Here, we have $k_{1} n<m<\left(k_{1}+1\right) n$ and $e=\operatorname{gcd}(n, m)$. Observing that $e=\operatorname{gcd}(n, m-$ $\left.k_{1} n\right)$ also, the sum of the divisors is the summation of $k_{1} n$ and the sum of divisors in the Euclidian algorithm of n and $m-k_{1} n$. From the induction assumption, the sum of divisors in the Euclidian algorithm of n and $m-k_{1} n$ is $n+m-k_{1} n-e$. Thus, the sum of the divisors obtained by applying the Euclidian algorithm to n and m is $k_{1} n+n+m-k_{1} n-d=n+m-e$, which completes the proof.

Now, as a consequence of Theorem 3.1.12, we can state the next theorem, which will be used in the latter chapters.

Theorem 3.1.15 [4] Let C be a plane curve branch with characteristic exponents $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right\}$. Then e_{i} being $\operatorname{gcd}\left(\beta_{0}, \ldots, \beta_{i}\right)$ and q being the smallest number such that $e_{q}=1$, the multiplicity sequence of C is $M\left(\beta_{0}, \beta_{1}\right), M\left(e_{1}, \beta_{2}-\beta_{1}\right), \ldots, M\left(e_{q-1}, \beta_{q}-\beta_{q-1}\right)$.

Example 3.1.16 Let C be the plane curve branch with the parametrization $x=t^{6}$ and $y=$ $t^{12}+t^{15}+t^{18}+t^{20}$. In Example 3.1.10, we have shown that the characteristic exponents are $\{6,15,20\}$. So the multiplicity sequence of the curve branch is $M(6,15), M(\operatorname{gcd}(6,15), 20-$ 15), which gives $6,6,3,3,3,2,1,1$

The following lemma and Lemma 3.1.14 give us the opportunity to prove Corollary 3.1.18 which will also be used in the latter chapters.

Lemma 3.1.17 Let $a_{1}, a_{2}, \ldots, a_{k}$ be natural numbers s.t. $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$. Define $b_{1}=a_{1}, \quad b_{i}=\operatorname{gcd}\left(b_{i-1}, a_{i}\right)=\operatorname{gcd}\left(a_{1}, \ldots, a_{i}\right)(1<i \leq k)$ inductively. Then,

$$
\operatorname{gcd}\left(b_{i-1}, a_{i}-a_{i-1}\right)=b_{i}
$$

Proof. Since $b_{i}=\operatorname{gcd}\left(b_{i-1}, a_{i}\right)$ and $b_{i-1}=\operatorname{gcd}\left(b_{i-2}, a_{i-1}\right)$, we have $b_{i-1}=b_{i} h, a_{i}=b_{i} r$, $a_{i-1}=b_{i-1} p$ and $b_{i-2}=b_{i-1} q$, where $\operatorname{gcd}(h, r)=1$ and $\operatorname{gcd}(p, q)=1$. Then $\operatorname{gcd}\left(b_{i-1}, a_{i}-\right.$ $\left.a_{i-1}\right)=\operatorname{gcd}\left(b_{i} h, b_{i}(r-h p)\right)=b_{i}$ as $\operatorname{gcd}(h, r)=1$

Corollary 3.1.18 Let C be a curve branch with characteristic exponents $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right\}$. Then the sum of the multiplicities appearing in the multiplicity sequence of C is $\beta_{0}+\beta_{q}-1$

Proof. By Lemma 3.1.14, the sum of the multiplicities is $\beta_{0}+\beta_{1}-\operatorname{gcd}\left(\beta_{0}, \beta_{1}\right)+\operatorname{gcd}\left(\beta_{0}, \beta_{1}\right)+$ $\beta_{2}-\beta_{1}+\operatorname{gcd}\left(\operatorname{gcd}\left(\beta_{0}, \beta_{1}\right), \beta_{2}-\beta_{1}\right)+\ldots+\operatorname{gcd}\left(\beta_{1}, \ldots, \beta_{q-1}\right)+\beta_{q}-\beta_{q-1}-1$ and by Lemma 3.1.17, this is equal to $\beta_{0}+\beta_{q}-1$.

Corollary 3.1.19 [40, Theorem 3.5.6] Characteristic exponents of a plane curve branch C determine the multiplicity sequence of C and the multiplicity sequence determines the characteristic exponents.

Let C be a plane curve branch with the characteristic exponents $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right\}$. Let n_{1} and m_{1} be natural numbers such that $\frac{\beta_{1}}{\beta_{0}}=\frac{n_{1}}{m_{1}}$ and $\operatorname{gcd}\left(m_{1}, n_{1}\right)=1$. Similarly for $i=2, \ldots, q$, define the natural numbers n_{i} and m_{i} such that $\frac{\beta_{i}}{\beta_{0}}=\frac{n_{i}}{m_{1} \ldots m_{i}}$ and $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$.

Definition 3.1.20 The pairs $\left\{\left(m_{1}, n_{1}\right), \ldots,\left(m_{q}, n_{q}\right)\right\}$ defined above are called the Puiseux pairs of C.

Remark 3.1.21 [21, Remark 5.2.9] Puiseux pairs determine the characteristic exponents and characteristic exponents determine the Puiseux pairs.

Remark 3.1.22 Characteristic exponents are independent of the chosen parametrization of the curve branch.

Next, we present another method for considering the resolution of the plane curve branch.

Definition 3.1.23 Let C be a plane curve branch with a singularity at the origin and consider the resolution process of C :

$$
C_{k} \xrightarrow{\pi_{k}} C_{k-1} \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_{2}} C_{1} \xrightarrow{\pi_{1}} C
$$

The resolution is said to be a good resolution, if C_{i-1} still has a singular point for $i \leq k$ or C_{i-1} is smooth but the intersection of C_{i-1} with the exceptional divisor E_{i-1} is not transversal. Furthermore C_{k} is smooth and has transversal intersection with the exceptional divisor.

Remark 3.1.24 The multiplicity sequence for a good resolution ends with a sequence of 1 's.

Definition 3.1.25 The weighted graph constructed by associating "•" for each E_{i} and a "*" for C_{k} as vertices, and connecting the vertices if they intersect is called the resolution graph of C. The weight of E_{i} is i in the graph.

Example 3.1.26 Consider the irreducible plane curve C defined by $y^{2}-x^{3}=0$. We already know from Example 2.2.18 that the exceptional divisors look like:

So, the resolution graph of C must be:

Example 3.1.27 [21, Example 5.3.7] For the curve C with defining equation $y^{4}-2 x^{3} y^{2}-$ $4 x^{5} y+x^{6}-x^{7}=0$, the exceptional divisors look like:

So the resolution graph looks like:

Theorem 3.1.28 [21, Theorem 5.3.9] Let C be a plane curve branch. The following data for C determine each other:

1. the Puiseux pairs of C.
2. the characteristic exponents of C.
3. the minimal set of generators for the semigroup of C.
4. the multiplicity sequence of C.
5. the resolution graph

We already know that 1,2,3,4 determine each other, so let us explain the relationship between the characteristic exponents and the resolution graph. For all the proofs and details, see [21].

Let $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{q}\right)$ be the characteristic exponents of a curve branch C and let e_{i} be the greatest common divisor of $\beta_{0}, \beta_{1}, \ldots, \beta_{i}$ for $0 \leq i \leq q$. The multiplicity sequence of C is $M\left(\beta_{0}, \beta_{1}\right)$, $M\left(e_{1}, \beta_{2}-\beta_{1}\right), \ldots, M\left(e_{q-1}, \beta_{q}-\beta_{q-1}\right)$ from Theorem 3.1.15. Here, each Euclidian algorithm forms a layer $S^{(i)}$ of the resolution graph and each different divisor in a Euclidian algorithm corresponds to a building block $S_{j}^{(i)}$ of $S^{(i)}$. To be more precise, consider $M\left(\beta_{0}, \beta_{1}\right)$. It forms the first layer $S^{(1)}$ of the resolution graph:

$$
\begin{array}{ll}
\beta_{1} & =q_{1}^{(1)} \beta_{0}+r_{1}^{(1)} \\
\beta_{0} & =q_{2}^{(1)} r_{1}^{(1)}+r_{2}^{(1)} \\
\ldots & \ldots \\
r_{s_{1}-2}^{(1)} & =q_{s_{1}}^{(1)} e_{1}
\end{array}
$$

Here, we have s_{1} different divisors $\left(\beta_{0}, r_{1}^{(1)}, . ., r_{s_{1}-2}^{(1)}, e_{1}\right)$, so the first layer contains s_{1} building blocks $S_{1}^{(1)}, \ldots, S_{s_{1}}^{(1)}$. For the first division, we have $q_{1}^{(1)}$ as the quotient, so the first building block $S_{1}^{(1)}$ is $\left\{1,2, \ldots, q_{1}^{(1)}\right\}$.

Similarly, since we have $q_{i}^{(1)}$ as a quotient in the i th division $r_{i-2}^{(1)}=q_{i}^{(1)} r_{i-1}^{(1)}+r_{i}^{(1)}, w_{i-1}^{(1)}$ denoting the largest weight on $S_{i-1}^{(1)}, S_{i}^{(1)}$ is:

Observing that $w_{i}^{(1)}=w_{i-1}^{(1)}+q_{i}^{(1)}$, we can start connecting the building blocks of $S^{(1)}$.
If $s_{1}>2$ and $j+2 \leq s_{1}$, we connect the end point of $S_{j}^{(1)}$ with the start point of $S_{j+2}^{(1)}$. Otherwise, we connect the end point of $S_{j}^{(1)}$ with the end point of $S_{j+1}^{(1)}$.
$S_{1}^{(1)}, S_{2}^{(1)}, \ldots, S_{s_{1}}^{(1)}$ connected in this way forms the first layer $S^{(1)}$ of the resolution graph.

Similarly $S^{(i)}$ is formed by the Euclidian algorithm $M\left(e_{i+1}, \beta_{i+2}-\beta_{i+1}\right)$ for $i=2, \ldots, q$.

$$
\begin{aligned}
\beta_{i+2}-\beta_{i+1} & =q_{1}^{(i)} e_{i+1}+r_{1}^{(i)} \\
e_{i+1} & =q_{2}^{(i)} r_{1}^{(i)}+r_{2}^{(i)} \\
\ldots & \cdots \\
r_{s_{i}-2}^{(i)} & =q_{s_{i}}^{(i)} e_{i+1}
\end{aligned}
$$

$S^{(i)}$ will be formed by $S_{1}^{(i)}, S_{2}^{(i)}, \ldots, S_{S_{i}}^{(i)}$ by connecting the end point of $S_{j}^{(i)}$ with the start point of $S_{j+2}^{(i)}$, if $s_{i}>2$ and $j+2 \leq s_{i}$, and the end point of $S_{j}^{(i)}$ with the end point of $S_{j+1}^{(i)}$ otherwise. The smallest weight of $S_{1}^{(i)}$ will be the largest weight of the last building block of $S^{(i-1)}$ plus one. (Note that, the point with the smallest weight is said to be the start point and the point with the largest weight is said to be the end point of $S_{j}^{(i)}$. Here, $S_{j}^{(i)}$ is

The resolution graph of C is formed from $S^{(1)}, \ldots S^{(q)}$ by connecting the end point of $S_{s_{i}}^{(i)}$ with the start point of $S_{1}^{(i+1)}$ if $q_{1}^{(i+1)} \neq 0$. If $q_{1}^{(i+1)}=0$, the connection point depends on s_{i+1}. To be more precise, if $q_{1}^{(i+1)}=0$ and $s_{i+1} \geq 3$, the end point of $S_{s_{i}}^{(i)}$ is being connected with the start point of $S_{3}^{(i+1)}$, if $q_{1}^{(i+1)}=0$ and $s_{i+1}=2$, then $S_{s_{i}}^{(i)}$ is being connected with the end point of $S_{2}^{(i+1)}$.

Example 3.1.29 Let's find the resolution graph of the curve branch given with the equation $y^{2}-x^{3}=0$. Since it can be parameterized as $x=t^{2}, y=t^{3}$, its characteristic exponents are $(2,3)$. This implies that the resolution graph of C will consist of only one layer $S^{(1)}$, which is determined by the Euclidian algorithm $M(2,3)$.

$$
\begin{aligned}
& 3=1 \cdot 2+1 \\
& 2=2 \cdot 1
\end{aligned}
$$

$S_{1}^{(1)}=\{1\}$ as $q_{1}^{(1)}=1$ and $S_{2}^{(1)}=\{2,3\}$ as $q_{2}^{(1)}=2$ and as $s_{1}=2$, we connect the end point of $S_{1}^{(1)}$ with the end point of $S_{2}^{(1)}$. So the resolution graph is

We can check from Example 3.1.26, that our result is the same with that one.

Example 3.1.30 Let C be the curve in Example 3.1.27, defined by $x-4 y-4 x y-x y^{2}-x^{2} y^{2}=0$. It can be shown that its characteristic exponents are $(4,6,7)$. So the resolution graph of C contains two layers, which are determined by $M(4,6)$ and $M(2,1)$ respectively. First, the Euclidian algorithm is

$$
\begin{aligned}
& 6=1 \cdot 4+2 \\
& 4=2 \cdot 2
\end{aligned}
$$

So $S_{1}^{(1)}=\{1\}, S_{2}^{(1)}=\{2,3\}$. We connect the end point of $S_{1}^{(1)}$ with the end point of $S_{2}^{(1)}$ as $s_{1}=2$. The second Euclidian algorithm is

$$
\begin{aligned}
& 1=0 \cdot 2+1 \\
& 2=2 \cdot 1
\end{aligned}
$$

So $S_{1}^{(2)}=\emptyset, S_{2}^{(2)}=\{4,5\}$. As $q_{1}^{(2)}=0$ and $s_{2}=2$, we connect the end point of $S_{2}^{(1)}$ with the end point of $S_{1}^{(2)}$. So the resolution graph of C is

Example 3.1.31 Let C be the curve in Example 3.1.10 with characteristic exponents (6, 9, 20). Let's form the resolution graph of C. The resolution graph consists of two layers $S^{(1)}$ and $S^{(2)}$, which are determined by Euclidian algorithms $M(6,15)$ and $M(3,5)$ respectively. First Euclidian algorithm is

$$
\begin{aligned}
15 & =2 \cdot 6+3 \\
6 & =3 \cdot 2+0
\end{aligned}
$$

which tells us $S_{1}^{(1)}=\{1,2\}$ and $S_{2}^{(1)}=\{3,4\}$. We connect the end point of $S_{1}^{(1)}$ with the end point of $S_{2}^{(1)}$ as $s_{1}=2$. The second Euclidian algorithm is

$$
\begin{aligned}
& 5=1 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& 2=2 \cdot 1+0
\end{aligned}
$$

So the second layer contains $S_{1}^{(2)}=\{5\}, S_{2}^{(2)}=\{6\}$ and $S_{3}^{(2)}=\{7,8\}$. The resolution graph of C is:

Example 3.1.32 Let C be the curve defined by the parametrization $x(t)=t^{28}, y(t)=t^{56}+$ $t^{64}+t^{66}+t^{77}$. Let's find the resolution graph of C. The characteristic exponents of C are $(28,64,66,77)$ so the resolution graph consists of three layers, which are determined by the Euclidian algorithms $M(28,64), M(4,2)$ and $M(2,11)$ respectively. The first Euclidian algorithm gives

$$
\begin{aligned}
64 & =2 \cdot 28+8 \\
28 & =3 \cdot 8+4 \\
8 & =2 \cdot 4+0
\end{aligned}
$$

So the first layer $S^{(1)}$ is determined by $S_{1}^{(1)}=\{1,2\}, S_{2}^{(1)}=\{3,4,5\}$ and $S_{3}^{(1)}=\{6,7\}$.
The second Euclidian algorithm gives

$$
\begin{aligned}
& 2=0 \cdot 4+2 \\
& 4=2 \cdot 2+0
\end{aligned}
$$

So the second layer $S^{(2)}$ is determined by the building blocks $S_{1}^{(2)}=\emptyset$ and $S_{2}^{(2)}=\{8,9\}$.
The last Euclidian algorithm gives

$$
\begin{aligned}
11 & =5 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

The third layer is determined by $S_{2}^{(3)}=\{10,11,12,13,14\}$ and $S_{2}^{(2)}=\{15,16\}$. As a result, the resolution graph is:

Now, we have understood how to obtain the resolution graph from the characteristic exponents. To obtain the characteristic exponents from the resolution graph, we simply start from the first layer of the resolution graph. We group the consecutive weights starting from the last and find the building blocks. Then starting from the last layer and the last building block, we write the Euclidian algorithms by using the $S_{j}^{(i)}$,s.

Example 3.1.33 Let's find the characteristic exponents of the curve branch given by the resolution graph:

There are three layers so there must be three Euclidian algorithms, four characteristic exponents. Starting from the first layer, we see that $S_{1}^{(1)}=\{1\}, S_{2}^{(1)}=\{2,3\}$. Passing to the second layer, observe that the largest weight 3 of the first layer is not connected to the small-
est weight 4 of the second layer. This hints us that $q_{1}^{(2)}=0$ so that $S_{1}^{(2)}=\emptyset$. Continuing on the second layer, $S_{2}^{(2)}=\{4\}$ and $S_{3}^{(2)}=\{5,6\}$. Finally, for the last layer, $S_{2}^{(3)}=\{7,8,9\}$ and $S_{1}^{(3)}=\{10,11\}$. Then, we construct the Euclidian algorithms going backwards. We know that the last greatest common divisor must be 1 in the last Euclidian algorithm. The cardinality 2 of the set $S_{1}^{(3)}$ says that the last step of the last Euclidian algorithm must be $2=2 \cdot 1+0$ (Quotient corresponds to the cardinality of $S_{1}^{(3)}$). This hints us that the remainder is 1 and the divisor is 2 in the previous division. As the cardinality of $S_{2}^{(3)}$ is 3 , division must be $7=3 \cdot 2+1$. We pass to the second layer keeping in mind that the divisor must be 2 and the remainder must be 0 , since we change layers. The cardinality of $S_{3}^{(2)}$ is 2 giving us the division $4=2 \cdot 2+0$. From this division, we keep 4 as the divisor, 2 as the remainder and we use the cardinality 1 as the quotient for the previous division, we get $6=1 \cdot 4+2$. As we have already mentioned, $S_{1}^{(2)}=\emptyset, q_{1}^{(2)}=0$ and division must be $4=0 \cdot 6+4$. Continuing in this manner, it's not hard to see that the divisions corresponding to the first layer are:

$$
\begin{aligned}
& 18=1 \cdot 12+6 \\
& 12=2 \cdot 6+0
\end{aligned}
$$

To sum up, we read the first two characteristic exponents 12 and 18 from the first line of the Euclidian algorithm corresponding to the first layer. Second euclidian algorithm

$$
\begin{aligned}
& 4=0 \cdot 6+4 \\
& 6=1 \cdot 4+2 \\
& 4=2 \cdot 2+0
\end{aligned}
$$

tells us that the third characteristic exponent is $18+4=22$. Finally, last Euclidian algorithm

$$
\begin{aligned}
& 7=3 \cdot 2+1 \\
& 2=2 \cdot 1+0
\end{aligned}
$$

tells us that the fourth characteristic exponent is $22+7=29$. That is, the characteristic exponents of the curve branch with the given resolution graph are $(12,18,22,29)$.

3.2 Reducible Plane Algebroid Curves

We first define the good resolution for reducible plane algebroid curves. Let C be a reducible plane algebroid curve, having the branches $C^{(1)}, C^{(2)}, \ldots, C^{(r)}$, where $r \geq 2$. Consider the resolution process of C.

$$
C_{k} \xrightarrow{\pi_{k}} C_{k-1} \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_{2}} C_{1} \xrightarrow{\pi_{1}} C
$$

with strict transforms $C_{i}=\left(\pi_{1} \circ \pi_{2} \circ \cdots \circ \pi_{i}\right)^{-1}(C-\{0\})$ and exceptional divisors $E_{i}=$ $\left(\pi_{1} \circ \pi_{2} \circ \cdots \circ \pi_{i}\right)^{-1}(0)$.

Definition 3.2.1 [21, Definition 5.4.1] The resolution of C is said to be a good resolution, if all branches of C_{k} are smooth, they do not intersect with each other, they do intersect with only one component of E_{k} and they do intersect with this component transversally.

Definition 3.2.2 The contact number for the branches $C^{(i)}$ and $C^{(j)}$ is defined to be the smallest integer s for which $C_{s}^{(i)} \cap C_{s}^{(j)}=\emptyset$ where $C_{s}^{(i)}$ is the ith branch of C_{s} and $C_{0}^{(i)}:=C^{(i)}$.

Given a reducible algebroid curve, we already know how to form the resolution graph for each of its components. Now, we understand how to do it for the reducible plane algebroid curve without losing the information on the branches.

Definition 3.2.3 The weighted graph constructed by associating a " \bullet "for each component of E_{k} and $a " * "$ for each component of C_{k} as vertices and connecting vertices if the corresponding components intersect is called the resolution graph of the reducible plane algebroid curve C.

Example 3.2.4 [8] Consider the reducible plane algebroid curve C defined by $x\left(x^{2}-y^{3}\right)\left(x^{3}-\right.$ $\left.y^{2}\right)=0$. C has three branches $C^{(1)}, C^{(2)}$ and $C^{(3)}$ defined by $x=0, x^{2}-y^{3}=0$ and $x^{3}-y^{2}=0$ respectively.

Blowing up C, we get the curve C_{1} :

We see that $C_{1}^{(3)}$ and $C_{1}^{(1)}$ are separated in the first blowing up. Hence, contact of the branches $C^{(1)}$ and $C^{(3)}$ is one. Similarly, contact number of the branches $C^{(2)}$ and $C^{(3)}$ is one. On the other hand, observe that the branches $C^{(1)}$ and $C^{(2)}$ are still not separated. We blow up the curve again.

We see that the contact number of the first and second branches is two as they are separated in the second blowing up. But we need to continue blowing up as the intersection of the second and third branches are not transversal with the exceptional divisors.

Now, we have a good resolution and from this resolution, we conclude that the resolution graph of the reducible algebroid curve is:

Observe that the first star corresponds to the branch $C^{(1)}$, the second to $C^{(2)}$ and the third to $C^{(3)}$.

Theorem 3.2.5 [21, Theorem 5.4.5] For a reducible curve C, the following data determine each other:
(i) resolution graph of C
(ii) resolution graph of the branches of C together with the contact numbers.

We explain how the procedure works while passing from the resolution graph of the curve to the resolution graph and the contact numbers of branches and vice versa.

Definition 3.2.6 A point on a resolution graph is called contractible, if it satisfies one of the following:
(1) It is connected to a star and only to another point of lower weight.
(2) It is not connected to a star but connected to only points of lower weight.

Assume we have a reducible curve C and its resolution graph. Let $C^{(1)}, C^{(2)}, \ldots, C^{(r)}$ be the branches of C. We want to find the resolution graph of $C^{(i)}$ and the contact number of $C^{(i)}$ with $C^{(j)}$ for $i \neq j$ and $1 \leq i, j \leq r$. For the resolution graph of C, we start by erasing all *'s, which do not belong to $C^{(i)}$. Then we start erasing points, if they are contractible. We stop when there are no contractible points.

Example 3.2.7 Let C be the curve given by equation $x\left(x^{2}-y^{3}\right)\left(x^{3}-y^{2}\right)=0$ in Example 3.2.4. Let's try to find the resolution graph of the third branch $C^{(3)}$ given by $x^{3}-y^{2}=0$. We know from Example 3.2.4 that the resolution graph of C is:

Erasing the first two stars corresponding to the first two branches, we get:

As 3 on the left hand side is only connected to the points 1 and 2 of lower weights, we erase 3 and get:

Now, the 2 on the left hand side is only connected to the point 1 of lower weight. Hence, we erase it and get:

Now, there is nothing else left to erase. Indeed, we can check from Example 3.1.29 that we have obtained the right resolution graph.

We can now explain the process of finding the contact numbers between the branches from the resolution graph of the reducible algebroid curve. To find the contact number of branches $C^{(i)}$ and $C^{(j)}$, we keep the stars corresponding to $C^{(i)}$ and $C^{(j)}$ and erase all the others. Then we remove the contractible points. We continue till there are no contractible points. Then we pick out the following points from the resolution graph we obtained after erasing stars and contractible points:
(1) The maximal number occurring as weight just once in the last resolution graph.
(2) The weights of the points connected to the stars in the last resolution graph.

Then the contact number is the smallest one among these three points.

Example 3.2.8 Let us find the contact numbers between the branches of the curve C given by $x\left(x^{2}-y^{3}\right)\left(x^{3}-y^{2}\right)=0$ from the resolution graph of C. We already know the resolution graph of C by Example 3.2.4. To find the contact number of $C^{(1)}$ and $C^{(2)}$, we start by erasing the star corresponding to $C^{(3)}$.

Now, 3 is a contractible point. Erasing 3, it is not hard to see that 2 is also contractible, so we erase it too. Hence, we end up with:

The numbers that we pick are 3,2,3 and our contact number is 2 , which is the smallest of these numbers.

To find the contact number of the branches $C^{(1)}$ and $C^{(3)}$, we erase the star corresponding to $C^{(2)}$.

The 3 on the left is contractible, so we erase it.

The 2 on the left is contractible, as it is connected to a star and only to a point of lower weight. Hence, we erase it also.

The numbers to be picked are 3, 1, 3 so the contact number of $C^{(1)}$ and $C^{(3)}$ is one. The contact number for the branches $C^{(2)}$ and $C^{(3)}$ can be found in a similar way.

We now give another example, which shows how we can find the resolution graph of a reducible algebroid curve C, if we know the resolution graphs of the branches of C and their
contact numbers.

Example 3.2.9 Let us again consider the curve $x\left(x^{2}-y^{3}\right)\left(x^{3}-y^{2}\right)=0$ in Example 3.2.4. The resolution graphs of the branches are:

1

Let us glue $C^{(2)}$ with $C^{(3)}$ first. We know that the contact number is one for the chosen branches. In other words, they are separated in the first blowing up.

Now, we glue the resolution graph of $C^{(1)}$ to this resolution graph. For this, we look for the contact numbers of $C^{(1)}$ with the other branches. From Example 3.2.4, we know that the contact number of $C^{(1)}$ and $C^{(2)}$ is 2 , and $C^{(1)}$ and $C^{(3)}$ is 1 . We see that the maximum contact number is achieved with the branch $C^{(2)}$. Hence, we glue $C^{(1)}$ with $C^{(2)}$. As the contact number is 2, we get:

For more complicated examples and the whole explanation of the process, see [21].

We can now state the next theorem summarizing the invariants of reducible plane algebroid curves.

Theorem 3.2.10 [21, Theorem 5.4.7] For a reducible plane algebroid curve C, the following data determine each other:

1. Resolution graph of C
2. Resolution graphs of the branches of C and their contact numbers.
3. Multiplicity sequences of the branches of C and their contact numbers.

The last theorem that we present in this section is the following one, which we use in our codes to compute the contact numbers of the branches.

Theorem 3.2.11 [21, Theorem 5.4.8] Let C and C^{\prime} be two irreducible plane algebroid curves with contact number k. If the multiplicity sequences of the branches are $\left(m_{1}, \ldots, m_{r}\right)$ and $\left(m_{1}^{\prime}, \ldots, m_{s}^{\prime}\right)$ respectively, then taking $m_{i}=1$ if $k>r$ and $m_{i}^{\prime}=1$ if $k>s$, the intersection multiplicity of C and C^{\prime} is:

$$
\sum_{i=1}^{k} m_{i} . m_{i}^{\prime}
$$

Example 3.2.12 Let us find the intersection multiplicity of the irreducible algebroid curves defined by $x=0$ and $x^{2}-y^{3}=0$. We know from Example 3.2.4 that the contact number of the branches is 2 and the multiplicity sequences are (1) and $(2,1,1)$ respectively. Then, from the previous theorem the intersection multiplicity of the branches is: $2 \cdot 1+1 \cdot 1=3$.

CHAPTER 4

HAMBURGER NOETHER EXPANSIONS AND MATRICES

In general, we are interested in curve branches over an algebraically closed field of zero characteristic, but it has to be noted that some of the procedures we use are not valid in the positive characteristic case like the Puiseux expansions. However, Hamburger Noether expansions, which can be used instead of Puiseux expansions work in any characteristic. Moreover, we can actually define Hamburger Noether expansions not only for the plane curve branches. but also for the higher dimensional curve branches. We associate a matrix to a Hamburger Noether expansion and it is also possible to the read the invariants of the curve branch from that matrix. Hamburger Noether expansions can also be used to find the parametrization of a curve branch, if it is given in closed form. In this chapter, we explain how we get Hamburger Noether expansions and matrices from the parametrization of the curve branch and how we determine the invariants from the Hamburger Noether matrices. To understand the process better, we start with the plane case.

4.1 Hamburger Noether Expansions Of Plane Curve Branches

Let C be a plane curve branch given in parametric form $x(t)$ and $y(t)$. Without loss of generality, suppose that the order of $x(t)$ is smaller than the order of $y(t)$. We construct the Hamburger Noether expansion of C by doing successive divisions. Normally, Hamburger Noether expansions can be found for any parametrization regardless of whether they are primitive or not. However, for our future purposes, we explain the procedure only for the primitive parameterizations [10]. Let $(x(t), y(t))$ be a primitive parametrization. Divide y by x and let y_{1} be the power series obtained from this division. If the constant term of y_{1} is a_{01}, then set $y_{1}=: y_{1}-a_{01}$. If $\operatorname{ord}(x) \leq \operatorname{ord}\left(y_{1}\right)$, apply the same procedure by taking y_{1} instead of y till
you get a power series of order less than the order of x. At the end, we get an expression for y as $y=a_{01} x+a_{02} x^{2}+\ldots+a_{0 r} x^{r}+x^{r} z_{1}$ with $\operatorname{ord}\left(z_{1}\right)<\operatorname{ord}(x)$. If $\operatorname{ord}(x)>\operatorname{ord}\left(y_{1}\right)$, we have a similar expression for y as $y=a_{01} x+x z_{1}$ with $\operatorname{ord}\left(z_{1}\right)<\operatorname{ord}(x)\left(z_{1}=y_{1}\right.$ in this case). Now in either case, if $\operatorname{ord}\left(z_{1}\right)=1$, we write x in terms of z_{1} by dividing x by z_{1} and the algorithm stops. Otherwise, we continue in the same manner by taking x as the dividend and z_{1} as the divisor and we get an expression for x as $x=a_{11} z_{1}+a_{12} z_{1}^{2}+\ldots+a_{1 r_{1}} z_{1}^{r_{1}}+z_{1}^{r_{1}} z_{2}$ with $\operatorname{ord}\left(z_{2}\right)<\operatorname{ord}\left(z_{1}\right)$. Again, if $\operatorname{ord}\left(z_{2}\right)=1$, we write z_{1} in terms of z_{2} by dividing z_{1} by z_{2} and the algorithm stops. Otherwise, we continue with z_{1} and z_{2}. But as we have started with a primitive parametrization, after finitely many steps, we get $\operatorname{ord}\left(z_{s}\right)=1$ for some s. Expressing z_{s-1} in terms of z_{s}, and the algorithm stops ([10, Corollary 2.2.6]). Hence, we obtain a set of expressions for the parametrization system $\{x(t), y(t)\}$:

$$
\begin{align*}
y & =a_{01} x+a_{02} x^{2}+\ldots+a_{0 r} x^{r}+x^{r} z_{1} \\
x & =a_{11} z_{1}+a_{12} z_{1}^{2}+\ldots+a_{1 r_{1}} z_{1}^{r_{1}}+z_{1}^{r_{1}} z_{2} \\
\ldots & . . \ldots \tag{4.1}\\
z_{s-1} & =a_{s 1} z_{s}+a_{s 2} z_{s}^{2}+\ldots \ldots .
\end{align*}
$$

where the $a_{i j}$'s are from the coefficient field, z_{j} 's are power series with descending orders, that is $\operatorname{ord}(y)>\operatorname{ord}(x)>\operatorname{ord}\left(z_{1}\right)>\ldots>\operatorname{ord}\left(z_{s}\right)=1$.

Definition 4.1.1 The expressions we have for $\{x(t), y(t)\}$ in 4.1 are called the HamburgerNoether expansion for the curve branch defined by $\{x(t), y(t)\}$. For the sake of simplicity, we simply denote the Hamburger-Noether expansion given in 4.1 by

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}
$$

with $z_{-1}=y, z_{0}=x$ and $0 \leq j \leq r$.

Example 4.1.2 Let C be the curve given by parametrization $x(t)=t^{2}$ and $y(t)=t^{3}$. Let us find the Hamburger-Noether expansion of C. We have $z_{0}=x$ and $z_{-1}=y$ to start with.

$$
y_{1}=\frac{y}{x}=\frac{t^{3}}{t^{2}}=t
$$

The constant term of y_{1} is 0 , so $a_{01}=0$ and $\operatorname{ord}(x)=2>1=\operatorname{ord}\left(y_{1}\right)$. Hence, we have the expression

$$
z_{-1}=z_{0} z_{1}
$$

for z_{-1}, where $z_{1}=t$. We write z_{0} in terms of z_{1} and the algorithm stops, as we have reached an order one element, z_{1}. As $z_{0}=z_{1}{ }^{2}$, the Hamburger-Noether expansion for the parametrization system $\{x(t), y(t)\}$ is.

$$
\begin{aligned}
z_{-1} & =z_{0} z_{1} \\
z_{0} & =z_{1}^{2}
\end{aligned}
$$

We can now give more complicated examples.

Example 4.1.3 Let C be the curve with the parametrization $x(t)=t^{4}+t^{7}$ and $y(t)=t^{10}+$ $2 t^{13}+t^{16}$. Let's find the Hamburger-Noether expansion of C. Dividing y by x, we get

$$
y_{1}=\frac{t^{10}+2 t^{13}+t^{16}}{t^{4}+t^{7}}=t^{6}+t^{9}
$$

$a_{01}=0$ and as $\operatorname{ord}\left(y_{1}\right)=6>4=\operatorname{ord}(x)$, we continue dividing y_{1} by x and get

$$
y_{2}=\frac{y_{1}}{x}=\frac{t^{6}+t^{9}}{t^{4}+t^{7}}=t^{2}
$$

$a_{02}=0$ and $\operatorname{ord}\left(y_{2}\right)=2<4=\operatorname{ord}(x)$. Hence, having the expression

$$
z_{-1}=z_{0}^{2} z_{1}
$$

where $z_{-1}=y, z_{0}=x$ and $z_{1}=t^{2}$, we continue dividing z_{0} by z_{1}.

$$
y_{1}=\frac{z_{0}}{z_{1}}=\frac{t^{4}+t^{7}}{t^{2}}=t^{2}+t^{5}
$$

$a_{11}=0$ and $\operatorname{ord}\left(y_{1}\right)=2=\operatorname{ord}\left(z_{1}\right)$, we continue dividing y_{1} by z_{1}.

$$
y_{2}=\frac{y_{1}}{z_{1}}=\frac{t^{2}+t^{5}}{t^{2}}=1+t^{3}
$$

Hence, $a_{12}=1$ and $y_{2}:=y_{2}-a_{12}=t^{3}$. Thus, $\operatorname{ord}\left(y_{2}\right)=3>\operatorname{ord}\left(z_{1}\right)$, so we continue dividing y_{2} by z_{1}

$$
y_{3}=\frac{y_{2}}{z_{1}}=\frac{t^{3}}{t^{2}}=t
$$

$a_{13}=0$ and as $\operatorname{ord}\left(y_{3}\right)=1<2=\operatorname{ord}\left(z_{1}\right)$, we have

$$
z_{0}=z_{1}^{2}+z_{1}^{3} z_{2}
$$

where $z_{2}=t$. Now, we express z_{1} in terms of z_{2} and the algorithm stops, as $\operatorname{ord}\left(z_{2}\right)=1$. As $z_{1}=z_{2}^{2}$, Hamburger-Noether expansion for the curve branch is:

$$
\begin{aligned}
z_{-1} & =z_{0}^{2} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{3} z_{2} \\
z_{1} & =z_{2}^{2}
\end{aligned}
$$

Example 4.1.4 Let C be the plane curve branch with parametrization $x(t)=t^{4}+t^{7}+t^{10}$ and $y(t)=t^{10}+2 t^{13}+3 t^{16}+2 t^{19}+t^{22}$. Let us find the Hamburger-Noether expansion of C. Dividing y by x, we get

$$
y_{1}=\frac{t^{10}+2 t^{13}+3 t^{16}+2 t^{19}+t^{22}}{t^{4}+t^{7}+t^{10}}=t^{6}+t^{9}+t^{12}
$$

$a_{01}=0$ and as $\operatorname{ord}\left(y_{1}\right)=6>4=\operatorname{ord}(x)$, we continue dividing y_{1} by x and get

$$
y_{2}=\frac{y_{1}}{x}=\frac{t^{6}+t^{9}+t^{12}}{t^{4}+t^{7}+t^{10}}=t^{2}
$$

$a_{02}=0$ and $\operatorname{ord}\left(y_{2}\right)=2<4=\operatorname{ord}(x)$. Hence, having the expression

$$
z_{-1}=z_{0}^{2} z_{1}
$$

where $z_{-1}=y, z_{0}=x$ and $z_{1}=t^{2}$, we continue dividing z_{0} by z_{1}.

$$
y_{1}=\frac{z_{0}}{z_{1}}=\frac{t^{4}+t^{7}+t^{10}}{t^{2}}=t^{2}+t^{5}+t^{8}
$$

$a_{11}=0$ and $\operatorname{ord}\left(y_{1}\right)=2=\operatorname{ord}\left(z_{1}\right)$, we continue dividing y_{1} by z_{1}.

$$
y_{2}=\frac{y_{1}}{z_{1}}=\frac{t^{2}+t^{5}+t^{8}}{t^{2}}=1+t^{3}+t^{6}
$$

Hence, $a_{12}=1$ and $y_{2}:=y_{2}-a_{12}=t^{3}+t^{6} . \operatorname{ord}\left(y_{2}\right)=3>\operatorname{ord}\left(z_{1}\right)$, so we continue dividing y_{2} by z_{1}.

$$
y_{3}=\frac{y_{2}}{z_{1}}=\frac{t^{3}+t^{6}}{t^{2}}=t+t^{4}
$$

$a_{13}=0$ and as $\operatorname{ord}\left(y_{3}\right)=1<2=\operatorname{ord}\left(z_{1}\right)$, we have

$$
z_{0}=z_{1}^{2}+z_{1}^{3} z_{2}
$$

for z_{0} where $z_{2}=t+t^{4}$. Now, we write z_{1} in terms of z_{2} and the algorithm stops $\operatorname{ord}\left(z_{2}\right)=1$. As

$$
z_{1}=z_{2}^{2}+\ldots \ldots .
$$

Hamburger-Noether expansion for the curve branch is:

$$
\begin{aligned}
z_{-1} & =z_{0}^{2} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{3} z_{2} \\
z_{1} & =z_{2}^{2}+\ldots \ldots .
\end{aligned}
$$

The following algorithm for finding the Hamburger-Noether expansion of the curve branch with parametrization $\{x(t), y(t)\}$ can be found in [32]:

```
Algorithm 1 PrimParam-HNE
Input: \((x(t), y(t))\) is a primitive parametrization with \(\operatorname{ord}(x(t))<\operatorname{ord}(y(t))\)
Output: Hamburger Noether expansion \(z_{j-1}=\sum_{i=1}^{h_{j}} a_{j i} z_{j}^{i}+z_{j}^{h_{j}} z_{j+1}, j=1, \ldots, r\)
    \(z_{-1} \leftarrow y, \quad z_{0} \leftarrow x, \quad s \leftarrow 0\)
    \(i \leftarrow 1, \quad y_{0} \leftarrow z_{s-1}\)
    Calculate \(a_{s i} \in k\) and \(y_{i} \in k[[t]]\) with \(\frac{y_{i-1}}{z_{s}}=a_{s i}+y_{i}\) and \(\operatorname{ord}\left(y_{i}\right)>0\)
    if \(a_{s_{i}} \neq 0\) and \(\operatorname{ord}\left(z_{s}\right)=1\) then
        STOP
    end if
    if \(y_{i-1}=0\) then
        \(a_{s j} \leftarrow 0\) for all \(j>i\) and STOP
    end if
    if \(\operatorname{ord}\left(y_{i}\right) \geq \operatorname{ord}\left(z_{s}\right)\) then
        \(i \leftarrow i+1\) and go to 3
    else
        \(i \leftarrow h_{s}\)
    end if
    \(s \leftarrow s+1, \quad z_{s} \leftarrow y_{h_{s-1}}\) and go back to 2.
```

Having understood the algorithm to find the Hamburger-Noether expansions, we can talk about the importance of these expansions. It is actually possible to read the invariants of the curve branch from its Hamburger-Noether expansion. Our aim now is to understand this process.

Proposition 4.1.5 [10, Proposition 2.2.9] Let C be a curve branch with parametrization $\{x(t), y(t)\}$ and Hamburger-Noether expansion

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}
$$

Let C_{1} be the blow-up of C with parametrization $\left\{x, y_{1}\right\}$ where $y_{1}=\frac{y}{x}-a_{01}$. Then the Hamburger-Noether expansion for C_{1} is:
(1) If $r_{0}>1$,

$$
\begin{gathered}
y_{1}=a_{02} x+\ldots+a_{0 r_{0}} x^{r_{0}-1}+x^{r_{0}-1} z_{1} \\
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 1 \leq j \leq s
\end{gathered}
$$

(2) If $r_{0}=1$,

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 1 \leq j \leq s
$$

Example 4.1.6 Let C be the curve branch given with $\left\{t^{4}+t^{7}, t^{10}+2 t^{13}+t^{16}\right\}$. We know that the Hamburger-Noether expansion of C is

$$
\begin{aligned}
z_{-1} & =z_{0}^{2} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{3} z_{2} \\
z_{1} & =z_{2}^{2}
\end{aligned}
$$

from Example 4.1.3. We also know from section 2.2.2 that blowing up of C is given by the parametrization $\left\{t^{4}+t^{7}, t^{6}+t^{9}\right\}$. According to Proposition 4.1.5, as $r_{0}=2>1$, HamburgerNoether expansion of the blown up curve is

$$
\begin{aligned}
z_{-1} & =z_{0} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{3} z_{2} \\
z_{1} & =z_{2}^{2}
\end{aligned}
$$

Indeed, If we find the Hamburger-Noether expansion of C_{1} from the algorithm: $z_{-1}=t^{6}+t^{9}$, $z_{0}=t^{4}+t^{7}, y_{1}=\frac{z_{-1}}{z_{0}}=t^{2}, \operatorname{ord}\left(y_{1}\right)<\operatorname{ord}\left(z_{0}\right)$ so $z_{1}=t^{2}$ and we get $:$

$$
z_{-1}=z_{0} z_{1}
$$

We divide z_{0} by z_{1}, but as z_{0} and z_{1} are the same with the ones in Example 4.1.3, the rest of the algorithm should be the same and we get the expressions

$$
\begin{aligned}
& z_{0}=z_{1}^{2}+z_{1}^{3} z_{2} \\
& z_{1}=z_{2}^{2}
\end{aligned}
$$

Hence, the Hamburger-Noether expansion for C_{1} is:

$$
\begin{aligned}
z_{-1} & =z_{0} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{3} z_{2} \\
z_{1} & =z_{2}^{2}
\end{aligned}
$$

as expected.

Proposition 4.1.7 [10, Proposition 2.2.10] Let C be a curve branch with parametrization $\{x(t), y(t)\}$ and Hamburger-Noether expansion

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}
$$

n_{i} being the order of the power series z_{i} for $0 \leq i \leq s$. Then the multiplicity sequence of C is

$$
\underbrace{n_{0}, \ldots, n_{0}}_{r_{0} \text { times }}, \underbrace{n_{1}, \ldots, n_{1}}_{r_{1} \text { times }}, \ldots, \underbrace{n_{s}, \ldots, n_{s}}_{r_{s} \text { times }}
$$

Example 4.1.8 For the curve branch C defined by $\left\{t^{4}+t^{7}, t^{10}+2 t^{13}+t^{16}\right\}$ in Example 4.1.3,

$$
\begin{array}{ll}
n_{0}=\operatorname{ord}\left(z_{0}\right)=4 & h_{0}=2 \\
n_{1}=\operatorname{ord}\left(z_{1}\right)=2 & h_{1}=3 \\
n_{2}=\operatorname{ord}\left(z_{2}\right)=1 & h_{2}=2
\end{array}
$$

Hence, from Proposition 4.1.7, the multiplicity sequence of C is:

$$
4,4,2,2,2,1,1
$$

Indeed, we know from section 2.2.2 that the blowing up of C gives C_{1} with parametrization $\left(t^{4}+t^{7}, t^{6}+t^{9}\right)$. The multiplicity of the singular point of the branch C_{1} is 4 and the blowing up of C_{1} gives the curve C_{2} with parametrization $\left(t^{2}, t^{4}+t^{7}\right)$. The multiplicity is 2 and the blowing up of C_{2} is C_{3}, defined by $\left(t^{2}, t^{2}+t^{5}\right)$ with singular point of multiplicity $2 . C_{4}$, which is the blowing up of C_{3}, has the parametrization $\left(t^{2}, t^{3}\right)$ and the multiplicity is 2. Finally, C_{4} and C_{5} have parameterizations $\left(t, t^{2}\right),(t, t)$ and singular points have multiplicities 1,1 respectively. Thus, C has multiplicity sequence $4,4,2,2,2,1,1$ indeed.

Corollary 4.1.9 [10, Corollary 2.2.11] Let C and C^{*} be two curve branches with HamburgerNoether expansions

$$
\begin{gathered}
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 0 \leq j \leq s \\
z_{j-1}^{*}=\sum_{i=1}^{r_{j}^{*}} a_{j i}^{*} z_{j}^{* i}+z_{j}^{* r_{j}^{*}} z_{j+1}^{*}, \quad 0 \leq j \leq s^{*}
\end{gathered}
$$

respectively. Then C and C^{*} are equivalent (equiresoluble) iff $s=s^{*}, r_{j}=r_{j}^{*}$ and $n_{j}=n_{j}^{*}$ for $0 \leq j \leq s$.

Example 4.1.10 The curve branches with parameterizations $\left(t^{4}+t^{7}, t^{10}+2 t^{13}+t^{16}\right)$ and $\left(t^{4}+t^{7}+t^{10}, t^{10}+2 t^{13}+3 t^{16}+2 t^{19}+t^{22}\right)$ respectively are equivalent, as it can be checked from their Hamburger-Noether expansions obtained in Examples 4.1.3 and 4.1.4.

4.1.1 Intersection Multiplicity, Contact numbers and Hamburger-Noether expansions

Definition 4.1.11 Let C be a curve branch defined by $(x(t), y(t))$ and let D be another curve, not necessarily irreducible, defined by $g(x, y) \in k[[x, y]]$. The intersection multiplicity of C and D is the order of the power series $g(x(t), y(t))$.

Proposition 4.1.12 [10] Let C and C^{*} be two curve branches with Hamburger-Noether expansions

$$
\begin{gathered}
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 0 \leq j \leq s \\
z_{j-1}^{*}=\sum_{i=1}^{r_{j}^{*}} a_{j i}^{*} z_{j}^{* i}+z_{j}^{* r_{j}^{*}} z_{j+1}^{*}, \quad 0 \leq j \leq s^{*}
\end{gathered}
$$

respectively. Let k be the greatest integer for which $r_{0}=r_{0}^{*}, r_{1}=r_{1}^{*}, \ldots, r_{k-1}=r_{k-1}^{*}$ and $a_{j l}=a_{j l}^{*}$ for $j \leq k-1$ and $l \leq r_{j}$. Let i be the least index such that $a_{k i} \neq a_{k i}^{*}\left(i \leq r_{k}+1\right.$, $\left.i \leq r_{k}^{*}+1\right)$. The integer

$$
N=r_{0}+r_{1}+\ldots+r_{k-1}+i
$$

is equal to the contact number of C and C^{*}.

Example 4.1.13 Let C and C^{*} be two curve branches with Hamburger-Noether expansions

$$
\begin{aligned}
z_{-1} & =z_{0}^{2} z_{1} \\
z_{0} & =z_{1}^{2}+z_{1}^{2} z_{2} \\
z_{1} & =z_{2}^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
z_{-1}^{*} & =z_{0}^{* 2} z_{1}^{*} \\
z_{0}^{*} & =z_{1}^{* 2} z_{2}^{*} \\
z_{1}^{*} & =z_{2}^{* 3}
\end{aligned}
$$

respectively. Then $k=1$ and $i=2$ with the notation of the previous proposition. So the contact number of the branches C and C^{*} is

$$
r_{0}+i=2+2=4
$$

Remark 4.1.14 Knowing the contact numbers and multiplicity sequences from the HamburgerNoether expansions, the intersection multiplicity of the curve branches can be found by Theorem 3.2.11

Example 4.1.15 For the curve branches in Example 4.1.13, it is not hard to show that the multiplicity sequences are $(6,6,3,3,1,1,1)$ and $(7,7,3,3,1,1,1)$ respectively. Hence, the intersection multiplicity of the curve branches is $6 \cdot 7+6 \cdot 7+3 \cdot 3+3 \cdot 3=102$. Indeed, it is not hard to show that $\left(t^{6}+t^{7}, t^{15}+2 t^{16}+t^{17}\right)$ is the parametrization of C and $x^{17}-y^{7}=0$ is the defining equation of C^{*}. We can also check from Definition 4.1.11 that the intersection multiplicity is 102 as the order of the polynomial $\left(t^{6}+t^{7}\right)^{17}-\left(t^{15}+2 t^{16}+t^{17}\right)^{7}$ is 102 .

4.1.2 Characteristic Exponents and Hamburger-Noether expansions

Let C be a plane algebroid curve with Hamburger-Noether expansion

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 0 \leq j \leq s
$$

Setting $n_{j}=\operatorname{ord}\left(z_{j}\right)$, we know that the multiplicity sequence of C is $n_{0} \ldots n_{0}, n_{1} \ldots n_{1}, \ldots, n_{s} \ldots n_{s}$. Looking at n_{j} 's, we pick out the different indices m_{1}, \ldots, m_{q} if $n_{m_{i}}$ divides $n_{m_{i}-1}$. We assume $m_{0}=0$.

Example 4.1.16 If the multiplicity sequence is $4,4,3,1,1,1, n_{0}=4, n_{1}=3$ and $n_{2}=1$. Then $m_{0}=0$ and $m_{1}=2$ as n_{2} divides n_{1}.

Proposition 4.1.17 q is exactly the genus of C.

Definition 4.1.18 Let C be a plane curve branch with Hamburger-Noether expansion

$$
z_{j-1}=\sum_{i=1}^{r_{j}} a_{j i} z_{j}^{i}+z_{j}^{r_{j}} z_{j+1}, \quad 0 \leq j \leq s
$$

Then the characteristic exponents $\beta_{0}, \beta_{1}, \ldots, \beta_{q}$ are:

$$
\begin{aligned}
\beta_{0} & =n_{0} \\
\beta_{v+1} & =\sum_{j=0}^{m_{v}} r_{j} n_{j}+n_{m_{v}}+n_{m_{v}+1}-n_{0}, \quad 0 \leq v \leq q-1
\end{aligned}
$$

Example 4.1.19 For the curve branches in Example 4.1.13, the characteristic exponents are $(5,15,16)$ and $(7,17)$ respectively. For the curve branch C, the multiplicity sequence is (6,6,3,3,1,1,1). So, $m_{0}=0$ by definition and $m_{1}=1$ as n_{1} divides n_{0} and $m_{2}=2$ as n_{2}
divides n_{1}. Hence,

$$
\begin{array}{ll}
\beta_{0}=n_{0} & =6 \\
\beta_{1}=r_{0} n_{0}+n_{0}+n_{1}-n_{0} & =2 \cdot 6+3=15 \\
\beta_{2}=\sum_{j=0}^{m_{1}} r_{j} n_{j}+n_{1}+n_{2}-n_{0}=12+6+3+1-6=16
\end{array}
$$

For the curve branch C^{*}, the multiplicity sequence is $(7,7,3,3,1,1,1)$. Hence $m_{0}=0, m_{1}=2$ as n_{2} divides n_{1}. Hence,

$$
\begin{array}{ll}
\beta_{0}=n_{0} & =7 \\
\beta_{1}=r_{0} n_{0}+n_{0}+n_{1}-n_{0} & =2 \cdot 7+3=17
\end{array}
$$

4.2 Hamburger-Noether Expansions For General Curve Branches

In this section, we generalize these expansions to the curves in higher dimensions. Let C be a curve branch given in primitive parametric form $\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ such that $0 \leq \operatorname{ord}\left(x_{i}\right)$ for $2 \leq i \leq n$. Choose the index i_{0} with $\operatorname{ord}\left(x_{i_{0}}(t)\right)=\min \left\{x_{1}(t), \ldots, x_{n}(t)\right\}$. Then,
(i) If $\operatorname{ord}\left(x_{i_{0}}\right)=1$, we write

$$
x_{i}(t)=\sum_{p \geq 1} a_{i_{p}} x_{i_{0}}^{p}(t)
$$

for all $i \neq i_{0}$ and keep the information $\left(i_{0}, x_{i_{0}}\right)$.
(ii) Else, we divide all x_{i} but $x_{i_{0}}$ by $x_{i_{0}}$, subtract the constant terms and get the series

$$
\begin{aligned}
y_{i_{0}}(t) & =x_{i_{0}}(t) \\
y_{i}(t) & =\frac{x_{i}(t)}{x_{i_{0}}(t)}-a_{i 1} \quad \text { for } i \neq i_{0}
\end{aligned}
$$

We keep the information $i_{0}, a_{i 1}$ and start the same process with the parametrization $\left(y_{1}(t), \ldots, y_{n}(t)\right)$. After applying (ii) a couple of times, we reach (i) eventually. Then the information we have kept throughout the process is called the Hamburger-Noether expansion for the branch C.

```
Algorithm 2 HNE for Twisted curves
Input: \(\left(x_{1}(t), \ldots, x_{n}(t)\right)\) is a primitive parametrization with \(\operatorname{ord}\left(x_{1}\right) \leq \operatorname{ord}\left(x_{i}(t)\right)\)
Output: Hamburger Noether expansion \(\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}{ }^{i}+z_{j}{ }^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r\)
```

Step 1. We set $\overline{Z_{-1}}=Y=\left[\begin{array}{c}x_{2} \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]$ and $z_{0}=x_{1}$

Step 2. We divide all the series x_{i} with x_{1} and subtract the constant terms for $1<i \leq n$ and continue dividing until one of the series have order less than the order of x_{1}.

Step 3. This step is divided into two cases:

- If one of the series obtained has order 1 , then we have $(N-1) \times 1$ matrices $A_{0 i}$ for $1 \leq i$ with entries from the ground field, and an expansion for Y as

$$
\overline{Z_{-1}}=Y=A_{01} x_{1}+A_{02} x_{1}^{2}+\ldots . .
$$

and the algorithm stops.

- If none of the series obtained has order 1 , then we have $(N-1) \times 1$ matrices $A_{0 i}$ for $1 \leq i \leq r_{0}$ with entries from the ground field, an $(N-1) \times 1$ matrix with entries from the power series ring and an expansion for Y as

$$
\overline{Z_{-1}}=Y=A_{01} x_{1}+A_{02} x_{1}^{2}+\ldots+A_{0 h} x_{1}{ }^{r_{0}}+Z_{1} x_{1}{ }^{r_{0}}
$$

with at least one of the entries of Z_{1} has order less than the order of x_{1}. In this case, we pick out an entry of Z_{1} with smallest order and call it z_{1}. Then we continue doing the same process starting from step one with the parametrization $\operatorname{system}\left(z_{1}, x, z_{13}, \ldots, z_{1 n}\right)$, where $z_{13}, \ldots, z_{1 n}$ are the entries of Z_{1} other than z_{1}.
We set $\overline{Z_{0}}=\left[\begin{array}{c}x \\ z_{13} \\ \cdot \\ z_{1 n}\end{array}\right]$. We divide the entries of $\overline{Z_{0}}$ by z_{1} and get an expansion for $\overline{Z_{0}}$. After finitely many steps, we obtain an order one power series and the algorithm stops.

Eventually, we obtain an expression of type:

$$
\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}^{i}+z_{j}^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r
$$

Example 4.2.1 Let C be the space curve given with the parametrization $x_{1}(t)=t^{4}+t^{6}, x_{2}(t)=$ $t^{6}+t^{8}, x_{3}(t)=t^{9}+t^{11}$. We can now determine the Hamburger-Noether expansion of C. We start by setting $\overline{Z_{-1}}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]$ and $z_{0}=x_{1}$, and continue with dividing the entries of $\overline{Z_{-1}}$ by z_{0}, which gives $\frac{x_{2}}{x_{1}}=\frac{t^{6}+t^{8}}{t^{4}+t^{6}}=t^{2}$ and $\frac{x_{3}}{x_{1}}=\frac{t^{9}+t^{11}}{t^{4}+t^{6}}=t^{5}$. As we have at least one series with order less than the order of x_{1}, we continue with the parametrization $\left(t^{2}, t^{4}+t^{6}, t^{5}\right)$, but before that, we have an expansion for $\overline{Z_{-1}}$ as:

$$
\overline{Z_{-1}}=z_{0} Z_{1}
$$

$\overline{Z_{-1}}$ and z_{0} are as explained before and $Z_{1}=\left[\begin{array}{c}t^{2} \\ t^{5}\end{array}\right]$ here. Hence to continue with the parametrization system $\left(t^{2}, t^{4}+t^{6}, t^{5}\right)$, we take $\overline{Z_{0}}=\left[\begin{array}{c}t^{4}+t^{6} \\ t^{5}\end{array}\right], z_{1}=t^{2}$ and start dividing the entries of $\overline{Z_{0}}$ with z_{1} to obtain $\frac{t^{4}+t^{6}}{t^{2}}=t^{2}+t^{4}$ and $\frac{t^{5}}{t^{2}}=t^{3}$. None of the series has order less than the order of $z_{1}=t^{2}$, so we continue dividing the series with z_{1}. We obtain $\frac{t^{2}+t^{4}}{t^{2}}=1+t^{2}$ (we subtract the constant term 1 and get the series t^{2}) and $\frac{t^{3}}{t^{2}}=t$. We now have a series with order less than the order of $z_{1}=t^{2}$, so we can write $\overline{Z_{0}}$ as,

$$
\overline{Z_{0}}=A_{12} z_{1}^{2}+Z_{2} z_{1}^{2}
$$

where $A_{12}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $Z_{2}=\left[\begin{array}{l}t^{2} \\ t\end{array}\right]$. As we have reached an order one series, we have one more step and the algorithm stops. We continue with the parametrization system $\left(t, t^{2}, t^{2}\right)$. We have $\left[\begin{array}{c}t^{2} \\ t^{2}\end{array}\right]$ as $\overline{Z_{1}}$ and t as z_{2}. So, we can write

$$
\overline{Z_{1}}=A_{22} z_{2}^{2}
$$

where $A_{22}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Hence, the Hamburger-Noether expansion for C is:

$$
\begin{aligned}
\overline{Z_{-1}} & =z_{0} Z_{1} \\
\overline{Z_{0}} & =A_{12} z_{1}^{2}+Z_{2} z_{1}^{2} \\
\overline{Z_{1}} & =A_{22} z_{2}^{2}
\end{aligned}
$$

Remark 4.2.2 Note that the Hamburger-Noether expansion for a curve branch is not unique. It depends on the smallest ordered element that we pick from the parametrization. But when we fix the smallest ordered elements that we choose in each step, we have a unique Hamburger-Noether expansion.

Proposition 4.2.3 [10, Remark 2.4.9] Let $\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}{ }^{i}+z_{j}{ }^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r$ be a Hamburger-Noether expansion for the curve branch C. n_{j} being the order of the element z_{j}, the different multiplicities that we have in the blowing up process of C are the natural numbers n_{j} 's.

Corollary 4.2.4 [10, Remark 2.4.9] Let $\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}{ }^{i}+z_{j}{ }^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r$ be a Hamburger-Noether expansion for the curve branch $C . n_{j}$ being the order of the element z_{j}, the multiplicity sequence of C is:

$$
\underbrace{n_{0}, \ldots, n_{0}}_{h_{0} \text { times }}, \underbrace{n_{1}, \ldots, n_{1}}_{h_{1} \text { times }}, \ldots, \underbrace{n_{s}, \ldots, n_{s}}_{h_{r} \text { times }}
$$

Example 4.2.5 Let C be the curve branch given with parametrization $x_{1}(t)=t^{4}+t^{6}, x_{2}(t)=$ $t^{6}+t^{8}, x_{3}(t)=t^{9}+t^{11}$ in Example 4.2.1. Then the multiplicity sequence of C is: $(4,2,2,1,1)$.

Corollary 4.2.6 [10, Remark 2.4.9] Let C and C^{*} be two curve branches with HamburgerNoether expansions

$$
\begin{aligned}
& \overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}^{i}+z_{j}^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r \\
& \overline{Z_{j-1}^{*}}=\sum_{i=1}^{h_{j}^{*}} A_{j i}^{*} z_{j}^{* i}+z_{j}^{* h_{j}^{*}} Z_{j+1}^{*}, \quad j=0, \ldots, r^{*}
\end{aligned}
$$

respectively. Then, C and C^{*} are equiresoluble if and only if $h_{j}=h_{j}^{*}$, and $n_{j}=n_{j}^{*}$.

4.2.1 Hamburger-Noether Matrices

Let C be a curve branch given with parametrization $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and with the HamburgerNoether expansion

$$
\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}^{i}+z_{j}^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r
$$

The data contained in the Hamburger-Noether expansion of C can be given with a matrix, which is called Hamburger-Noether Matrix. The matrix has n rows, $r+1$ boxes and the j th box represents the expansion $\overline{Z_{j-1}}$. Hence, the j th box has h_{j} columns. Each box has a marked row starting with a 1, exactly to mark the divider. Finally, the entries of the boxes represent the constants that we have been subtracted in the expansion. To understand the process better, we give an example.

Example 4.2.7 For the curve branch C with parametrization $x_{1}(t)=t^{4}+t^{6}, x_{2}(t)=t^{6}+$ $t^{8}, x_{3}(t)=t^{9}+t^{11}$ in Example 4.2.1, we know that the Hamburger-Noether expansion is:

$$
\begin{aligned}
\overline{Z_{-1}} & =z_{0} Z_{1} \\
\overline{Z_{0}} & =A_{12} z_{1}^{2}+Z_{2} z_{1}^{2} \\
\overline{Z_{1}} & =A_{22} z_{2}^{2}
\end{aligned}
$$

As we are dealing with a space curve, our Hamburger-Noether matrix will have 3 rows and as the Hamburger-Noether expansion consists only of $\overline{Z_{-1}}, \overline{Z_{0}}, \overline{Z_{1}}$, Hamburger-Noether matrix has 3 boxes. It looks like roughly.

Before starting to fill out the boxes, recall that the parameterizations we have used throughout the process are.

$$
\begin{aligned}
& \left(t^{4}+t^{6}, t^{6}+t^{8}, t^{9}+t^{11}\right) \\
& \left(t^{4}+t^{6}, t^{2}, t^{5}\right) \\
& \left(t^{2}, t^{2}, t\right)
\end{aligned}
$$

For the first box, we have $h_{0}=1$, so the box has only one column. We have used $t^{4}+t^{6}$ as z_{0}, which is the first in parametrization, so the first row should be marked and 1 . All the constants are 0 , so we have:

$$
\left[\begin{array}{l|l|l}
1 & & \\
0 & & \\
0 & &
\end{array}\right]
$$

in the first box. Continuing with the second box, we know that $h_{1}=2$, hence the box has 2 columns. The dividend t^{2} is in the second row in the parametrization, so the second row of the second box should be marked and $\left[\begin{array}{ll}1 & 0\end{array}\right]$. And recall that we subtract 1 from the first series
in the second division, so we put a 1 to the first row second column of the current box. Other entries should be 0 as the other constants are 0 for the second expansion.

$$
\left[\left.\begin{array}{l|ll}
\boldsymbol{1} & 0 & 1 \\
0 & \boldsymbol{1} & \boldsymbol{0} \\
0 & 0 & 0
\end{array} \right\rvert\,\right.
$$

For the last box, the third row should be marked, as the dividend t is the in the third row of the parametrization. And we have ones in the second columns of the first and second row, as we have subtracted 1's in the second division. Other entries should be 0. So the HamburgerNoether matrix is:

$$
\left[\begin{array}{l|ll|ll}
\boldsymbol{1} & 0 & 1 & 0 & 1 \\
0 & \boldsymbol{1} & 0 & 0 & 1 \\
0 & 0 & 0 & \boldsymbol{1} & \boldsymbol{0}
\end{array}\right]
$$

CHAPTER 5

ARF THEORY

In this chapter, we give a review of Arf theory. As we have mentioned in Chapter 2, with this theory, Arf answers the important question asked by Du Val: 'Given the parametrization of a space branch, how can we find its characters?' While answering this question, he develops new algebraic concepts, which we present in this chapter.

For a branch given by the parametrization $\left\{x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t), \ldots, x_{n}=\varphi_{n}(t)\right\}$, the completion of the local ring of the curve branch is $k\left[\left[\varphi_{1}(t), \ldots, \varphi_{n}(t)\right]\right]$, Arf shows that the characters can be obtained by following these steps:

- Construct a ring with a method described later, called the canonical closure (Arf closure) from the ring $k\left[\left[\varphi_{1}(t), \ldots, \varphi_{n}(t)\right]\right]$.
- Form the semigroup of orders of the elements in the canonical closure of the ring $k\left[\left[\varphi_{1}(t), \ldots, \varphi_{n}(t)\right]\right]$.
- Pick some of the numbers from that semigroup with a method to be described later.

We obtain the multiplicity sequence of the curve branch by applying the Jacobian Algorithm to these characters. Before describing each step in detail, we give the necessary definitions and background.

5.1 Notation and Basic Definitions

In this section, we use the notation in [38]. Let R be a subring of the formal power series ring with one indeterminate $k[[t]]$. We define $W(R)$ as the set consisting of the orders of the
elements of R :

$$
\begin{aligned}
W(R) & =\{\operatorname{ord}(r) \mid r \in R\} \\
& =\left\{i_{0}=0<i_{1}<\ldots<i_{r}<\ldots\right\}
\end{aligned}
$$

Clearly, $W(R)$ is a semigroup of nonnegative integers.

Theorem 5.1.1 [1, Theorem 1] Let v be the greatest common divisor of the elements of $W(R)$. Then for a sufficiently large natural number m, there exists a power series of order 1

$$
\tau=t\left(1+\sum_{l=1}^{\infty} \beta_{l} t^{l}\right), \quad \quad \beta_{l} \in k
$$

such that $i_{m+1}=i_{m}+v, \quad i_{m+2}=i_{m}+2 v, \quad \ldots, \quad i_{r+k}=i_{r}+k v, \quad \ldots \quad$ and every element of R is of the form $\sum_{j=0}^{\infty} \alpha_{j} \tau^{j v}$.

As a consequence of this theorem, we can say that if $v=1$, then for sufficiently large m, R contains the power series of all orders greater than or equal to m. We will generally be working with rings having $v=1$.

Note that a ring R with $v=1$ can be given as

$$
R=k+k S_{i_{1}}+k S_{i_{2}}+\ldots+k[[t]] S_{i_{r}}
$$

where $S_{i_{j}}$ is an arbitrary element in R with order i_{j}, and $i_{1}<i_{2}<\ldots<i_{r}$ are elements in the semigroup $W(R)$, which contains every integer greater than or equal to i_{r}.

For an element n of \mathbb{N}, define I_{n} as

$$
I_{n}=\{r \in R \mid \operatorname{ord}(r) \geq n\},
$$

which is the subset of R consisting of all elements of order greater than or equal to n.

Theorem 5.1.2 [1, Theorem 2] Let r be an element of R of order 0 . The multiplicative inverse of r is again an element of R, .

Remark 5.1.3 [1] For an order 0 element r of R, nth root of r is again an element of R,

Remark 5.1.4 I_{n} is an ideal of R.

Consider the set

$$
I_{n} / S_{n}=\left\{r \cdot S_{n}^{-1} \mid \operatorname{ord}(r) \geq n\right\}
$$

where S_{n} is an element of R of order n. That is, I_{n} / S_{n} is the set consisting of the quotients of elements of I_{n} by S_{n}. Note that, I_{n} / S_{n} is not always a ring. Hence, we consider the smallest subring of R inside $k[[t]]$ containing I_{n} / S_{n}, and denote it by $\left[I_{n} / S_{n}\right]$.

Theorem 5.1.5 [1, Theorem 3] The ring $\left[I_{n} / S_{n}\right]$ is independent of the chosen element S_{n} of order n.

As a consequence, without loss of generalization, we can set $\left[I_{n}\right]$ instead of $\left[I_{n} / S_{n}\right]$. So, $\left[I_{n}\right]$ is the smallest subring of $k[[t]]$ containing I_{n} / S_{n}.

Example 5.1.6 [1] Let R be the subring of the formal power series ring with one indeterminate generated by the elements $X=t^{4}$ and $Y=t^{10}+t^{15}$. Then

$$
W(H)=\{0,4,8,10,12,14,16,18,20,22,24,25,26,28,29,30,32,33,34,35,36,37,38, \ldots\}
$$

Setting $S_{4}=X$, the orders of the elements of I_{4} / S_{4} are,

$$
0,4,6,8,10,12,14,16,18,20,21,22,24,25,26,28,29,30,31,32,33,34, \ldots
$$

The semigroup generated by these elements are:

$$
0,4,6,8,10,12,14,16,18,20,21,22,24,25,26,27,28,29,30,31,32,33,34, \ldots
$$

but the element $(Y / X)^{2}-X^{3}=2 t^{17}+t^{22}$ is also in the ring $\left[I_{4}\right]$, so $17 \in W\left(\left[I_{4}\right]\right)$.

This example of Cahit Arf shows that the semigroup $W\left(\left[I_{n}\right]\right)$ contains the integers $i_{n}-i_{n}=$ $0, \quad i_{n+1}-i_{n}, \quad i_{n+2}-i_{n}, \ldots$, which are the orders of the elements of $I_{i_{n}} / S_{i_{n}}$, but it may contain more than those. This is an example of a ring, for which $I_{n} / S_{n} \neq\left[I_{n}\right]$ for $n=4$. Indeed, I_{n} / S_{n} is always a ring only for some special rings R.

5.2 Arf Rings, Arf Semigroups

Definition 5.2.1 [1] A ring R is called an Arf Ring, if for all $n \in W(R)$, $\left[I_{n}\right]$ is equal to I_{n} / S_{n}.

Example 5.2.2 The ring $k[[t]]$ is a trivial example of an Arf ring.

Cahit Arf calls the rings mentioned above as 'canonical rings', which are named by Lipman as Arf Rings in [33]. Similarly, Arf defines 'canonical semigroups', which are called later as Arf Semigroups.

Definition 5.2.3 [1] A semigroup $G=\left\{i_{0}=0<i_{1}<i_{2}<\ldots<i_{n}<\ldots\right\}$ is called an Arf Semigroup, if $\left\{i_{n}-i_{n}, i_{n+1}-i_{n}, i_{n+2}-i_{n}, \ldots\right\}$ is a semigroup for all $i_{n} \in G$.

Example 5.2.4 The semigroup \mathbb{N} is a trivial example of an Arf Semigroup.

Remark 5.2.5 [1] If R is an Arf Ring, $W(R)$ is an Arf Semigroup, but the reverse is not true.

Theorem 5.2.6 [1] (i) Intersection of Arf rings is again an Arf ring.
(ii) Intersection of Arf semigroups is again an Arf semigroup.

Theorem 5.2.7 [1] If R is an Arf ring, then $\left[I_{n}\right]$ is also an Arf ring for any n.

We can now understand the structure of Arf rings and Arf semigroups. Let R be an Arf ring. For a sufficiently large N, we have $(N-1) v, N v, \ldots \in W(R)$ and $\left[I_{(N-1) v}\right]=k[[T]]$ where $T=\tau^{v}$ by Theorem 5.1.1, [1]. We choose an element T_{r-1} of order v_{r-1} in the Arf ring $\left[I_{(N-1) v}\right]$. Then, we have

$$
\left[I_{i_{r}-1}\right]=k+T_{r-1}\left[I_{(N-1) v}\right]
$$

where $i_{r}=(N-1) v$. The ring $\left[I_{i_{r}-1}\right]$ and the semigroup $W\left(\left[I_{i_{r}-1}\right]\right)=\left\{0, v_{r-1}+v \mathbb{N}\right\}$ are Arf by Remark 5.2.5 and Theorem 5.2.7. Now, we choose an element $T_{r-2} \in\left[I_{i_{r}-1}\right]$ of order v_{r-2}. Then, we have

$$
\begin{aligned}
{\left[I_{i_{r}-2}\right] } & =k+T_{r-2}\left[I_{i_{r}-1}\right] \\
& =k+k T_{r-2}+k T_{r-2} T_{r-1} k[[T]]
\end{aligned}
$$

and $W\left(\left[I_{i_{r}-2}\right]\right)=\left\{0, v_{r-2}, v_{r-2}+v_{r-1}+v \mathbb{N}\right\}$. Continuing in this manner, we obtain the Arf Ring

$$
R=k+k T_{1}+k T_{1} T_{2}+\ldots+k T_{1} T_{2} \ldots T_{r-2}+k[[T]] T_{1} T_{2} \ldots T_{r-2} T_{r-1}
$$

and the Arf Semigroup

$$
W(H)=\left\{0, v_{1}, v_{1}+v_{2}, \ldots, v_{1}+v_{2}+\ldots+v_{r-2}, v_{1}+v_{2}+\ldots+v_{r-1}+v \mathbb{N}\right\}
$$

If $\operatorname{ord}\left(T_{h}\right)=v_{h}$ and if $\left.T_{h}=k T_{h+1}+k T_{h+1} T_{h+2}+\ldots+k[[T]]\right] T_{1} T_{2} \ldots T_{r-1}$, then $v_{h} \in\left\{v_{h+1}, v_{h+1}+\right.$ $\left.v_{h+2}, \ldots, v_{h+1}+v_{h+2}+\ldots+v_{r-1}+v \mathbb{N}\right\}$.

Noting that $k[[t]]$ is an Arf ring and \mathbb{N} is an Arf semigroup, we can give the following definitions.

Definition 5.2.8 For a subring R offormal power series ring, the smallest Arf ring containing R is called the Arf Closure of R. In other words, the Arf closure of a ring is the intersection of all Arf rings containing it. We denote the Arf closure of R by R^{*}.

Definition 5.2.9 For a subsemigroup G of nonnegative integers, the smallest Arf semigroup containing G or equivalently, intersection of all Arf Semigroups containing G is called the Arf Closure of G. We denote the Arf Closure of G by G^{*}.

5.3 Characteristic Semigroup, Arf Characters

It is now time to define the characters of the branch, which are the integers giving the multipicity sequence after an application of the modified Jacobian algorithm.

Theorem 5.3.1 [1] Let G be a subsemigroup of the non negative integers. The intersection of all semigroups g with $G^{*}=g^{*}$ is a semigroup g_{χ} and $g_{\chi}^{*}=G^{*}$.

Definition 5.3.2 [1] The semigroup $g_{\chi}=\bigcap_{g^{*}=G^{*}} g$ in Theorem 5.3.1 is called the characteristic subsemigroup of G.

Observe that the characteristic semigroup is the smallest semigroup, whose Arf closure is equal to the Arf Closure of G. For a subsemigroup G of \mathbb{N}, the minimal generators $\chi_{1}, \chi_{2}, \ldots, \chi_{h}$ of G are defined in the following way:
(i) $G=\left\{\alpha_{1} \chi_{1}+\ldots+\alpha_{h} \chi_{h} \mid \alpha_{1}, \ldots, \alpha_{h} \in \mathbb{N}^{+}\right\}$
(ii) χ_{1} is the smallest nonzero integer in G.
(iii) χ_{n} is the smallest nonzero integer in $G-\left\langle\chi_{1}, \ldots, \chi_{n-1}\right\rangle$ for $n \geq 2$

Definition 5.3.3 [1] The minimal generators $\chi_{1}, \ldots, \chi_{h}$ of the characteristic subsemigroup g_{χ} of G are said to be the characters of G.

Theorem 5.3.4 [1] Let G be a semigroup generated by $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{l}\right\}$. Then the set of characters of G is a subset of $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{l}\right\}$.

5.4 Computation of the Arf Closure

We start with the computation of the Arf closure of a semigroup, which is much simpler.

5.4.1 Computation of the Arf Closure of a Semigroup

Theorem 5.4.1 Let G be a semigroup with characters $\chi_{1}<\chi_{2}<\ldots<\chi_{h}$ and the integers $v_{1}, \ldots, v_{N-1}, v$ be obtained by applying the modified Jacobian algorithm to $\chi_{1}<\chi_{2}<\ldots<\chi_{h}$. Then $G^{*}=\left\{0, v_{1}, v_{1}+v_{2}, \ldots, v_{1}+v_{2}+\ldots+v_{N-1}+\mathbb{N} v\right\}$ is the Arf closure of the semigroup G. The integers $v_{1}, \ldots, v_{N-1}, v$ are the divisors in the algorithm explained below and the quotients represent the number of times each divisor is repeated in the sequence $v_{1}, \ldots, v_{N-1}, v$.

At this point, it is a good idea to give a quick summary of Du Val's [23] modified Jacobian algorithm.

5.4.2 The modified Jacobian Algorithm

To apply the modified Jacobian algorithm to the set $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \subset \mathbb{N}$, start by forming $g_{1}, g_{2}, \ldots, g_{n}$ as the first row and choosing the smallest $g_{i_{0}}$ among them as the divisor of the first row. Divide the smallest element $g_{j_{0}}$ in $G-\left\{g_{i_{0}}\right\}$ with $g_{i_{0}}$. Let the quotient be m. Subtract $m g_{i_{0}}$ from all elements in the first row except $g_{i_{0}}$ and obtain the second row. Apply the same process to the second row and continue in the same manner. If 0 is obtained, omit that column. The algorithm stops, when a row with only one element is obtained.

Example 5.4.2 We apply the modified Jacobian Algorithm to the set $\{100,150,275,290$,

100	150	275	290	312	1
	$\underline{100}$	$\underline{100}$	$\underline{100}$	$\underline{100}$	
100	50	175	190	212	2
$\underline{100}$		$\underline{100}$	$\underline{100}$	$\underline{100}$	
	50	75	90	112	1
		50	50	50	
	50	25	40	62	1
	$\underline{25}$		25	25	1
	25	25	15	37	1
	$\underline{15}$	$\underline{15}$		$\underline{15}$	
	10	10	15	22	1
		$\underline{10}$	10	$\underline{10}$	
	10		5	12	2
	$\underline{10}$			$\underline{10}$	
			5	2	2
			4		
			1	2	2
				$\underline{2}$	
			1		

The divisors in the algorithm give us the different multiplicities of the points and the quotients corresponding to each divisor tells us how many times each multiplicity is repeated in the sequence. Hence, the multiplicity sequence corresponding to the characters in this example is $(100,50,50,50,25,15,10,5,5,2,2,1,1)$.

5.4.3 Computation of the Arf Closure of a ring

Let R be a subring of $k[[t]]$. If the semigroup of orders of R is $W(R)=\left\{0=i_{0}, i_{1}, \ldots, i_{h-1}, i_{h}+\right.$ $\mathbb{N} v\}$ with $i_{0}<i_{1}<\ldots<i_{h}$, we have seen that R can be presented as

$$
R=k+k S_{i_{1}}+k S_{i_{2}}+\ldots+k S_{i_{h-1}} k[[T]] S_{i_{h}}
$$

where $S_{i_{n}}$ is an element of R of order i_{n} and $T=\tau^{v}$ is as explained in Theorem 5.1.1. Let R_{1} be the ring

$$
\left[I_{i_{1}}\right]=\sum k\left(\frac{S_{i_{2}}}{S_{i_{1}}}\right)^{\alpha_{2}}\left(\frac{S_{i_{3}}}{S_{i_{1}}}\right)^{\alpha_{3}} \ldots\left(\frac{S_{i_{h-1}}}{S_{i_{1}}}\right)^{\alpha_{h-1}}+k[[T]] \frac{S_{i_{h}}}{S_{i_{1}}}
$$

where the sum is over all $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{h-1}$ satisfying

$$
\alpha_{2}\left(i_{2}-i_{1}\right)+\alpha_{3}\left(i_{3}-i_{1}\right)+\cdots+\alpha_{h-1}\left(i_{h-1}-i_{1}\right)<\left(i_{h}-i_{1}\right)
$$

Then, $R \subset k+R_{1} S_{i_{1}} \subset R^{*}$. Taking the Arf closure of both sides, we obtain $R^{*}=k+R_{1}^{*} S_{i_{1}}$ and applying the same procedure to R_{1} and continuing inductively, we have $R_{N}=k[[T]]$ for sufficiently large N. Hence,

$$
R^{*}=k+k T_{1}+k T_{1} T_{2}+\cdots+k T_{1} T_{2} \cdots T_{N-1}+k[[T]] T_{1} T_{2} \cdots T_{N-1} T_{N}
$$

where T_{i+1} is an element with the smallest order in R_{i}.

5.4.4 Examples

Example 5.4.3 Let R be the ring generated by the elements $X=t^{4}, Y=t^{6}$ and $Z=t^{11}$, i.e. $R=k\left[\left[t^{4}, t^{6}, t^{11}\right]\right]$. Then $W(R)=\{0,4,6,8,10,11,12,14+\mathbb{N}\}$, and thus R can be written as

$$
R=k+k t^{4}+k t^{6}+k t^{8}+k t^{10}+k t^{11}+k t^{12}+k[[t]] t^{14}
$$

and

$$
R_{1}=\left[I_{4}\right]=\sum k\left(\frac{t^{6}}{t^{4}}\right)^{\alpha_{2}}\left(\frac{t^{8}}{t^{4}}\right)^{\alpha_{3}}\left(\frac{t^{10}}{t^{4}}\right)^{\alpha_{4}}\left(\frac{t^{11}}{t^{4}}\right)^{\alpha_{5}}\left(\frac{t^{12}}{t^{4}}\right)^{\alpha_{6}}+k[[t]]\left(\frac{t^{14}}{t^{4}}\right)
$$

Thus, $R_{1}=k+k t^{2}+k t^{4}+k[[t]] t^{6}$ with $W\left(R_{1}\right)=\{0,2,4,6+\mathbb{N}\}$ implying

$$
R_{2}=\sum k\left(\frac{t^{4}}{t^{2}}\right)^{\alpha_{2}}+k[[t]]\left(\frac{t^{6}}{t^{2}}\right)=k+k t^{2}+k[[t]] t^{4}
$$

Continuing the same way, we get $R_{3}=k[[t]] t^{2}$ and finally we reach $R_{4}=k[[t]]$. Hence,

$$
R^{*}=k+k t^{4}+k t^{4} t^{2}+k t^{4} t^{2} t^{2}+k[[t]] t^{4} t^{2} t^{2} t^{2}=k+k t^{4}+k t^{6}+k t^{8}+k[[t]] t^{10}
$$

Note that, in this example, $W\left(R^{*}\right)=\{0,4,6,8,10+\mathbb{N}\}$ and the Arf closure of the semigroup generated by the set $\{4,6,11\}$ is also $\{0,4,6,8,10+\mathbb{N}\}$. In fact, this is not a coincidence:

Remark 5.4.4 Let $a_{1}, a_{2}, \ldots, a_{n}$ be natural numbers. For the curve branch having parametrization

$$
x_{1}=t^{a_{1}}, x_{2}=t^{a_{2}}, \ldots, x_{n}=t^{a_{n}}
$$

as in Example 5.4.3, $W\left(R^{*}\right)$ is equal the Arf closure of the semigroup generated by the natural numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

On the other hand, Example 5.4.3 should not give us the wrong impression that finding the Arf closure is quite easy. If the parametrization of the curve branch consists of polynomials in t, computation of $W\left(R^{*}\right)$ can involve lots of computations and may be very difficult. We should carefully consider the effects of higher degree terms. In the next chapter, we give an alternative method for constructing the Arf closure R^{*} of a ring R that does not need the computation of the semigroup $W\left(R^{*}\right)$.

Example 5.4.5 Let us calculate the Arf closure of the ring R generated by the elements $X=$ $t^{4}, Y=t^{8}+t^{9}$ and $Z=t^{15}$. Namely, $R=k\left[\left[t^{4}, t^{8}+t^{9}, t^{15}\right]\right]$ and as $Y-X^{2}=t^{9} \in R$, $W(R)=\{4,8,9,12,13,15+\mathbb{N}\}$.

$$
\begin{aligned}
R & =k+k t^{4}+k\left(t^{8}+t^{9}\right)+k t^{9}+k t^{12}+k t^{13}+k[[t]] t^{15} \\
R_{1} & =\sum k\left(\frac{t^{8}+t^{9}}{t^{4}}\right)^{\alpha_{2}}\left(\frac{t^{9}}{t^{4}}\right)^{\alpha_{3}}\left(\frac{t^{12}}{t^{4}}\right)^{\alpha_{4}}\left(\frac{t^{13}}{t^{4}}\right)^{\alpha_{5}}+k[[t]] \frac{t^{15}}{t^{4}}
\end{aligned}
$$

We can write R_{1} as,

$$
R_{1}=k+k t^{4}+k t^{5}+k[[t]] t^{8}
$$

Applying the same process to R_{1}, we get $R_{2}=k[[t]]$, so

$$
R^{*}=k+k t^{4}+k[[t]] t^{8}
$$

In Example 5.4.5 we have seen that we can not always form $W(R)$ directly from the orders of the generating elements X, Y, Z, we need to consider all the elements and their orders in R, which is not very easy algorithmically. This difficulty can be better observed in the next example.

Example 5.4.6 If $R=k\left[\left[t^{4}, t^{6}+t^{9}, t^{14}\right]\right], W(R)$ consists of the elements like 15 and 17 because $Y^{2}-X^{3}=2 t^{15}+t^{18}$ and $X^{2} Y-Z=t^{17}$ are the elements of the ring R. So, $W(R)=\{4,6,8,10,12,14+\mathbb{N}\}$ implying that

$$
R=k+k t^{4}+k\left(t^{6}+t^{9}\right)+k t^{8}+k t^{10}+k t^{12}+k[[t]] t^{14}
$$

and

$$
R_{1}=\sum\left(\frac{t^{6}+t^{9}}{t^{4}}\right)^{\alpha_{2}}\left(\frac{t^{8}}{t^{4}}\right)^{\alpha_{3}}\left(\frac{t^{10}}{t^{4}}\right)^{\alpha_{4}}\left(\frac{t^{12}}{t^{4}}\right)^{\alpha_{5}}+k[[t]]\left(\frac{t^{14}}{t^{4}}\right)
$$

and as $\left(t^{2}+t^{5}\right)^{2}-t^{4}$ is in $R_{1}, W\left(R_{1}\right)=\{2,4,6+\mathbb{N}\}$. So, R_{1} can be written as

$$
R_{1}=k+k\left(t^{2}+t^{5}\right)+k t^{4}+k[[t]] t^{6}
$$

Then,

$$
R_{2}=\sum\left(\frac{t^{4}}{t^{2}+t^{5}}\right)^{\alpha_{2}}+k[[t]]\left(\frac{t^{6}}{t^{2}+t^{5}}\right)=\sum\left(t^{2}-t^{5}+t^{8}-\ldots\right)^{\alpha_{2}}+k[[t]]\left(t^{4}-t^{7}+t^{10}-\ldots\right)
$$

Thus, $R_{3}=k+k[[t]] t^{2}$ and finally $R_{4}=k[[t]]$ implying that

$$
\begin{aligned}
R^{*} & =k+k t^{4}+k t^{4}\left(t^{2}+t^{5}\right)+k t^{4}\left(t^{2}+t^{5}\right)\left(t^{2}-t^{5}+t^{8}-. .\right)+k[[t]] t^{4}\left(t^{2}+t^{5}\right)\left(t^{2}-t^{5}+t^{8}-. .\right) t^{2} \\
& =k+k t^{4}+k t^{4}\left(t^{2}+t^{5}\right)+k t^{8}+k[[t]] t^{10}
\end{aligned}
$$

Example 5.4 .6 shows that in the computation of the Arf closure, we need to determine the terms of a series obtained by division, so the question arises "Up to which degree should we consider?" This is a crucial question that will be discussed in detail in the next chapter.

Having understood the computation of the Arf closure, we can now give Cahit Arf's important theorem that makes it possible to compute the characters of a space branch.

Theorem 5.4.7 [1] Let C be a branch given with the parametrization $x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t)$, $\ldots, x_{n}=\varphi_{n}(t)$ and with the corresponding local ring $R=k\left[\left[\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right]\right]$. If $W\left(R^{*}\right)=$ $\left\{v_{1}, v_{1}+v_{2}, \ldots, v_{1}+v_{2}+\ldots v_{N-1}+\mathbb{N}\right\}$, then the multiplicity sequence of the curve branch is

$$
v_{1}, v_{2}, \ldots, v_{N-1}, 1,1, \ldots
$$

Combining all the theory presented, Arf gives the following algorithm for finding the characters of a branch given with the parametrization $x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t), \ldots, x_{n}=\varphi_{n}(t)$:

1. Start with $R=k\left[\left[\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right]\right]$.
2. Find the Arf closure R^{*}.
3. Find $W\left(R^{*}\right)$ from R^{*}.
4. Construct the characteristic sub-semigroup $g_{\chi}\left(W\left(R^{*}\right)\right)$ of $W\left(R^{*}\right)$.
5. Find the minimal set of generators $\chi_{1}, \chi_{2}, \ldots, \chi_{h}$ of g_{χ}.
$\chi_{1}, \chi_{2}, \ldots, \chi_{h}$ are the Arf characters.

With this theory, Arf gives a complete answer to Du Val's question about the computation of the characters of a space branch, and generalizes the plane case. Hence, the following are equivalent:
i) Two branches have the same multiplicty sequence.
ii) Two branches have the same Arf characters.

We can now give some examples:

Example 5.4.8 Consider the plane branch with the corresponding local ring $R_{1}=k\left[\left[t^{4}, t^{9}\right]\right]$. Since $W\left(R_{1}^{*}\right)=\{4,8+\mathbb{N}\}$, the Arf characters are $\{4,9\}$. Consider the space branch in Example 5.4.5 with the corresponding local ring $R_{2}=k\left[\left[t^{4}, t^{8}+t^{9}, t^{15}\right]\right]$. We have shown in Example 5.4.5 that $W\left(R_{2}^{*}\right)=\{4,8+\mathbb{N}\}$, so the Arf characters are $\{4,9\}$. Hence, these two branches have the same multiplicity sequence.

Example 5.4.9 The curve branch with the corresponding local ring $R=k\left[\left[t^{4}, t^{6}+t^{9}, t^{14}\right]\right]$ in Example 5.4.6 has $W\left(R^{*}\right)=\{4,6,8,10+\mathbb{N}\}$, and so $\{4,6,11\}$ are the Arf characters of the curve.

5.5 Arf Closure and Hamburger-Noether matrices

It is also possible to construct the Arf closure of a ring by using the Hamburger-Noether matrices. Before explaining the process with the notation of [16], we give the definition of an Apery basis.

Definition 5.5.1 Let S be a semigroup and $n \in S$. Consider the elements of S in the congruence classes of $\left(\overline{0_{S}}, \overline{1_{S}}, \ldots, \overline{(n-1)_{S}}\right)$ in mod n. Among the elements of each congruence class, we choose the smallest element s_{i}. The set $(S, n)=\left\{s_{0}, \ldots, s_{n-1}\right\}$ is called the Apery Basis of S with respect to n.

Example 5.5.2 Let $S=\{4,6,8+\mathbb{N}\}$ and $n=4$. Then
$\overline{0_{S}}=\{4,8,12,16, \ldots\}$

$$
\begin{aligned}
& \overline{1_{S}}=\{9,13,17, \ldots\} \\
& \overline{2_{S}}=\{6,10,14,18, \ldots\} \\
& \overline{3_{S}}=\{11,15,19, \ldots\}
\end{aligned}
$$

Hence, $s_{0}=4, s_{1}=9, s_{2}=6, s_{3}=11$ and $(S, 4)=\{4,6,9,11\}$.

Let C be a branch given with parametrization $\varphi_{1}, \ldots, \varphi_{n}$, with Hamburger-Noether expansion

$$
\overline{Z_{j-1}}=\sum_{i=1}^{h_{j}} A_{j i} z_{j}^{i}+z_{j}^{h_{j}} Z_{j+1}, \quad j=0, \ldots, r
$$

and with Hamburger-Noether matrix H. Recall that the multiplicity sequence of C is

$$
\underbrace{n_{0}, \ldots, n_{0}}_{h_{0} \text { times }}, \underbrace{n_{1}, \ldots, n_{1}}_{h_{1} \text { times }}, \ldots, \underbrace{n_{s}, \ldots, n_{s}}_{h_{r} \text { t times }} .
$$

Let $R=k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$ and R^{*} be the Arf closure of R. Construct another matrix H^{*} from H as follows:

- Let i_{1}, \ldots, i_{d} be the different marked rows of H.
- Let $B_{j_{1}}, \ldots, B_{j_{d}}$ be the boxes of H, where the marked rows i_{1}, \ldots, i_{d} appear for the first time respectively.
- Define $\alpha_{j_{1}}, \alpha_{j_{2}}, \ldots, \alpha_{j_{d}}$ such that $\alpha_{k}=h_{0} n_{0}+h_{1} n_{1}+\ldots+h_{k-1} n_{k-1}+n_{k}$, where $k=j_{1}, \ldots, j_{d}$.
- Construct the Apery basis $\left(W\left(R^{*}\right), n_{0}\right)$ of the semigroup $W\left(R^{*}\right)$ with respect to n_{0} (Recall that the semigroup $W\left(R^{*}\right)$ is completely determined by the multiplicity sequence of C).
- For each element γ_{i} in $\left(W\left(R^{*}\right), n_{0}\right)$ that is not in the set $\left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{d}}\right\}$, find the natural numbers q_{j} such that $\gamma_{i}=h_{0} n_{0}+h_{1} n_{1}+\ldots+h_{j-1} n_{j-1}+q_{j} n_{j}$.
- The new matrix H^{*} has n_{0} rows, for which the first d rows are the same with the marked rows of H. For each element γ_{i}, we add a new row with a 1 in the column $\left(h_{0}+h_{1}+\right.$ $\ldots+h_{j-1}+q_{j}$) and 0 's for the rest.

Example 5.5.3 Let R be the ring $k\left[\left[t^{4}, t^{6}, t^{13}\right]\right]$. It is not hard to show that the HamburgerNoether matrix H of the branch given by the parametrization $\left(t^{4}, t^{6}, t^{13}\right)$ is:

$$
H=\left[\begin{array}{l|llll|ll}
\boldsymbol{1} & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \boldsymbol{1} & \boldsymbol{0}
\end{array}\right]
$$

and the multiplicity sequence is $(4,2,2,2,2,1,1)$. We have three rows and three boxes in H. As all three rows have been marked and they all been marked just once, we use all three boxes. Namely, from the first box, $\alpha_{1}=4, \alpha_{2}=4+2=6$ from the second and $\alpha_{3}=4+4.2+1=13$ from the third box. $W\left(R^{*}\right)$ on the other hand, is equal to $\{0,4,4+2,4+2+2,4+2+2+2,4+$ $2+2+2+2+\mathbb{N}\}$ and the Apery basis of $W\left(R^{*}\right)$ with respect to 4 is $\left(W\left(R^{*}\right), 4\right)=\{4,6,13,15\}$. Hence, the matrix H^{*} has rows as $\left(W\left(R^{*}\right), 4\right)$ has four elements. The first three rows of H^{*} are the same with the rows of H. We add one last row for $15 \in\left(W\left(R^{*}\right), 4\right)-\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. As $15=1.4+4.2+3.1$, the last row has a 1 in the $1+4+3=8$ th column and 0 's for the rest. That is,

$$
H^{*}=\left[\begin{array}{l|llll|lll}
\boldsymbol{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Indeed, it can be shown that the Arf closure R^{*} of R is $k\left[\left[t^{4}, t^{6}, t^{13}, t^{15}\right]\right]$ and H^{*} is the Hamburger-Noether matrix of R^{*}.

Example 5.5.4 Let $R=k\left[\left[t^{6}, t^{9}, t^{11}\right]\right]$. It can be shown that the Hamburger-Noether matrix of R is

$$
H=\left[\begin{array}{l|l|l|ll}
\boldsymbol{1} & 0 & 0 & 1 & 0 \\
0 & \boldsymbol{1} & 0 & \boldsymbol{1} & \boldsymbol{0} \\
0 & 0 & \boldsymbol{1} & 0 & 1
\end{array}\right]
$$

The multiplicity sequence is $(6,3,2,1,1)$ so that $W\left(R^{*}\right)=\{0,6,9,11+\mathbb{N}\}$ and $\left(W\left(R^{*}\right), 6\right)=$ $\{6,9,11,13,14,16\}$. There are three marked rows in H and they have been marked in box 1, box 2 and box 3 for the first time. Thus, $\alpha_{1}=6$ from the first box, $\alpha_{2}=6+3=9$ from the second box and $\alpha_{3}=6+3+2=11$ from the second box. Then, $\{13,14,16\} \in$ $\left(W\left(R^{*}\right), 6\right)-\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. The new matrix H^{*} has six rows as the cardinality of $\left(W\left(R^{*}\right), 6\right)$ is 6. The first three rows are the same with the rows of H as H has three marked rows. We add a row for $13=1.6+1.3+1.2+2.1$ with a 1 in the $1+1+1+2=5$ th column, and zeros for the rest, another row for $14=1.6+1.3+1.2+3.1$ with a 1 in the $1+1+1+3=6$ th column and zeros for the rest and one last row for $16=1.6+1.3+1.2+5.1$ with $a 1$ in the
$1+1+1+5=8$ th column and zeros for the other entries. Thus,

$$
H^{*}=\left[\begin{array}{l|l|l|lllll}
\boldsymbol{1} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \boldsymbol{1} & 0 & \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\
0 & 0 & \boldsymbol{1} & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

CHAPTER 6

A FAST ALGORITHM FOR COMPUTING THE ARF CLOSURE

In Chapter 5, we have seen the method given by Arf to compute the Arf closure of a given branch. It is not easy to convert this method to an algorithm, and implement this in a computer algebra program. In the literature, there is only one algorithm given by Arslan, implemented in Maple [2]. The method given by Arf starts with determining the semigroup of values and the conductor of the branch C. Arslan gives an algorithm for this for his implementation. In fact, this problem has been studied by many mathematicians, and different algorithms have been given [15], [28]. We should note that all of these algorithms are quite slow. This is not unexpected, since even the special case of this problem is the famous Fobenius problem or coin problem, still being studied by many mathematicians. The difficulty in determining the conductor lies in the need to check so many relations between the generators.

The second difficulty in computing the Arf closure is the problem we have observed Example 5.4.6. We have seen that we need to determine the terms of a series obtained by division up to some degree, so this degree must be chosen so that no information is lost. Arslan uses the conductor of the local ring coresponding to the branch in his algorithm [2], but this is a quite large bound, which makes the algorithm slower.

We should note that the computation of the Arf closure by using Hamburger-Noether matrices given at the end of Chapter 5 is also restricted with the same problems.

In this chapter, we give an algorithm, which does not involve determining the conductor, and computing the elements in the local ring at each step. Also, by giving a quite small bound for doing the divisions, we obtain an algorithm, which works very fast compared to other algorithms.

Let C be an algebroid curve branch with the local ring $\Theta=k\left[\left[\varphi_{1}(t), \ldots, \varphi_{n}(t)\right]\right]$ and the semigroup of values $W(\Theta)=\left\{i_{0}, i_{1}, \ldots, i_{h-1}, i_{h}+\mathbb{N}\right\}$ where $i_{0}=0$ and $i_{1}=\operatorname{ord}\left(\varphi_{1}(t)\right)$. We have seen that the ring Θ can be presented as

$$
\Theta=k+k S_{i_{1}}+k S_{i_{2}}+\ldots+k S_{i_{h-1}} k[[T]] S_{i_{h}}
$$

where $S_{i_{j}}$'s are elements of Θ of order i_{j} chosen such that $\varphi_{1}(t), \ldots, \varphi_{n}(t)$ are among them. (For example, $S_{i_{1}}=\varphi_{1}(t)$). Recall also that

$$
\left[I_{i_{1}}\right]=\sum k\left(\frac{S_{i_{2}}}{\varphi_{1}}\right)^{\alpha_{2}}\left(\frac{S_{i_{3}}}{\varphi_{1}}\right)^{\alpha_{3}} \ldots\left(\frac{S_{i_{h-1}}}{\varphi_{1}}\right)^{\alpha_{h-1}}+k[[T]] \frac{S_{i_{h}}}{\varphi_{1}}
$$

where the sum is over all $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{h-1}$ satisfying

$$
\alpha_{2}\left(i_{2}-i_{1}\right)+\alpha_{3}\left(i_{3}-i_{1}\right)+\ldots+\alpha_{h-1}\left(i_{h-1}-i_{1}\right)<\left(i_{h}-i_{1}\right) .
$$

Using the given presentation of Θ and the definition of $\left[I_{i_{1}}\right]$, we give the following lemma.

Lemma 6.0.5 $\left[I_{i_{1}}\right]=k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$.

Proof. The inclusion $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right] \subset\left[I_{i_{1}}\right]$ is clear. Hence, let us prove the other direction. For this, it is sufficient to show that $\frac{S_{i_{j}}}{\varphi_{1}}$ is in $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right] . S_{i_{j}}$ is an element of Θ of order i_{j} by definition. As it is an element of Θ, it can be written as $S_{i_{j}}=\sum a_{i}\left(\varphi_{1}^{\alpha_{i_{1}}} \ldots \varphi_{n}^{\alpha_{i_{n}}}\right)$. Hence,

$$
\frac{S_{i_{j}}}{\varphi_{1}}=\sum a_{i}\left(\varphi_{1}\right)^{\alpha_{i_{1}}+\alpha_{i_{2}}+\ldots+\alpha_{i_{n}}-1}\left(\frac{\varphi_{2}}{\varphi_{1}}\right)^{\alpha_{i_{2}}} \ldots\left(\frac{\varphi_{n}}{\varphi_{1}}\right)^{\alpha_{i_{n}}}
$$

Then each summand in the expansion of $\frac{S_{i_{j}}}{\varphi_{1}}$ is an element of the ring $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$. As a consequence, $\frac{S_{i_{j}}}{\varphi_{1}}$ is an element of $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$ for any i, j. Since each $\frac{S_{i_{j}}}{\varphi_{1}}$ is an element of $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$, then $\sum k\left(\frac{S_{i_{2}}}{\varphi_{1}}\right)^{\alpha_{2}}\left(\frac{S_{i_{3}}}{\varphi_{1}}\right)^{\alpha_{3}} \ldots\left(\frac{S_{i_{h-1}}}{\varphi_{1}}\right)^{\alpha_{h-1}}$ is also an element of $k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$. Thus, $\left[I_{i_{1}}\right] \subset k\left[\left[\varphi_{1}, \frac{\varphi_{2}}{\varphi_{1}}, \ldots, \frac{\varphi_{n}}{\varphi_{1}}\right]\right]$. And this proves our claim.

By using Lemma 6.0.5, we propose the following algorithm to compute the Arf closure:

- We choose the smallest ordered element of Θ, which is φ_{1} and assign it to F_{0}.
- We find the blow-up ring $\Theta^{(1)}=k\left[\left[\varphi_{1}^{(1)}, \ldots, \varphi_{n}^{(1)}\right]\right]$ of $\Theta=\Theta^{(0)}$ by dividing all the series by φ_{1} and then subtracting the constant terms, if necessary.
- If the blow up is smooth, the algorithm stops.
- If not, we find the smallest ordered element of $\Theta^{(1)}$ and assign it to F_{1}.
- We find the blow-up ring $\Theta^{(2)}=k\left[\left[\varphi_{1}^{(2)}, \ldots, \varphi_{n}^{(2)}\right]\right]$ of $\Theta^{(1)}$. If the curve is smooth, the algorithm stops.
- If not, we continue till we resolve the singularity.

The Algorithm is as follows:

```
Algorithm 3 ARF CLOSURE
Input: \(\left(\varphi_{1}(t), \ldots, \varphi_{n}(t)\right)\) is a primitive parametrization with \(\operatorname{ord}\left(\varphi_{1}\right) \leq \operatorname{ord}\left(\varphi_{i}(t)\right)\)
Output: \(F_{0}, \ldots, F_{s} \in k[[t]]\) such that \(k+k F_{0}+k F_{0} F_{1}+\ldots+k F_{0} \ldots F_{s-1}+k[[t]] F_{0} \ldots F_{s}\) is the
    Arf Closure of \(k\left[\left[\varphi_{1}, \ldots \varphi_{n}\right]\right]\)
    \(F_{0} \leftarrow \varphi_{1}, \varphi_{1}^{(1)} \leftarrow \varphi_{1}, \varphi_{i}^{(1)} \leftarrow \frac{\varphi_{i}}{F_{0}} \quad\) for \(2 \leq i \leq n\)
    for \(2 \leq i \leq n\) do
        Change \(\varphi_{i}^{(1)}\) with \(\varphi_{i}^{(1)}-\) constant term of \(\varphi_{i}^{(1)}\).
    end for
    Find the smallest index \(j\) with \(\operatorname{ord}\left(\varphi_{j}^{(1)}\right)\) is minimum among the orders of \(\varphi_{1}^{(1)}, \ldots, \varphi_{n}^{(1)}\)
    if \(\operatorname{ard}\left(\varphi_{j}^{(1)}\right)=1\) then
        Stop the algorithm and return \(F_{0}\)
    else
        \(F_{1} \leftarrow \varphi_{j}^{(1)}\) and go to step 1 by taking \(\left(\varphi_{1}^{(1)}, \ldots, \varphi_{n}^{(1)}\right)\) instead of \(\left(\varphi_{1}, \ldots, \varphi_{n}\right), \varphi_{j}^{(1)}\) instead
        of \(\varphi_{1}, F_{1}\) instead of \(F_{0}\).
    end if
```

The algorithm terminates because after finitely many blowing ups, we obtain a smooth curve branch. Hence, we obtain be a power series of order 1.

One can immediately realize that the given form of the algorithm is still not implementable, since it does not a give a bound that determines up to which degree the divisions of the power series are done. We will also solve this problem, but we first give some examples to see how the algorithm works.

Example 6.0.6 Let R be the ring $k\left[\left[t^{4}, t^{6}, t^{11}\right]\right]$. We know from Example 5.4.3 that

$$
R^{*}=k+k t^{4}+k t^{4} t^{2}+k t^{4} t^{2} t^{2}+k[[t]] t^{4} t^{2} t^{2} t^{2}=k+k t^{4}+k t^{6}+k t^{8}+k[[t]] t^{10}
$$

With the new algorithm, $F_{0}=t^{4}, \varphi_{1}^{(1)}=t^{4}, \varphi_{2}^{(1)}=\frac{t^{6}}{t^{4}}=t^{2}$ and $\varphi_{3}^{(1)}=\frac{t^{11}}{t^{4}}=t^{7}$. None of the $\varphi_{i}^{(1)}$'s have order 1 , so we take $F_{1}=t^{2}$, as $\varphi_{2}^{(1)}=t^{2}$ has the minimum order among the $\varphi_{i}^{(1)}$'s. We continue the algorithm with the parametrization $\left(t^{4}, t^{2}, t^{7}\right)$. Then, $\varphi_{1}^{(2)}=\frac{t^{4}}{t^{2}}=t^{2}, \varphi_{2}^{(2)}=t^{2}$ and $\varphi_{3}^{(2)}=\frac{t^{7}}{t^{2}}=t^{5}$. None of the $\varphi_{i}^{(2)}$'s has order one. $\varphi_{1}^{(2)}=t^{2}$ has the smallest order. So we take $F_{2}=\varphi_{1}^{(2)}=t^{2}$ and continue dividing the series with F_{2}. Then $\varphi_{1}^{(3)}=t^{2}$ again and this time $\varphi_{2}^{(3)}=\frac{t^{2}}{t^{2}}-1, \varphi_{3}^{(3)}=\frac{t^{5}}{t^{2}}=t^{3}$. As $\varphi_{2}=0$, we continue without it, that is with $\left(t^{2}, t^{3}\right)$. None of the series have order one, taking $F_{3}=\varphi_{1}^{(2)}=t^{2}$, we continue the algorithm. $\varphi_{1}^{(4)}=t^{2}$, $\varphi_{3}^{(4)}=\frac{t^{3}}{t^{2}}=t$. Now we have a series of order one, so the algorithm stops. Hence, the Arf closure of R is

$$
R^{*}=k+k F_{0}+k F_{0} F_{1}+k F_{0} F_{1} F_{2}+k[[t]] F_{0} F_{1} F_{2} F_{3}=k+k t^{4}+k t^{6}+k t^{8}+k[[t]] t^{10}
$$

as expected.

Example 6.0.7 Let R be the ring $\left.k\left[t^{4}, t^{8}+t^{9}, t^{15}\right]\right]$ in Example 5.4.5. We have shown that its Arf closure is $R^{*}=k+k t^{4}+k\left[[t] t^{8}\right.$. Now, let us show it with our new algorithm. $F_{0}=t^{4}$, $\varphi_{1}^{(1)}=t^{4}, \varphi_{2}^{(1)}=\frac{t^{8}+t^{9}}{t^{4}}=t^{4}+t^{5}$ and $\varphi_{3}^{(1)}=\frac{t^{15}}{t^{4}}=t^{11}$. None of the series has order one, and the smallest ordered series is t^{4}. Hence, we continue the algorithm by taking $F_{1}=t^{4} . \varphi_{1}^{(2)}=t^{4}$, $\varphi_{2}^{(2)}=\frac{t^{4}+t^{5}}{t^{4}}-1=t, \varphi_{3}^{(2)}=t^{7} . \operatorname{As} \operatorname{ord}\left(\varphi_{2}^{(2)}\right)=1$, the algorithm stops. So the Arf closure is:

$$
R^{*}=k+k F_{0}+k[[t]] F_{0} F_{1}=k+k t^{4}+k[[t]] t^{8}
$$

6.1 Challenges

Even though it seems that the algorithm works very well in Example 6.0.6 and Example 6.0.7, we must solve the problem of determining a suitable bound for the divisions, as the following example shows..

Example 6.1.1 Let R be the ring $k\left[\left[t^{4}, t^{6}+t^{9}, t^{14}\right]\right]$ in Example 5.4.6. $F_{0}=t^{4}, \varphi_{1}^{(1)}=t^{4}$, $\varphi_{2}^{(1)}=\frac{t^{6}+t^{9}}{t^{4}}=t^{2}+t^{5}, \varphi_{3}^{(1)}=\frac{t^{14}}{t^{4}}=t^{10}$ after the first division. The smallest ordered series is $t^{2}+t^{5}$. Hence, $F_{1}=t^{2}+t^{5}, \varphi_{1}^{(2)}=\frac{t^{4}}{t^{2}+t^{5}}, \varphi_{2}^{(2)}=t^{2}+t^{5}$ and $\varphi_{3}^{(2)}=\frac{t^{10}}{t^{2}+t^{5}}$. Observe that $\varphi_{1}^{(2)}$ and $\varphi_{3}^{(2)}$ are not polynomials, but series. So, we should ignore some terms in these series, but some terms play significant roles in the next divisions. Losing them may cause mistakes in finding the Arf closure. In this example, we do the divisions by ignoring the terms with
powers greater than 14, and we will explain later, why we have made this choice. With our choice, $\varphi_{1}^{(2)}=t^{2}-t^{5}+t^{8}-t^{11}+t^{14}, \varphi_{2}^{(2)}=t^{2}+t^{5}, \varphi_{3}^{(2)}=t^{8}-t^{11}+t^{14} . t^{2}+t^{5}$ and $t^{2}-t^{5}+t^{8}-t^{11}+t^{14}$ have both order 2 as the smallest. We can use any of them to divide the series. Hence, without loss of generality, we choose $t^{2}+t^{5}$. Then we have $F_{2}=t^{2}+t^{5}$, $\varphi_{1}^{(3)}=\frac{t^{2}-t^{5}+t^{8}-t^{11}+t^{14}}{t^{2}+t^{5}}-1=-2 t^{3}+3 t^{6}-4 t^{9}+5 t^{12}+$ higher degree terms, $\varphi_{2}^{(3)}=t^{2}+t^{5}$, $\varphi_{3}^{(3)}=\frac{t^{8}-t^{11}+t^{14}}{t^{2}+t^{5}}=t^{6}-2 t^{9}+3 t^{12}+$ higher degree terms. We ignore the higher degree terms. Again, $t^{2}+t^{5}$ have the smallest order. Hence, $F_{3}=t^{2}+t^{5}, \varphi_{1}^{(4)}=\frac{-2 t^{3}+3 t^{6}-4 t^{9}+5 t^{12}}{t^{2}+t^{5}}=-2 t+$ $5 t^{4}-9 t^{7}+14 t^{10}-14 t^{13}+$ higher degree terms. The algorithm stops, as we have obtained an order one series. Then the Arf closure of R is
$R^{*}=k t^{4}+k\left(t^{6}+t^{9}\right)+k\left(t^{8}+2 t^{11}+t^{14}\right)+k[[t]]\left(t^{10}+3 t^{13}\right)=k t^{4}+k\left(t^{6}+t^{9}\right)+k t^{8}+k[[t]] t^{10}$

Note that, we have used 14 as a bound for dividing the series in Example 6.1.1. Recall that we have already shown in Example 5.4.6 that the conductor is 14 . This is not a coincidence. The conductor of the local ring corresponding to the branch can be used without losing any data. This is a consequence of the following lemma and the fact that the conductor of the blow up ring is always smaller.

Theorem 6.1.2 [15, Proposition 1.1] Let C be a curve branch with the parametrization $\left(\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right)$. Let also c be the conductor of the semigroup of values of C. Then any parametrization $\left(\varphi_{1}^{\prime}(t), \varphi_{2}^{\prime}(t), \ldots, \varphi_{n}^{\prime}(t)\right)$ with $\varphi_{i}(t) \equiv \varphi^{\prime}{ }_{i}(t)\left(\bmod t^{c}\right)$ for $1 \leq i \leq n$ gives the same curve with C.

Proof. Let $\overline{\varphi_{i}(t)}$ be the series obtained by $\varphi_{i}(t)$ by truncation in $\bmod \left(t^{c}\right)$ for $1 \leq i \leq n$. Consider the curve branch \bar{C} given with the parametrization $\left(\overline{\varphi_{1}(t)}, \ldots, \overline{\varphi_{n}(t)}\right)$. The key point here is observing that the conductor of the semigroup of \bar{C} is also c.

We are going to show that $\overline{\varphi_{i}(t)} \in k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$ for any $1 \leq i \leq n$. For this, consider the series $f_{i}^{m} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ for any $m \geq c$ such that

$$
\overline{\varphi_{i}(t)}=\varphi_{i}(t)-f_{i}^{(c)}\left(\varphi_{1}(t), \ldots, \varphi_{n}(t)\right)-f_{i}^{(c+1)}\left(\varphi_{1}(t), \ldots, \varphi_{n}(t)\right)-\ldots
$$

Such series exist since the rings $k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$ and $k\left[\left[\overline{\varphi_{1}}, \ldots, \overline{\varphi_{n}}\right]\right]$ are complete. Then we can say that $\overline{\varphi_{i}} \in k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$ and thus $k\left[\left[\overline{\varphi_{1}}, \ldots, \overline{\varphi_{n}}\right]\right] \subset k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$. The other direction can be shown similarly.

Hence, to find the Arf closure of the ring $R=k\left[\left[x_{1}(t), \ldots, x_{n}(t)\right]\right]$ with the semigroup of values $W(R)$ and the conductor c, we can use Algorithm 3 with the bound c, while dividing the series. Although this seems to solve our problem, it still requires to find the conductor of the semigroup of values $W(R)$. But, it is not known so far how to find the conductor, without knowing the semigroup, which is a difficult problem as we have mentioned above. So, our aim is finding another bound, which is easier to compute, that we can use while dividing the series.

We use the following notation, throughout the remaining part of this chapter. Let $\Theta=$ $k\left[\left[\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right]\right]$ be an algebraic curve branch, where $\varphi_{i}^{(0)}(t)$'s, $(1 \leq i \leq s)$ are polynomials in t with increasing order. Setting S to the semigroup of Θ and c to the conductor of S, Let Θ^{*} be the Arf closure of Θ, S^{*} semigroup of Θ^{*}, and c^{*} conductor of S^{*}. Assume that k times blowing-up Θ solves its singularity. Let Θ_{0} be Θ, Θ_{i} be the i th blow-up of Θ for $i \leq k, F_{i}$ be the smallest ordered element of Θ_{i} and let a_{i} be the order of F_{i}. Schematically;

Column 1 Column 2 Column s

$\varphi_{1}^{(0)}(t), \quad \varphi_{2}^{(0)}(t), \quad \ldots, \quad \varphi_{s}^{(0)}(t), \quad \longrightarrow \quad F_{0}=t^{a_{0}}+$ higher degree terms

$$
\begin{equation*}
\varphi_{1}^{(1)}(t), \quad \varphi_{2}^{(1)}(t), \quad \ldots, \quad \varphi_{s}^{(1)}(t), \quad \longrightarrow \quad F_{1}=t^{a_{1}}+\text { higher degree terms } \tag{6.1}
\end{equation*}
$$

$$
\varphi_{1}^{(k)}(t), \quad \varphi_{2}^{(k)}(t), \quad \ldots, \quad \varphi_{s}^{(k)}(t), \quad \longrightarrow \quad F_{k}=t+\text { higher degree terms }
$$

Here,

$$
\varphi_{j}^{(i)}(t)= \begin{cases}\varphi_{j}^{(i-1)}(t), & \text { if } F_{i-1}=\varphi_{j}^{(i-1)}(t) \tag{6.2}\\ \frac{\varphi_{j}^{(i-1)}(t)}{F_{i-1}}-c_{i j}, & \text { if } F_{i-1} \neq \varphi_{j}^{(i-1)}(t)\end{cases}
$$

where $c_{i j} \in k$ and $c_{i j} \neq 0$ if and only if $\operatorname{ord}\left(\varphi_{j}^{(i-1)}(t)\right)=\operatorname{ord}\left(F_{i-1}\right)$. Note also that $\operatorname{ord}\left(F_{k-1}\right) \geq$ 2 with $a_{0} \geq a_{1} \geq \ldots \geq a_{k-1} \geq 2$. Then $\Theta_{i}=k\left[\left[\varphi_{1}^{(i)}(t), \varphi_{2}^{(i)}(t), \ldots, \varphi_{s}^{(i)}(t)\right]\right]$ and the Arf closure of Θ is:

$$
\begin{align*}
\Theta^{*} & =k+k F_{0}+k F_{0} F_{1}+\ldots+k F_{0} F_{1} \ldots F_{k-2}+t^{c^{*}} k[[t]] \tag{6.3}\\
& =k+k G_{0}+k G_{0} G_{1}+\ldots+k G_{0} G_{1} \ldots G_{k-2}+t^{c^{*}} k[[t]]
\end{align*}
$$

where $G_{i} \equiv F_{i}\left(\bmod t^{c^{*}}\right), 0<i<k$. We need to determine G_{i} 's to construct the Arf closure and we need to know the term that we should stop while doing the divisions $\frac{\varphi_{j}^{(i-1)}(t)}{F_{i-1}}$. We should choose such a power that we do not lose any information about the Arf closure in the subsequent steps. To explain what we mean exactly, consider following example:

Example 6.1.3 $\Theta_{0}=k\left[\left[t^{6}+t^{11}+t^{32}, t^{8}+t^{13}+t^{34}\right]\right]$. Let's construct the Arf closure of Θ_{0}.

$$
\begin{array}{llll}
\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(0)}(t)=t^{8}+t^{13}+t^{34} & \longrightarrow & F_{0}=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32} \\
\varphi_{1}^{(1)}(t)=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(1)}(t)=\frac{\varphi_{2}^{(0)}(t)}{F_{0}}=t^{2} & \longrightarrow & F_{1}=\varphi_{2}^{(1)}(t)=t^{2} \\
\varphi_{1}^{(2)}(t)=\frac{\varphi_{1}^{(1)}(t)}{F_{1}}=t^{4}+t^{9}+t^{30}, & \varphi_{2}^{(2)}(t)=\varphi_{2}^{(1)}(t)=t^{2} & \longrightarrow & F_{2}=\varphi_{2}^{(2)}(t)=t^{2} \\
\varphi_{1}^{(3)}(t)=\frac{\varphi_{1}^{(2)}(t)}{F_{2}}=t^{2}+t^{7}+t^{28}, & \varphi_{2}^{(3)}(t)=\varphi_{2}^{(2)}(t)=t^{2} & \longrightarrow & F_{3}=\varphi_{2}^{(3)}(t)=t^{2} \\
\varphi_{1}^{(4)}(t)=\frac{\varphi_{1}^{(3)}(t)}{F_{3}}-1=t^{5}+t^{26}, & \varphi_{2}^{(4)}(t)=\varphi_{2}^{(3)}(t)=t^{2} & \longrightarrow & F_{4}=\varphi_{2}^{(4)}(t)=t^{2} \\
\varphi_{1}^{(5)}(t)=\frac{\varphi_{1}^{(4)}(t)}{F_{4}}=t^{3}+t^{24}, & \varphi_{2}^{(5)}(t)=\varphi_{2}^{(4)}(t)=t^{2} & \longrightarrow & F_{5}=\varphi_{2}^{(5)}(t)=t^{2} \\
\varphi_{1}^{(6)}(t)=\frac{\varphi_{1}^{(5)}(t)}{F_{5}}=t+t^{22}, & \varphi_{2}^{(6)}(t)=\varphi_{2}^{(5)}(t)=t^{2} & \longrightarrow & F_{6}=\varphi_{1}^{(6)}(t)=t+t^{22}
\end{array}
$$

Arf closure is,

$$
\begin{aligned}
\Theta^{*}= & k+k\left(t^{6}+t^{11}+t^{32}\right)+k\left(t^{6}+t^{11}+t^{32}\right)\left(t^{2}\right)+k\left(t^{6}+t^{11}+t^{32}\right)\left(t^{2}\right)\left(t^{2}\right)+ \\
& k\left(t^{6}+t^{11}+t^{32}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right)+k\left(t^{6}+t^{11}+t^{32}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right)+\left(t^{6}+t^{11}\right. \\
& \left.+t^{32}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right)\left(t^{2}\right) k[[t]] \\
= & k+k\left(t^{6}+t^{11}\right)+k\left(t^{8}+t^{13}\right)+k\left(t^{10}+t^{15}\right)+k\left(t^{12}\right)+k\left(t^{14}\right)+t^{16} k[[t]]
\end{aligned}
$$

If we had done our divisions till the power 9,

$$
\begin{array}{llll}
\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(0)}(t)=t^{8}+t^{13}+t^{34} & \longrightarrow & F_{0}=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32} \\
\varphi_{1}^{(1)}(t)=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(1)}(t)=\frac{\varphi_{2}^{(0)}(t)}{F_{0}}=t^{2} & \longrightarrow & F_{1}=\varphi_{2}^{(1)}(t)=t^{2} \\
\varphi_{1}^{(2)}(t)=\frac{\varphi_{1}^{(1)}(t)}{F_{1}}\left(\bmod t^{9}\right) \equiv t^{4}, & \varphi_{2}^{(2)}(t)=\varphi_{2}^{(1)}(t)=t^{2} & \longrightarrow & F_{2}=\varphi_{2}^{(2)}(t)=t^{2} \\
\varphi_{1}^{(3)}(t)=\frac{\varphi_{1}^{(2)}(t)}{F_{2}}=t^{2}, & \varphi_{2}^{(3)}(t)=\varphi_{2}^{(2)}(t)=t^{2} & \longrightarrow \quad F_{3}=\varphi_{2}^{(3)}(t)=t^{2}
\end{array}
$$

Hence, we wouldn't be able to construct the Arf Closure correctly. We would face with this problem, because we would lose ' t^{11} ', which takes part in the algorithm at step 4 as ' t^{5} '. Observe that step 4 is the step that the constant c_{14} is different than 1 . We can also choose 12 instead of 9 as the bound that determines, where the divisions stop. Indeed,

$$
\begin{array}{llll}
\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(0)}(t)=t^{8}+t^{13}+t^{34} & \longrightarrow & F_{0}=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32} \\
\varphi_{1}^{(1)}(t)=\varphi_{1}^{(0)}(t)=t^{6}+t^{11}+t^{32}, & \varphi_{2}^{(1)}(t)=\frac{\varphi_{2}^{(0)}(t)}{F_{0}}=t^{2} & \longrightarrow & F_{1}=\varphi_{2}^{(1)}(t)=t^{2} \\
\varphi_{1}^{(2)}(t)=\frac{\varphi_{1}^{(1)}(t)}{F_{1}}\left(\bmod t^{12}\right) \equiv t^{4}+t^{9}, & \varphi_{2}^{(2)}(t)=\varphi_{2}^{(1)}(t)=t^{2} & \longrightarrow & F_{2}=\varphi_{2}^{(2)}(t)=t^{2} \\
\varphi_{1}^{(3)}(t)=\frac{\varphi_{1}^{(2)}(t)}{F_{2}}=t^{2}+t^{7}, & \varphi_{2}^{(3)}(t)=\varphi_{2}^{(2)}(t)=t^{2} & \longrightarrow & F_{3}=\varphi_{2}^{(3)}(t)=t^{2} \\
\varphi_{1}^{(4)}(t)=\frac{\varphi_{1}^{(3)}(t)}{F_{3}}-1=t^{5}, & \varphi_{2}^{(4)}(t)=\varphi_{2}^{(3)}(t)=t^{2} & \longrightarrow & F_{4}=\varphi_{2}^{(4)}(t)=t^{2} \\
\varphi_{1}^{(5)}(t)=\frac{\varphi_{1}^{(4)}(t)}{F_{4}}=t^{3}, & \varphi_{2}^{(5)}(t)=\varphi_{2}^{(4)}(t)=t^{2} & \longrightarrow & F_{5}=\varphi_{2}^{(5)}(t)=t^{2} \\
\varphi_{1}^{(6)}(t)=\frac{\varphi_{1}^{(5)}(t)}{F_{5}}=t, & \varphi_{2}^{(6)}(t)=\varphi_{2}^{(5)}(t)=t^{2} & \longrightarrow & F_{6}=\varphi_{1}^{(6)}(t)=t
\end{array}
$$

In this case, the Arf Closure is;

$$
k+k\left(t^{6}+t^{11}\right)+k\left(t^{8}+t^{13}\right)+k\left(t^{10}+t^{15}\right)+k\left(t^{12}\right)+k\left(t^{14}\right)+k[[t]]\left(t^{16}\right)
$$

which is the same ring as Θ^{*}. In spite of the fact that the term ' t ' ${ }^{30}$ ' is lost, we still obtain the same result. So, we can say that ' t '1' is playing an important role, while ' t ' 30 ' is not.

As we have seen from the examples, we should choose such a bound that no important terms are lost, if the divisions are done by using this bound.

6.2 Solution

Let $\Theta=k\left[\left[\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right]\right]$ be a branch, where $\varphi_{i}^{(0)}(t)$'s, $(1 \leq i \leq s)$ are polynomials in t with increasing order. Let S be the semigroup of Θ and c be the conductor of S. Let Θ^{*} be the Arf closure of Θ, S^{*} semigroup of Θ^{*}, and c^{*} conductor of S^{*}. And let $\overline{\varphi_{i}}$ be the series obtained by truncation of the series φ_{i} by $\bmod \left(t^{t^{*}+1}\right)$. We can give our main theorem and its proof, which actually says that the bound ' $c^{*}+1$ ' works.

Theorem 6.2.1 Let $\Theta=k\left[\left[\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right]\right]$ be the local ring corresponding to a branch and c^{*} be the conductor of the semigroup of values of its Arf closure Θ^{*}. If we have $\varphi_{i}^{(0)}(t) \equiv \bar{\varphi}_{i}^{(0)}(t)\left(\bmod t^{c^{*}+1}\right)$ for $1 \leq i \leq s$, then the $k\left[\left[\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right]\right]$ and $k\left[\left[\bar{\varphi}_{1}^{(0)}(t), \bar{\varphi}_{2}^{(0)}(t), \ldots, \bar{\varphi}_{s}^{(0)}(t)\right]\right]$ have the same Arf Closure.

Proof. As $\Theta^{*}=k+k F_{0}+k F_{0} F_{1}+\ldots+k F_{0} F_{1} \ldots F_{k-2}+t^{c^{*}} k[[t]]$, its semigroup of values is $W\left(\Theta^{*}\right)=\left\{0, a_{0}, a_{0}+a_{1}, \ldots, a_{0}+\ldots+a_{k-2}, c^{*}+\mathbb{N}\right\}$ and $c^{*}=a_{0}+a_{1}+\ldots+a_{k-1}$, where here $a_{i}=\operatorname{ord}\left(F_{i}\right)$. We are going to show that, while finding the Arf Closure of $k\left[\left[\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right]\right]$, by doing divisions in $\bmod \left(t^{c^{*}+1}\right)$, we don't lose any important monomials and obtain the exact Arf Closure. We are going to prove our claim in two parts by considering the constants ' $c_{i j}$'s. We will use the blow up schema 6.1 and the notation there. Before starting to prove our claim, observe that, if a column in the blow up schema 6.1 does not enter the algorithm, it means that the algorithm is the same without that column. Therefore, losing monomials in that column has no effect on the computation of the Arf closure. Hence, without loss of generalization, we assume that all of the columns enter the algorithm at least once. Using the schema 6.1 again, this is equivalent to saying that for all $i, \varphi_{i}^{(j)}=F_{j}$ for at least one j.

We first consider the case with zero constants. In other words, recalling Equation 6.2, $c_{i j}=0$ for all i, j, so that all the important monomials are the smallest ordered terms of $\varphi_{i}^{(0)}$,s.

In this situation, for all $i, \operatorname{ord}\left(\varphi_{i}^{(0)}\right) \geq \operatorname{ord}\left(\varphi_{i}^{(1)}\right) \geq \ldots \geq \operatorname{ord}\left(\varphi_{i}^{(k)}\right)$ and,

$$
\varphi_{i}^{(j)}(t)=\varphi_{i}^{(k)}(t) \prod_{l \in I_{i j}} F_{l} \text { where } I_{i j}=\left\{l: j \leq l<k \text { and } \mathrm{F}_{1} \neq \varphi_{\mathrm{i}}^{(\mathrm{l})}(\mathrm{t})\right\}
$$

Then, $\operatorname{ard}\left(\varphi_{i}^{(0)}\right)=\sum_{l \in I_{i 0}} a_{l}+\operatorname{ord}\left(\varphi_{i}^{(k)}(t)\right)$. We have observed that $\varphi_{i}^{(j)}(t)=F_{j}$ for some j. Therefore, $\sum_{l \in I_{i 0}} a_{l}+\underbrace{\operatorname{ord}\left(F_{j}\right)}_{\underbrace{a_{j}}_{\operatorname{ord}\left(\varphi_{i}^{(j)}\right)}} \leq c^{*}$. Also, since $\operatorname{ord}\left(\varphi_{i}^{(k)}\right) \leq \operatorname{ord}\left(\varphi_{i}^{(j)}\right)$ for all $j<k$, we have $\operatorname{ord}\left(\varphi_{i}^{(0)}\right)=\sum_{l \in I_{i 0}} a_{l}+\operatorname{ord}\left(\varphi_{i}^{(k)}\right) \leq c^{*}$ for all i. So, dividing the series till the $\left(c^{*}+1\right)$ th power is enough to construct the Arf closure correctly.

If $c_{i j} \neq 0$ for some i and j, we do an induction on the number of j 's for which $c_{i j} \neq 0$ for some i.

- $n=1\left(c_{i j} \neq 0\right.$ for only one i and for some $\left.j\right)$

$$
\begin{array}{lllllll}
\varphi_{1}^{(0)}(t), & \ldots & \varphi_{i}^{(0)}(t), & \ldots & \varphi_{s}^{(0)}(t), & \longrightarrow & F_{0} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\varphi_{1}^{(j)}(t), & \ldots & \varphi_{i}^{(j)}(t)=\frac{\varphi_{i}^{(j-1)}(t)}{F_{j-1}}-c_{i j}, & \ldots & \varphi_{s}^{(j)}(t), & \longrightarrow & F_{j} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\varphi_{1}^{(k)}(t), & \ldots & \varphi_{j}^{(k)}(t), & \ldots & \varphi_{s}^{(k)}(t), & \longrightarrow & F_{k}=t+\ldots
\end{array}
$$

Let

$$
\begin{equation*}
\varphi_{i}^{(j)}(t)=b_{1} t^{\alpha_{1}}+b_{2} t^{\alpha_{2}}+\ldots=\frac{\varphi_{i}^{(j-1)}(t)}{F_{j-1}}-c_{i j},\left(\alpha_{1}<\alpha_{2}\right) \tag{6.4}
\end{equation*}
$$

It's enough to show that, we don't lose the term $t^{\alpha_{1}}$ in the steps $0,1, \ldots, j-1$ by doing the divisions till the $\left(c^{*}+1\right)$ th power. The reason is that after the j th step, there are no nonzero $c_{i j}$'s and from the previous part, we know that $\alpha_{1}<a_{j}+a_{j+1}+\ldots+a_{k}<c^{*}$. (Note that, without loss of generalization, we can assume that the i th column enters the algorithm at least once after the jth step.)

Hence, by Equation (6.4),

$$
\varphi_{i}^{(j-1)}(t)=\left(c_{i j}+b_{1} t^{\alpha_{1}}+b_{2} t^{\alpha_{2}}+\ldots\right) F_{j-1}
$$

and

$$
\varphi_{i}^{(0)}(t)=\left(c_{i j}+b_{1} t^{\alpha_{1}}+b_{2} t^{\alpha_{2}}+\ldots\right) \prod_{l \in \Lambda_{i, 0}} F_{l}
$$

where $\Lambda_{i, 0}=\left\{l: 0 \leq l \leq j-1\right.$ and $\left.\mathrm{F}_{1} \neq \varphi_{\mathrm{i}}^{(\mathrm{l})}(\mathrm{t})\right\}$. As $\alpha_{1} \leq a_{j}+\ldots+a_{k-1}$ and $c^{*}=a_{0}+\ldots+$ $a_{j-1}+a_{j}+\ldots+a_{k-1}$, we can say that $\varphi_{i}^{(0)}(t) \bmod t^{c^{*}+1}$ contains the term, which gives $t^{\alpha_{1}}$ in the j-th step. This shows that doing the divisions till the $\left(c^{*}+1\right)$ th power in the steps $0,1, \ldots, j-1$, guarantees that the term $t^{\alpha_{1}}$ is obtained in the j-th step.

- Assume the claim is true for a branch having $c_{i j} \neq 0$ for $n-1$ different j 's. We take any branch having $c_{i j} \neq 0$ for n different j 's.

Let the first constant appears at the i_{0}-th column, j_{0}-th step. Then,

$$
\begin{array}{lllllll}
\varphi_{1}^{(0)}(t), & \ldots & \varphi_{i}^{(0)}(t), & \ldots & \varphi_{s}^{(0)}(t), & \longrightarrow & F_{0} \\
\vdots & & \vdots & \vdots & & \vdots \\
\varphi_{1}^{\left(j_{0}\right)}(t), & \ldots & \varphi_{i_{0}}^{\left(j_{0}\right)}(t)=\frac{\varphi_{i_{0}}^{\left(j_{0}-1\right)}(t)}{F_{j_{0}-1}}-c_{i_{0} j_{0}}, & \ldots & \varphi_{s}^{\left(j_{0}\right)}(t), & \longrightarrow & F_{j_{0}} \\
\vdots & \vdots & & \vdots & \vdots \\
\varphi_{1}^{(k)}(t), & \ldots & \varphi_{j}^{(k)}(t), & \ldots & \varphi_{s}^{(k)}(t), & \longrightarrow & F_{k}=t+\ldots
\end{array}
$$

From the induction assumption, for the steps starting with j_{0} th one, it is sufficient to make the divisions till the power $a_{j_{0}}+a_{j_{0}+1}+\ldots+a_{k-1}$, since that is the conductor of the Arf closure of the ring $k\left[\left[\varphi_{1}^{\left(j_{0}\right)}, \varphi_{2}^{\left(j_{0}\right)}, \ldots, \varphi_{s}^{\left(j_{0}\right)}\right]\right]$. In other words, all the important monomials that determine the Arf closure have orders less than or equal to $a_{j_{0}}+\ldots+a_{k-1}$ at j_{0} th step. Then, as in the first part of the induction hypothesis, since

$$
\begin{equation*}
\varphi_{i_{0}}^{\left(j_{0}\right)}(t)=b_{1} t^{\alpha_{1}}+b_{2} t^{\alpha_{2}}+\ldots=\frac{\varphi_{i_{0}}^{\left(j_{0}-1\right)}(t)}{F_{j_{0}-1}}-c_{i_{0} j_{0}},\left(\alpha_{1}<\alpha_{2}\right), \tag{6.5}
\end{equation*}
$$

we can write $\varphi_{i_{0}}^{(0)}$ as:

$$
\varphi_{i_{0}}^{(0)}(t)=\left(c_{i j}+b_{1} t^{\alpha_{1}}+b_{2} t^{\alpha_{2}}+\ldots\right) \prod_{l \in \Lambda_{i_{0}, 0}} F_{l},
$$

where $\Lambda_{i_{0}, 0}=\left\{l: 0 \leq l \leq j_{0}-1\right.$ and $\left.\mathrm{F}_{1} \neq \varphi_{\mathrm{i}_{0}}^{(\mathrm{l})}(\mathrm{t})\right\}$. Then all the important monomials in the first steps have order less than or equal to $\operatorname{ord}\left(\prod_{l \in \Lambda_{i_{0}, 0}} F_{l}\right)=a_{0}+a_{1}+\ldots+a_{j_{0}-1}$ plus $a_{j_{0}}+$ $a_{j_{0}+1}+\ldots+a_{k-1}$, which is equal to c^{*}. Hence, by doing our divisions in mod $t^{c^{*}+1}$, we keep the important terms to construct the Arf closure correctly.

Remark 6.2.2 We should observe that, Theorem 6.2.1 does not say that the parametrizations $\left(\varphi_{1}^{(0)}(t), \varphi_{2}^{(0)}(t), \ldots, \varphi_{s}^{(0)}(t)\right)$ and $\left.\bar{\varphi}_{1}^{(0)}(t), \bar{\varphi}_{2}^{(0)}(t), \ldots, \bar{\varphi}_{s}^{(0)}(t)\right)$ provide the same curve. We do not guarantee getting the same blow up rings by doing the divisions in $\bmod \left(t^{c^{*}+1}\right)$. We only say that, we obtain the same Arf closure and multiplicity sequence.

Now, we have a bound for dividing the series and determining the Arf Closure. It is definitely much better to use $c^{*}+1$ than to use c, since mostly $c^{*}+1$ is much smaller than c. $\left(\Theta \subset \Theta^{*}\right.$ and $W(\Theta) \subset W\left(\Theta^{*}\right)$. Thus, $c^{*} \leq c$.) But, it looks like as if we are in a vicious circle: We want to determine the Arf Closure and the multiplicity sequence, but we need the conductor of the Arf closure for this. Hence, we ask the following question: 'Is there a way to find the conductor of the Arf Closure or to give a bound for it without knowing the Arf Closure?' We first investigate the plane branches, but before that let us state the next obvious remark for all branches.

Remark 6.2.3 Let C be a branch given with the parametrization $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ and with the multiplicity sequence $a_{0}, a_{1}, \ldots, a_{k-1}, 1,1 \ldots$ Then the conductor c^{*} of the Arf Closure of the ring $\Theta=k\left[\left[\varphi_{1}, \ldots, \varphi_{n}\right]\right]$ is equal to the sum $a_{0}+a_{1}+\ldots+a_{k-1}$

Proof. We know from Theorem 5.4.7 that $W\left(\Theta^{*}\right)=\left\{0, a_{0}, a_{0}+a_{1}, \ldots, a_{0}+\ldots+a_{k-1}+\mathbb{N}\right\}$. Then, clearly $c^{*}=a_{0}+a_{1}+\ldots+a_{k-1}$.

6.2.1 Conductor of the Arf Closure for the Plane Algebroid Branches

Let C be a plane branch with characteristic exponents $\beta_{0}, \ldots, \beta_{q}$.

Theorem 6.2.4 Let Θ be the local ring corresponding to C, Θ^{*} be Arf closure of Θ and c^{*} be conductor of $W\left(\Theta^{*}\right)$. Then, $c^{*}=\beta_{0}+\beta_{q}-1$.

Proof. We know from Theorem 6.2.3 that c^{*} is the sum of the multiplicities in the multiplicity sequence of C^{*} but Corollary 3.1 .18 says that the sum of the multiplicities in the multiplicity sequence is equal to $\beta_{0}+\beta_{q}-1$. Hence, $c^{*}=\beta_{0}+\beta_{q}-1$.

As a consequence, for the plane case, if we know the characteristic exponents of the branch, we know the conductor of the Arf Closure, so we can determine the Arf closure by using our algorithm. The next step is finding a bound for c^{*} directly from the parameterization.

Let C be a plane branch given in Puiseux form $x(t)=t^{n}, y(t)=\sum a_{i} t^{i}$ with $n \leq \operatorname{ord}(y(t))$, and let $\left(\beta_{0}, \ldots, \beta_{q}\right)$ be the characteristic exponents of C. From the definition of the characteristic exponents, $\beta_{0}=n$ and β_{q} is the degree of one of the terms appearing in $y(t)$. If we start with polynomials $x(t)$ and $y(t), \beta_{q}$ is less than or equal to the highest power appearing in $y(t)$. Then we can obviously state the next theorem:

Theorem 6.2.5 Let C be a plane curve branch given with parametrization $x(t)=t^{n}, y(t)=$ $a_{1} t^{m_{1}}+a_{2} t^{m_{2}}+\ldots .+a_{r} t^{m_{r}}$. Then the conductor of the Arf closure of $k[[x(t), y(t)]]$ is less than or equal to $n+m_{r}-1$

As a consequence, for the branches given with the parametrization $x(t)=t^{n}, y(t)=a_{1} t^{m_{1}}+$ $a_{2} t^{m_{2}}+\ldots .+a_{r} t^{m_{r}}$, while constructing the Arf Closure, we can do our divisions till the power $n+m_{r}$.

Now, if we have a plane branch given in Puiseux form, we can obtain our bound by just considering the powers appearing in the series. For the parameterizations in standard form,

$$
\begin{aligned}
& x(t)=a_{0} t^{p}+a_{1} t^{p+1}+a_{2} t^{p+2}+\ldots \\
& y(t)=b_{0} t^{q}+b_{1} t^{q+1}+b_{2} t^{q+2}+\ldots
\end{aligned}
$$

we need a method for converting it to the Puiseux form:

$$
\begin{aligned}
& x(t)=t^{p} \\
& y(t)=c_{q} t^{q}+c_{q+1} t^{q+1}+\ldots .
\end{aligned}
$$

In general, this process involves finding a formula for t in terms of x, but this requires a lot of computation. Hence, we present here an algorithm given by Borodzik in [6]. The Algorithm works for $k=\mathbb{C}$.

Theorem 6.2.6 [6] Let C be a plane branch with parametrization

$$
\begin{aligned}
& x(t)=a_{0} t^{p}+a_{1} t^{p+1}+a_{2} t^{p+2}+\ldots \\
& y(t)=b_{0} t^{q}+b_{1} t^{q+1}+b_{2} t^{q+2}+\ldots
\end{aligned}
$$

in $\mathbb{C}[[t]]$. Define

$$
P_{0}(t)=y, \quad r_{0}=\operatorname{ord}\left(P_{0}(t)\right)=q
$$

and \dot{y} denoting $\frac{d y}{d t}, \dot{x}$ denoting $\frac{d x}{d t}$,

$$
P_{1}(t)=\dot{y} x-\frac{q}{p} \dot{x} y, \quad r_{1}=\operatorname{ord}\left(P_{1}(t)\right)-(p-1)
$$

and for $k \geq 1$,

$$
P_{k+1}(t)=x \dot{x} \frac{d}{d t} P_{k}-\left(\frac{r_{k}}{p} \dot{x}^{2}+(2 k-1) \ddot{x} x\right) P_{k}, \quad r_{k+1}=\operatorname{ord}\left(P_{k+1}\right)-(2 k+1)(p-1) .
$$

The next algorithm gives the positive integers $\left(r_{0}, r_{1}, \ldots, r_{n}\right)$ such that

$$
\begin{aligned}
& x(t)=t^{p} \\
& y(t)=c_{r_{0}} t^{r_{0}}+c_{r_{1}} t^{r_{1}}+\ldots+c_{r_{n}} t^{r_{n}}
\end{aligned}
$$

is a Puiseux Expansion of C.

```
Algorithm 4 BORODZIK
Input: \((x(t), y(t)) \in \mathbb{C}[[t]]\) primitive parametrization for the branch \(C\).
Output: The positive integers \(\left(r_{0}, r_{1}, \ldots, r_{n}\right)\) such that
\[
\begin{aligned}
& x(t)=t^{p} \\
& y(t)=c_{r_{0}} t^{r_{0}}+c_{r_{1}} t^{r_{1}}+\ldots+c_{r_{n}} t^{r_{n}}
\end{aligned}
\]
is a Puiseux Expansion of \(C\).
\(p_{0} \leftarrow p\) and \(r_{0} \leftarrow q\). Let \(p_{1}=\operatorname{gcd}\left(p_{0}, q_{0}\right)\)
if \(p_{1}=0\) then
we stop and end the algorithm
end if
Compute \(P_{1}(t)=\dot{y} x-\frac{q}{p} \dot{x} y\) and \(r_{1}=\operatorname{ord}\left(P_{1}(t)\right)-(p-1)\). Let \(p_{2}=\operatorname{gcd}\left(p_{1}, r_{1}\right)\).
if \(p_{2}=1\) then
we stop and end the algorithm
else
We put \(k=1\)
Compute \(P_{k+1}(t)=x \dot{x} \frac{d}{d t} P_{k}-\left(\frac{r_{k}}{p} \dot{x}^{2}+(2 k-1) \ddot{x} x\right) P_{k}\) and \(r_{k+1}=\operatorname{ord}\left(P_{k+1}\right)-(2 k+1)(p-\) 1).
Let \(p_{k+1}=\operatorname{gcd}\left(p_{k}, r_{k}\right)\)
if \(p_{k+1}=1\) then
we stop and end the algorithm
else
we increase \(k\) and go to step 10
end if
end if
```

Hence, when we start with a plane branch in parametric form with coefficient field \mathbb{C}, we can determine the Puiseux expansion with the Algorithm 4. Then by taking the smallest power appearing in the series plus highest power appearing in the series as a bound for dividing the series, we can construct the Arf Closure of the branch C.

Note that, you can find the SINGULAR procedure, we have written to find the Puiseux expansion by using the Algorithm 4 in Appendix B.

6.2.2 A Bound for the Conductor of the Arf Closure for Space Branches

For the plane branches, we have determined a bound for c^{*}. This bound is equal to smallest characteristic exponent plus highest characteristic exponent minus one. But characteristic exponents are not defined for the space branches. Hence, this idea can not be used in higher dimensions. Instead, our idea is finding a bound for c^{*} by using our result for plane branches. Let C be a space branch, for which the corresponding local ring is Θ. If we can find a plane branch \tilde{C} with $\tilde{\Theta}$ corresponding local ring such that $\tilde{\Theta} \subset \Theta$, then we will have

$$
\begin{aligned}
\tilde{\Theta} \subset \Theta & \Rightarrow \tilde{\Theta}^{*} \subset \Theta^{*} \\
& \Rightarrow \tilde{S}^{*} \subset S^{*} \\
& \Rightarrow \tilde{c}^{*} \geq c^{*}
\end{aligned}
$$

As a consequence, while constructing the Arf Closure of Θ, instead of using the bound $c^{*}+1$ to divide the series, we can use $\tilde{c}^{*}+1$ which is greater than or equal to $c^{*}+1$ and we don't lose any information. Therefore, the next thing to do is, finding a method to construct \tilde{C} and $\tilde{\Theta}$.

Let $\Theta=k\left[\left[\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{s}(t)\right]\right]$ be a branch, where

$$
\begin{aligned}
& \varphi_{1}(t)=t^{m_{11}} \\
& \varphi_{2}(t)=a_{21} t^{m_{21}}+a_{22} t^{m_{22}}+\ldots+a_{2 r_{2}} t^{m_{2 r_{2}}} \\
& \vdots \\
& \varphi_{s}(t)=a_{s 1} t^{m_{s 1}}+a_{s 2} t^{m_{s 2}}+\ldots+a_{s r_{s}} t^{m_{s r s}}
\end{aligned}
$$

$m_{11} \leq m_{21} \leq \ldots \leq m_{s 1}$ and $\operatorname{gcd}\left(m_{11}, m_{21}, m_{22}, \ldots, m_{2 r_{2}}, \ldots, m_{s 1}, m_{s 2}, \ldots, m_{s r_{s}}\right)=1$. The first and naive idea that comes to mind is to take $\tilde{\Theta}=k\left[\left[\varphi_{1}(t), \varphi_{i_{0}}(t)\right]\right]$, where $\varphi_{i_{0}}(t) \in\left\{\varphi_{2}(t), \ldots, \varphi_{s}(t)\right\}$ and $m_{i j}$'s are as above. Unfortunately, finding such $\varphi_{i_{0}}(t)$ is not always possible, because

$$
\operatorname{gcd}\left(m_{11}, m_{21}, \ldots, m_{2 r_{2}}, \ldots, m_{s 1}, \ldots, m_{s r_{s}}\right)=1 \nRightarrow \operatorname{gcd}\left(m_{11}, m_{i_{0} 1}, \ldots, m_{i_{0} r_{i_{0}}}\right)=1
$$

That is, the parametrization obtained in this way may not be primitive. We should choose $\tilde{\Theta}$ in such a way that the powers of the terms in its parametrization must be relatively prime.

For $\varphi(t)=\varphi_{2}(t)+\ldots+\varphi_{s}(t)$, the second idea is to take $\tilde{\Theta}=k\left[\left[\varphi_{1}(t), \varphi(t)\right]\right]$, but still we can not guarantee that the greatest common divisor of m_{11} and the powers of the terms of $\varphi(t)$ is one, because some of the $m_{i j}$'s may vanish while summing $\varphi_{2}(t), \ldots, \varphi_{s}(t)$. But we can always
determine constants b_{2}, \ldots, b_{s} such that after the addition $\varphi(t)=b_{2} \varphi_{2}(t)+b_{3} \varphi_{3}(t)+\ldots+b_{s} \varphi_{s}(t)$, none of the $m_{i j}$'s vanish and the greatest common divisor of the powers of the terms of $\varphi(t)$ and $\varphi_{s}(t)$ is equal to $\operatorname{gcd}\left(m_{11}, \ldots, m_{s 1}, m_{s 2}, \ldots, m_{s r_{s}}\right)$ which is equal to 1 . Then we can give our next main theorem.

Theorem 6.2.7 Let $\Theta=k\left[\left[\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{s}(t)\right]\right]$ be a branch, where

$$
\begin{aligned}
& \varphi_{1}(t)=t^{m_{11}} \\
& \varphi_{2}(t)=a_{21} t^{m_{21}}+a_{22} t^{m_{22}}+\ldots+a_{2 r_{2}} t^{m_{2 r_{2}}} \\
& \vdots \\
& \varphi_{s}(t)=a_{s 1} t^{m_{s 1}}+a_{s 2} t^{m_{s 2}}+\ldots+a_{s r_{s}} t^{m_{s r s}}
\end{aligned}
$$

$m_{11} \leq m_{21} \leq \ldots \leq m_{s 1}$ and $\operatorname{gcd}\left(m_{11}, m_{21}, m_{22}, \ldots, m_{2 r_{2}}, \ldots, m_{s 1}, m_{s 2}, \ldots, m_{s r_{s}}\right)=1$. Using the bound $m_{11}+m_{s r_{s}}$ in algorithm 3 while dividing the series, we constuct the Arf Closure correctly.

Proof. We have seen that, we can use \tilde{c}^{*} instead of c^{*}. But we already know, $\tilde{c}^{*} \leq m_{11}+m_{s r_{s}}-1$ from Theorem 6.2.5. Then from Theorem 6.2.1, we can use $m_{11}+m_{s r_{s}}$ while dividing the series.

If we want to work with a general space branch, given with the parametrization $\left(\varphi_{1}(t), \varphi_{2}(t)\right.$, $\left.\ldots, \varphi_{s}(t)\right)$ with the coefficient field \mathbb{C}, where

$$
\begin{aligned}
& \varphi_{1}(t)=a_{11} t^{m_{11}}+a_{12} t^{m_{12}}+\ldots+a_{1 r_{1}} t^{m_{1 r_{1}}} \\
& \vdots \\
& \varphi_{s}(t)=a_{s 1} t^{m_{s 1}}+a_{s 2} t^{m_{s 2}}+\ldots+a_{s r_{s}} t^{m_{s r_{s}}}
\end{aligned}
$$

with $m_{11} \leq m_{21} \leq \ldots \leq m_{s 1}$ and $\operatorname{gcd}\left(m_{11}, m_{12}, \ldots, m_{1 r_{1}}, \ldots, m_{s 1}, m_{s 2}, \ldots, m_{s r_{s}}\right)=1$, again, we form the ring $\tilde{\Theta}=\mathbb{C}\left[\left[\varphi_{1}(t), \varphi(t)\right]\right]$, where $\varphi(t)=b_{2} \varphi_{2}(t)+b_{3} \varphi_{3}(t)+\ldots+b_{s} \varphi_{s}(t)\left(b_{i}\right.$'s have been chosen in such a way that none of the $m_{i j}$'s vanish). Then we convert its parametrization to the Puiseux Form by using Algorithm 4 and use the bound smallest power appearing in the converted series plus the highest power appearing in the converted series.

CHAPTER 7

HILBERT FUNCTIONS OF ARF RINGS

In this section, we present a conjecture of Arslan and Sertoz and give many examples supporting this conjecture obtained by using the algorithm given by us. First, we describe the Hilbert function of an Arf ring.

Let R be a local ring with the maximal ideal \mathfrak{m}. The associated graded ring of R is defined to be the ring

$$
g r_{\mathfrak{m}}(R)=\bigoplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}
$$

Geometrically, if R is a local ring of a variety V, then the associated graded ring of R is the coordinate ring of the tangent cone of V.

Theorem 7.0.8 [36] Let R be a local Cohen-Macaulay ring of dimension d with the multiplicity e. Let embdim (R) denote the embedding dimension of R (the number of generators in the minimal basis of the maximal ideal of R). If

$$
\operatorname{embdim}(R)=e-d+1
$$

then the associated graded ring of R is also Cohen-Macaulay.

Theorem 7.0.9 [33] Let R be a local ring and R^{*} its Arf closure. Then the multiplicity of R^{*} is equal to the embedding dimension of R^{*}

Corollary 7.0.10 The associated graded rings of Arf rings are Cohen Macaulay.

Proof. This is a direct consequence of Theorem 7.0.8 and 7.0.9, as $d=1$ for Arf rings.

The Hilbert function $H_{R}(n)$ of the local ring R is defined to be the Hilbert function of the associated graded ring $g r_{\mathfrak{m}}(R)$.

$$
H_{R}(n)=H_{g r_{\mathfrak{m}}(R)}(n)=\operatorname{dim}_{R / \mathfrak{m}}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right) \quad n \geq 0
$$

The Hilbert series of R is defined to be

$$
P_{R}(t)=\sum_{n \in \mathbb{N}} H_{R}(n) t^{n}
$$

It has been proved by Hilbert and Serre that, $P_{R}(t)=\frac{h(t)}{(1-t)^{d}}$, where $h(t)$ is a polynomial with the coefficients from \mathbb{Z} and d is the Krull dimension of R. Hence, in our case, we have $P_{R}(t)=\frac{h(t)}{1-t}$. The multiplicity e is equal to $h(1)$ and also $h(t)=1+(e-1) t+a_{2} t+\ldots+a_{s} t^{s}$.

Theorem 7.0.11 [25, Theorem 1.5] If R is a graded Cohen-Macaulay ring, coefficients of $h(t)$ are positive.

As a consequence, we can state the next theorem.

Theorem 7.0.12 Let R be a local ring and R^{*} its Arf Closure. Then the Hilbert series of R^{*} is:

$$
P_{R^{*}}(t)=\frac{1+(e-1) t}{1-t}
$$

Proof. As the associated graded ring of R^{*} is Cohen-Macaulay from Corollary 7.0.10, the coefficients of $h(t)$ are positive from Theorem 7.0.11 and from the remarks preceding Theorem 7.0.11, we have $a_{2}+\ldots+a_{s}=0$. This is only possible if we have $a_{2}=a_{3}=\ldots=a_{s}=0$. Thus, $h(t)=1+(e-1) t$ and

$$
P_{R^{*}}(t)=\frac{1+(e-1) t}{1-t} .
$$

7.1 Conjecture

Knowing the basic definitions and theorems, now we can state the conjecture due to Arslan and Sertoz:

If R_{1} and R_{2} are two local rings having the same Arf closure with $R_{1} \subset R_{2}$ and $P_{R_{1}}(t)=\frac{h_{1}(t)}{1-t}$, $P_{R_{2}}(t)=\frac{h_{2}(t)}{1-t}$, then we have

$$
\text { degree }\left(h_{1}\right) \geq \text { degree }\left(h_{2}\right)
$$

Note that, this is not true in general for the local rings containing each other.

Example 7.1.1 Consider the rings $R_{1}=k\left[\left[t^{10}, t^{15}, t^{17}, t^{18}\right]\right]$ and $R_{2}=k\left[\left[t^{10}, t^{11}, t^{15}, t^{17}, t^{18}\right]\right]$. $R_{1} \subset R_{2}$, but $P_{R_{1}}(t)=\frac{1+3 t+4 t^{2}+2 t^{3}}{1-t}$ and $P_{R_{2}}(t)=\frac{1+4 t+4 t^{2}+t^{4}}{1-t}$.

Example 7.1.2 Consider the rings $R_{3}=k\left[\left[t^{9}, t^{10}, t^{15}, t^{17}, t^{18}\right]\right]$ and $R_{4}=k\left[\left[t^{7}, t^{10}, t^{15}, t^{17}, t^{18}\right]\right]$ with $P_{R_{3}}=\frac{1+3 t+3 t^{2}+t^{3}+t^{5}}{1-t}$ and $P_{R_{4}}=\frac{1+3 t+2 t^{2}+t^{4}}{1-t}$. Comparing with R_{1} in the previous example, we see that $R_{1} \subset R_{3}$ but $\operatorname{deg}\left(h_{1}\right)<\operatorname{deg}\left(h_{3}\right)$. In the same way, $R_{1} \subset R_{4}$ but $\operatorname{deg}\left(h_{1}\right)<\operatorname{deg}\left(h_{4}\right)$.

The next tables give examples of rings having the same Arf closure and their Hilbert series. The Arf closure computations are done via our library "ArfClosure.lib", which you can find in Appendix B.

Table 7.1: Rings having the Arf Closure $k\left[\left[t^{4}+t^{6}, t^{9}, t^{10}, t^{11}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{4}+t^{6}, t^{9}, t^{10}, t^{11}\right]\right]$	Hilbert Series
$k\left[\left[t^{4}+t^{6}+t^{12}, t^{9}\right]\right]$	$1+t+t^{2}+t^{3}$
$k\left[\left[t^{4}+t^{6}+t^{12}, t^{9}, t^{10}\right]\right]$	$1+2 t+t^{2}$
$k\left[\left[t^{4}+t^{6}+t^{12}, t^{9}, t^{10}, t^{11}\right]\right]$	$1+3 t$

Table 7.2: Rings having the Arf Closure $k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}, t^{13}, t^{15}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}, t^{13}, t^{15}\right]\right]$	Hilbert Series
$k\left[\left[t^{6}+t^{8}, t^{10}+t^{11}\right]\right]$	$1+2 t+3 t^{2}$
$k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}\right]\right]$	$1+3 t+2 t^{2}$
$k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}, t^{13}\right]\right]$	$1+4 t+t^{2}$
$k\left[\left[t^{6}, t^{8}, t^{10}, t^{11}, t^{13}\right]\right]$	$1+5 t$

Table 7.3: Rings having the Arf Closure $k\left[\left[t^{7}, t^{23}, t^{25}, t^{27}, t^{29}, t^{31}, t^{33}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{7}, t^{23}, t^{25}, t^{27}, t^{29}, t^{31}, t^{33}\right]\right]$	Hilbert Series
$k\left[\left[t^{7}, t^{23}\right]\right]$	$1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}$
$\left.k\left[t^{7}, t^{3}, t^{25}\right]\right]$	$1+2 t+2 t^{2}+2 t^{3}$
$k\left[\left[t^{7}, t^{23}, t^{25}, t^{27}\right]\right]$	$1+3 t+3 t^{2}$
$k\left[\left[t^{7}, t^{33}, t^{25}, t^{27}, t^{29}\right]\right]$	$1+4 t+2 t^{2}$
$k\left[\left[t^{7}, t^{23}, t^{25}, t^{27}, t^{99}, t^{31}\right]\right]$	$1+5 t+t^{2}$
$\left.k\left[t^{7}, t^{23}, t^{25}, t^{27}, t^{29}, t^{31}, t^{33}\right]\right]$	$1+6 t$

Table 7.4: Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}, t^{34}, t^{35}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}, t^{34}, t^{35}\right]\right]$	Hilbert Series
$\left.k\left[t^{12}, t^{18}, t^{25}, t^{26}\right]\right]$	$1+3 t+4 t^{2}+3 t^{3}+t^{4}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}\right]\right]$	$1+4 t+5 t^{2}+2 t^{3}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}\right]\right]$	$1+5 t+5 t^{2}+t^{3}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}\right]\right]$	$1+6 t+5 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}\right]\right]$	$1+7 t+4 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}\right]\right]$	$1+8 t+3 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}\right]\right]$	$1+9 t+2 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}, t^{34}\right]\right]$	$1+10 t+t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{33}, t^{34}, t^{35}\right]\right]$	$1+11 t$

Table 7.5: Rings having the Arf Closure $k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}, t^{22}, t^{23}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}, t^{22}, t^{23}\right]\right]$	Hilbert Series
$k\left[\left[t^{6}, t^{15}, t^{19}\right]\right]$	$1+2 t+2 t^{2}+t^{3}$
$k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}\right]\right]$	$1+3 t+2 t^{2}$
$k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}, t^{22}\right]\right]$	$1+4 t+t^{2}$
$k\left[\left[t^{6}, t^{15}, t^{19}, t^{20}, t^{22}, t^{23}\right]\right]$	$1+5 t$

Table 7.6: Rings with Arf Cl. $k\left[\left[t^{14}, t^{21}, t^{30}, t^{32}, t^{34}, t^{36}, t^{37}, t^{38}, t^{39}, t^{40}, t^{41}, t^{43}, t^{45}, t^{47}\right]\right]$

Rings	Hilbert Series
$k\left[\left[t^{14}, t^{21}, t^{30}\right]\right]$	$1+2 t+2 t^{2}+2 t^{3}+2 t^{4}+2 t^{5}+2 t^{6}+t^{7}$
$k\left[\left[t^{14}, t^{21}, t^{30}, t^{32}\right]\right]$	$1+3 t+4 t^{2}+4 t^{3}+2 t^{4}$
$k\left[\left[t^{14}, t^{21}, t^{30}, t^{32}, t^{34}\right]\right]$	$1+4 t+6 t^{2}+3 t^{3}$

Table 7.7: Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{34}, t^{35}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{34}, t^{35}\right]\right]$	Hilbert Series
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}\right]\right]$	$1+3 t+4 t^{2}+3 t^{3}+t^{4}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}\right]\right]$	$1+4 t+6 t^{2}+t^{3}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}\right]\right]$	$1+5 t+6 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}\right]\right]$	$1+6 t+5 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}\right]\right]$	$1+7 t+4 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}\right]\right]$	$1+8 t+3 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}\right]\right]$	$1+9 t+2 t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{34}\right]\right]$	$1+10 t+t^{2}$
$k\left[\left[t^{12}, t^{18}, t^{21}, t^{25}, t^{26}, t^{27}, t^{28}, t^{29}, t^{31}, t^{32}, t^{34}, t^{35}\right]\right]$	$1+11 t$

Table 7.8: Rings having the Arf Closure $k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}, t^{33}, t^{34}, t^{36}, t^{37}, t^{39}\right]\right]$

Rings with Arf Closure $k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}, t^{33}, t^{34}, t^{36}, t^{37}, t^{39}\right]\right]$	Hilbert Series
$k\left[\left[t^{10}, t^{15}, t^{28}\right]\right]$	$1+2 t+2 t^{2}+2 t^{3}+2 t^{4}+t^{5}$
$k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}\right]\right]$	$1+3 t+4 t^{2}+2 t^{3}$
$k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}\right]\right]$	$1+4 t+5 t^{2}$
$k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}, t^{33}\right]\right]$	$1+5 t+4 t^{2}$
$k\left[\left[t^{10}, t^{15}, t^{28}, t^{31}, t^{32}, t^{33}, t^{34}, t^{36}, t^{37}, t^{39}\right]\right]$	$1+9 t$

Table 7.9: Rings with Arf Cl. $k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}, t^{33}, t^{34}, t^{35}, t^{37}, t^{38}, t^{39}, t^{41}, t^{42}\right]\right]$

Rings	Hilbert Series
$k\left[\left[t^{12}, t^{16}+t^{30}, t^{31}\right]\right]$	$1+2 t+2 t^{2}+2 t^{3}+2 t^{4}+2 t^{5}+t^{6}$
$k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}\right]\right]$	$1+3 t+5 t^{2}+3 t^{3}$
$k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}, t^{33}\right]\right]$	$1+4 t+7 t^{2}$
$k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}, t^{33}, t^{34}, t^{35}\right]\right]$	$1+6 t+5 t^{2}$
$k\left[\left[t^{12}, t^{16}+t^{30}, t^{20}, t^{31}, t^{33}, t^{34}, t^{35}, t^{37}, t^{38}, t^{39}, t^{41}, t^{42}\right]\right]$	$1+11 t$

Observe that in each table, a ring in an arbitrary row is contained in the rings appearing in the rows following that row. However, degrees of the corresponding Hilbert series is nondecreasing as the rings are getting closer to the Arf Closure. Hence, all these examples support the conjecture due to Arslan an Sertoz.

CHAPTER 8

RESOLUTION AND PARAMETRIZATION OF REDUCIBLE CURVES GIVEN IN CLOSED FORM

Most of the computer algebra systems are working with the reducible curves given in closed form, so does the computer algebra system SINGULAR [37]. The SINGULAR library hnoether.lib [34] computes the Hamburger Noether expansion of a reduced curve singularity according to the theory in [10] by Campillo, but starting from the defining polynomial $f \in k[x, y]$. The library also contains procedures for computing the invariants of the plane curve singularities from its Hamburger Noether Expansion. Unfortunately, there wasn't any released library or procedure that computes the invariants of a curve branch given in parametric form. The existing libraries work with only plane branches not with the space ones. Finding the semigroup of values of a branch and its conductor from the parametrization may also be useful for Arf Closure computations but the library hnoether.lib only works with plane algebroid curves. Moreover, its input is defining ideal, not the parametrization. We have been informed by Professor Gerhard Pfister that there has been another library called "spacecurve.lib", which has been written by Maryna Viazovska with the guidance of Professor Gerhard Pfister as a master project [39] but has never been released as a SINGULAR library. The library was not totally completed and it contained the following procedures:

Blowingup($\mathrm{f}, \mathrm{I}, \mathrm{l})$; \quad Blowing up of $\mathrm{V}(\mathrm{I})$ at the point 0 ;
CurveRes(I); Resolution of V(I);
Curveparam(I); Parametrization of algebraic branches of $V(I)$;
WSemigroup(X,b); Weirstrass semigroup of the curve
The procedures in the library work in all dimensions. Moreover, the procedure curveparam(I) gives a bound for the conductors of the branches using the multiplicity sequences.

Professor Pfister offered me to check the library and complete it by adding some new procedures that compute the invariants of the branches in the plane case. The first problem in the library that should be solved was that the existing procedure CurveRes(I) in library "spacecurve.lib" starts with the defining ideal and it gives the sum of the multiplicities of the branches, not the multiplicities corresponding to each branch. This causes a big problem, because it is not possible to obtain the invariants of the algebroid curve and also the bound obtained for the conductor is very large, as it uses the sum of the multiplicities. That bound is not practical for dividing the series. What we need was to find the multiplicities of each branch to get a good bound for the conductor. We have decided to solve this problem by using Hamburger-Noether matrices. The library "spacecurve.lib" has already contained the procedure curveparam (I) that computes the parameterizations of the branches of the algebroid curve from the defining ideal. Our idea was to compute the parameterizations by using this procedure and then computing the Hamburger-Noether matrices by using those parameterizations applying the algorithm 1 in chapter 4 . There was not a procedure doing this in the literature, so I have written a procedure doing all these. Once we obtain the Hamburger-Noether matrix all the invariants can be computed by using the library "alexpoly.lib" in SINGULAR [30].

After writing well working procedures to compute the invariants, the next step was to make the library faster from the other libraries. Checking some examples, we have noticed that, both "hnoether.lib" and "spacecurve.lib" work faster with the irreducible curves and slower with the reducible ones. If we had a chance to factorize the defining polynomial of the reducible curve in the power series ring, the both libraries could work faster. Unfortunately, there is no way of doing this without expensive computations yet. Professor Pfister had the idea that if we could factorize the defining polynomial in polynomial ring, we would have a faster algorithm. Binyamin had given examples which show that factorizing makes the algorithm faster in the library "hnoether.lib" [5]. In [5], Binyamin also gives an algorithm that computes the contact numbers from the multiplicity sequence and the intersection matrix. We also use this algorithm while computing contact numbers in our procedures.

We now give a brief summary of the theory behind the "spacecurve.lib" and our contributions to this library. You can find the whole library and the procedures in Appendix A.

8.1 Algorithms for the library "spacecurve.lib"

Before starting to explain the algorithms that are used for the procedures in "spacecurve.lib", let us give the notations first.

For any polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right], f^{(i n)}$ denotes the 'initial polynomial' of f. That is, homogeneous part of f of smallest degree. $I^{(i n)}$ denotes the homogeneous ideal generated by $f^{(i n)}$'s for all $f \in I$.

The next Lemma constitutes the main idea of the algorithm ExceptHypersurface that computes the homogeneous ideal of the exceptional hypersurface.

Lemma 8.1.1 [39, Lemma 2.2.2] The exceptional hypersurface of the blow-up of an affine variety $X \subset \mathbb{A}^{n}$ in the origin is $V_{p}\left(I(X)^{(i n)}\right)$.

Let C be a curve branch, \tilde{C} its blow-up and E exceptional divisor.

Theorem 8.1.2 [39, Theorem 2.3.1] There is one to one correspondence between the points of exceptional divisor $\tilde{C} \cap E$ and the first rows of Hamburger-Noether expansion of C.

```
Algorithm 5 ExceptHypersurface(I)
Input: Defining ideal \(I\) of the curve.
Output: Homogeneous ideal \(J\) of the exceptional hypersurface
1. Compute a standard basis \(f_{1}, f_{2}, \ldots, f_{k}\) for \(I\).
2. Compute the ideal \(J=<f_{1}^{(i n)}, \ldots, f_{k}^{(i n)}>\).
3. Return \((J)\)
```

To compute the equations of the strict transform in each chart, we set $\tilde{C}_{i}=\tilde{C} \cap U_{i}$. Let ψ be the ring homomorphism with $\psi\left(x_{i}\right)=x_{i}$ and $\psi\left(x_{j}\right)=x_{i} x_{j}$ for $j \neq i$. Then $V\left(I_{i}\right)=\tilde{C}_{i} \cup E_{i}$. Setting S to the set of all positive powers of x_{i}, we define the ideal $\tilde{I}_{i}=S^{-1} I_{i} \cup k\left[x_{1}, \ldots, x_{n}\right]$. Then it can be shown that $V\left(\tilde{I}_{i}\right)=\tilde{C}_{i}$ implying $I\left(\tilde{C}_{i}\right)=\tilde{I}_{i}$. You can check [39] for all of the proofs. The next algorithm computes the full vanishing ideal of the strict transform in the i th affine chart.

```
Algorithm 6 STRICTTransform(I,i)
Input: Defining ideal \(I\) of the curve
Output: Ideal \(\tilde{I}_{i}\) of the strict transform in the \(i\)-th affine chart.
1. Compute a standard basis \(f_{1}, f_{2}, \ldots, f_{k}\) of \(I\).
2. Define a map \(\psi\) which maps \(x_{i}\) to \(x_{j}\) and \(x_{j}\) to \(x_{i} x_{j}\) for all \(j \neq i\).
3. for \(s=1\) to \(k\), do
4. poly \(g_{s}:=\psi\left(f_{s}\right) / x_{i}^{n_{s}}\) where \(n_{s}=\operatorname{ord}_{x_{i}}\left(f_{s}\right)\).
5. \(\tilde{I}_{i}:=<g_{1}, \ldots, g_{k}>\)
6. return \(\left(\tilde{I}_{i}\right)\)
```

In practice, it not possible to work with an algebraically closed field. Hence it is assumed that the field is a finite extension $k[a]$, where a is a root of an irreducible polynomial with coefficients from k. During the algorithm we may need to enlarge our field with a new parameter b with the new minimal polynomial g such that $k[a] \subset k[b]$.

Remark 8.1.3 [39, Remark 3.1.1] A point on exceptional divisor may exist in more than one affine chart. To consider the points of $E \cap U_{i_{s}}$ that do not lie in $E \cap U_{i_{1}}, \ldots, E \cap U_{i_{s-1}}$, we add equations $<x_{i_{1}}, \ldots, x_{i_{s-1}}>$ to the ideal $J_{i_{s}}=J+\left\langle x_{i_{s}}-1>\right.$ of exceptional divisor in i_{s}-th chart. In this way, each point of E is counted once.

Remark 8.1.4 [39, Remark 3.1.2] Let P be a prime zero dimensional ideal. Then P is an intersection of maximal ideals $P=\bigcap m_{i}$. Then for each $i, m_{i}=I\left(a_{i}\right)$ where $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$. There is a finite field extension L such that $k \subset L \subset \bar{k}$ which contains coordinates of all points a_{i}. If k is a perfect field, there is a primitive element $\alpha \in L$, such that $L=k(\alpha)$. As L contains all $a_{i j}, a_{i j}=f_{i j}(\alpha)$ for some $f_{i j} \in k[x]$. Thus, we can write P as $<x_{1}-$ $f_{1}(\alpha), \ldots, x_{n}-f_{n}(\alpha), f(\alpha)>$. It is possible to do this for a perfect field of any characteristic but the procedures in "spacecurve.lib" does this for the case of characteristic zero.

```
Algorithm 7 BLOWINGUp \((f, I, l)\)
Input: Irreducible polynomial \(f\), defining ideal \(I\) of the curve, list \(l\) of previous charts.
Output: List BlowUp. Each element BlowUp[i] of this list contains the the following infor-
    mation: new irreducible poly \(f_{i}\), ideal of a new curve \(\tilde{I}_{i}\) and a map \(\phi_{i}\) from the new curve
    to the old one.
```

```
Algorithm 7 BLOWINGUp( \(f, I, l\) ) (cont.)
1. List BlowUp:=Ø
```

2. Compute $J:=$ EXCEPTHypersurface (I)
3. Compute the list i_{1}, \ldots, i_{n} where i_{j} is the index of the smallest ordered element when doing the blowing up.
4.for $s=1$ to n do
4. $J_{i_{s}}:=J+<x_{i_{1}}, \ldots, x_{i_{s-1}}, x_{i_{s}}-1>$
if $\operatorname{dim}\left(J_{i_{s}}\right) \neq 0$ then break.
5. ideal $\tilde{I}_{i_{s}}=\operatorname{StrictTransform}\left(I, i_{s}\right)$
6. $\tau:=$ identity map
7. Compute primary decomposition for $\operatorname{RADICAL}\left(J_{i_{s}}\right)=\bigcap_{j=1}^{k} P_{s j}$
8. for $j=1$ to k, do
9. Present $P_{s j}$ at the form $P_{s j}=<x_{1}-g_{1}(b), \ldots, x_{n}-g_{n}(b), g(b)>$
10. Define map θ to be a shift $x_{i} \rightarrow x_{i}+g_{i}(b)$
11. Define map $\phi:=\tau o \theta$ and ideal $\tilde{I}:=\theta\left(\tilde{I}_{i_{s}}\right)$
12. $\tau=\tau o \theta$
13. BlowU $p:=\operatorname{ADD}(B l o w U p, \operatorname{list}(g, \tilde{I}, \phi))$
14. return $($ BlowU $p)$

As BLOWINGUp(f,I,l) makes one blowing up, we need another algorithm to do the blowing up successively.

Algorithm 8 CURVERes (I)
 Input: Defining ideal I of the curve C

Output: List of resolutions Resolve. Each element Resolve $[i]$ consists of irreducible poly f_{i}, ideal of a smooth curve I_{i}^{\prime}, map π_{i} from the new curve to the old one.

1. if C is smooth then
2. return $(f, I, i d)$
3. else
4. compute list $\operatorname{Blow} U p=\operatorname{BLOWINGUp}(f, I, l)$
5. For each element of BlowUp, compute CURVERes.

The next two algorithms are for finding the parametrization of the curve. The first one is for the smooth curves, and the second one is for singular curves.

```
Algorithm 9 SMOOTHParam \((I, N)\)
Input: ideal \(I\) of a smooth curve and an integer \(N\)
```

Output: parametrization $x_{1}(t), \ldots x_{n}(t)$ till the order N

1. Compute $M=\mathrm{JACOB}(I)$ at point 0 .
2. Find $n-1$ linearly independent rows and columns of the jacobian matrix M and define a submatrix A.
3. define $X_{s}:=t$ and $X_{j}:=0$ for $j \neq s$
4. Compute A^{-1}
5. for $p=1$ to N do
6. vector $\vec{c}:=\left(\frac{\partial f_{i_{1}}}{\partial x_{s}}, \ldots, \frac{\partial f_{i_{n-1}}}{\partial x_{s}}\right)^{T}$
7. vector $\vec{b}:=-A^{-1} \vec{c}$
8. Define map τ which sends $x_{s} \rightarrow x_{s}$ and $x_{j} \rightarrow x_{s}\left(x_{j}+b_{j}\right)$ for $j \neq s$
9. ideal $I=\tau(I) / x_{s}$
10. $X_{j}:=X_{j}+b_{j} \cdot t^{p}$ for $j \neq s$
11.return $\left(X_{1}(t), \ldots, X_{n}(t)\right)$

By using the algorithm 9, we define the next algorithm for the singular curves. The algorithm first desingularizes the curve by the algorithm 8 , then uses the parametrization of the smooth curve we got from CURVERes.

```
Algorithm 10 CURVEParam \((I, N)\)
Input: ideal \(I\) of the curve and an integer \(N\)
Output: list of parameterizations till the order \(N\) for all algebraic branches of the curve.
1. list Resolve \(:=\operatorname{CURVERes}(I)\)
2. for \(i=1\) to \(\operatorname{SIZE}(\) Resolve), do
3. \(\mathcal{P}:=\operatorname{SMOOTHParam}\left(I_{i}^{\prime}, N\right)\)
4. \(\mathcal{P}_{i}^{\prime}:=\pi_{i}(\mathcal{P})\)
5. \(\operatorname{return}\left(\mathcal{P}_{1}^{\prime}, \ldots, \mathcal{P}_{k}^{\prime}\right)\), where \(k\) is a size of Resolve
```

The next and the last algorithm in [39] computes the Weierstrass semigroup of a curve.

```
Algorithm 11 WSemigroup(X,b)
Input: an integer \(b\) and polynomials \(x_{1}, \ldots, x_{n} \in k[t]\) of degree less than or equal to \(b\).
Output: Weierstrass semigroup of the curve \(C\) given by parametrization \(x_{1}(t), \ldots, x_{n}(t)\)
Denote \(m_{i}=\operatorname{ord}_{t}\left(x_{i}\right)\) the order of \(x_{i}\) with respect to a local ordering and assume that \(m_{1} \leq\)
\(m_{2} \leq \ldots \leq m_{n}\).
```

1. Compute the semigroup $\Gamma=<m_{1}, \ldots, m_{n}>$ till the bound b and the list L of length b, where $L[i]$ is a list of all nonnegative integer vectors $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\alpha_{1} m_{1}+\ldots+\alpha_{n} m_{n}=i
$$

Integer i is an element of S iff the list $L[i]$ is not empty. If semigroup S has a conductor $c \leq b$, then set $b:=\min \left(b, c+m_{1}\right)$
2. Compute a list N of length b, for which $N[i]$ is a list consisting of polynomials $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ for all $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in L[i]$.
3. For each pair $p_{l}, p_{k} \in L[i]$, compute a polynomial $f:=l c\left(p_{l}\right) p_{k}-l c\left(p_{k}\right) p_{l}$, where $l c(p)$ is a leading coefficient with respect to local ordering. Denote $m:=\operatorname{ord}_{t}(f)$, then $m>i$. Then m is either an element of S or not.

- If $m \in \Gamma$ check if f is a linear combination of elements of $N[m]$. If it is not, add f to $N[i]$.
- If $m \notin \Gamma$

This process continues till all the pairs $p_{k}, p_{l} \in N[i]$ for all $i \leq b$ are considered.

To check the correctness of the algorithms, you can see [39].

8.2 The new library "curvepar.lib"'

We can now give the brief summary of the new library "curvepar.lib" obtained by using the library "spacecurve.lib" and by our procedures:

We start with the defining polynomial f of the curve "C".

1. We factorize f over $Q[x, y]$ for faster computations. Let f_{1}, \ldots, f_{k} be the irreducible
factors of f in $Q[x, y]$.
2. For each f_{i}, compute $C U R V E P a r a m\left(<f_{i}>\right)$ which gives the parametrization for the branch corresponding to f_{i}.
3. Compute the Hamburger-Noether matrix of each branch by using the algorithm 1.
4. Use the procedures from "hnoether.lib" to compute the matrix of the intersection multiplicities of the branches.
5. Use the procedures from "hnoether.lib" to compute the characteristic exponents and the multiplicity sequences of the branches.
6. Compute the contact numbers using the multiplicity sequences and intersection multiplicities from Theorem 3.2.11 (The algorithm can be found in [5]).
7. Compute the matrix of the resolution graph of f using the contact numbers and characteristic exponents with the procedures in "alexpoly.lib".

We have written SINGULAR procedures doing all these. It is now in use under the name "curvepar.lib" in SINGULAR [18].

8.3 Timings

In this section, we give timing comparison of the already existing library "'hnoether.lib" and our new library "curvepar.lib" in SINGULAR. The computations are done by using Singular 3-1-3. We have obtained timings for the ideals $\left\langle f_{i}\right\rangle$, where

$$
\begin{aligned}
& f_{1}=\left(\left(x^{7}-y^{6}\right)^{4}-x^{20} y^{10}+x^{35}\right)\left(\left(x^{7}-y^{6}\right)^{3}-x^{24}+y^{25}\right)\left(\left(x^{7}-y^{5}\right)^{3}-x^{24}-y^{25}\right) \\
& f_{2}=\left(x^{14}+x^{5} y^{5}+y^{10}+y^{15}\right)\left(x^{16}+x^{18}+y^{20}+y^{23}\right) \\
& f_{3}=\left(x^{14}-y^{12}+x^{10} y^{4}+y^{19}\right)\left(x^{12}-y^{14}+x^{15}+y^{15}\right)\left(\left(x^{6}-y^{5}\right)^{4}-x^{26} y^{12}+x^{28}+y^{30}\right)\left(x^{14}+y^{18}+y^{21}\right) \\
& f_{4}=\left(x^{8}+2 y^{14}\right)\left(x^{10}+5 y^{10}\right)\left(y^{2}-x^{3}\right)\left(x^{2}-y^{3}\right) \\
& f_{5}=\left(x^{18}+y^{24}+x^{29}\right)\left(x^{14}+y^{18}+y^{21}\right)\left(x^{9}-x^{3} y^{3}+y^{11}\right)\left(x^{15}-y^{10}-y^{19}\right) \\
& f_{6}=\left(x^{16}+3 y^{18}\right)\left(x^{5}+7 y^{5}\right) \\
& f_{7}=\left(\left(x^{7}-y^{6}\right)^{4}-x^{20} y^{10}+x^{35}\right)\left(\left(x^{7}-y^{6}\right)^{3}-x^{24}+y^{25}\right) \\
& f_{8}=\left(x^{18}+y^{24}+x^{29}\right)\left(x^{14}+y^{18}+y^{21}\right)\left(x^{9}-x^{3} y^{3}+y^{11}\right)
\end{aligned}
$$

As we can observe from the next table, the computation of the invariants of these examples have shown that, the library "curvepar.lib" is faster in half of the examples, while the library "hnoether.lib" is faster in the other half.

Table 8.1: Time Comparison

poly	hnoether	curveparam
f_{1}	3 sec	>1 hour
f_{2}	245 sec	124 sec
f_{3}	1 sec	$>1 \mathrm{hour}$
f_{4}	$>1 \mathrm{hour}$	11 sec
f_{5}	2788 sec	546 sec
f_{6}	>1 hour	1 sec
f_{7}	0 secs	$>1 \mathrm{hour}$
f_{8}	0 secs	72 sec

Checking the examples for which the "curvepar.lib" is slower, we have noticed that while the procedures "CurveRes(I)" and "CurveParam(I)" in "curveparam.lib" work faster than the procedures "develop(f)" and "param(f)" in the library "hnoether.lib", we still get slower results. What makes "curvepar.lib" slower in these four examples is that the successive division of the series. Although we have better timings in half of the examples when compared to "hnoether.lib", we should avoid successive divisions to find the multiplicity sequence and the contact numbers for our library to work faster in all of the computations. We still search for the ways of reading the multiplicity sequence of each branch and the contact numbers from the output of "CurveRes(I)".

For future research, our purpose is to find a way to read the contact numbers from the output of "CurveRes(I)". In this way, it will be possible to construct the resolution graph from the resolution process. Then finding the multiplicity sequence of each branch from the resolution graph without using successive division will be possible. This will save a lot of time in the computations and we will get a faster library.

CHAPTER 9

CONCLUSION

In this thesis, we have studied the space curve singularities. We have focused on Arf rings, which makes it possible generalize the concepts like the chracaters in the plane case to space case. Our main contribution has been to give a new and efficient algorithm to compute the Arf closure of a local ring. This depends on determining a bound for doing the successive division of series. We have shown that, to construct the Arf closure correctly, it is sufficient to consider the terms up to degree $c^{*}+1$ while dividing the series. We have also obtained a bound for the conductor c^{*} of the semigroup of the Arf closure R^{*} of $R \subset k[[t]]$, without computing R^{*}. We have shown that it is possible to read this bound by just considering the degrees of the series appearing in the parametrization corresponding to R, when the parametrization is of Puiseux form, in other words. $R=k\left[\left[\varphi_{1}(t)=t^{m}, \varphi_{2}(t), \ldots, \varphi_{n}(t)\right]\right]$ for some $m \in \mathbb{N}$

Our algorithm works much faster than the algorithm given in [2], which was the only implemented algorithm for constructing the Arf closure in the literature. The speed of our algorithm is a a result of two facts: first, our algorithm avoids the computation of the semigroup of the given branch. Second, it uses a much smaller bound in doing the series divisions. Also, this bound, which gives the opportunity to determine the multiplicity sequence with a fast algorithm can be used for writing a fast algorithm to determine the numerical semigroup of a branch, which is a difficult problem.

With our new library, we have computed examples to check a conjecture given by Arslan and Sertoz. All of our examples supported the conjecture proposing that among the local rings having the same Arf closure, the one with the smallest embedding dimension has the largest regularity index. As a future goal, we want to attack this conjecture, which supports the idea that taking the Arf closure is in fact "taming the singularity" by filling some gaps, so between
two rings having the same Arf closure, the one closer to the Arf closure can not have a "worse" singularity.

In this thesis, we have also dealt the singularity theory of plane algebroid curves. We have written a SINGULAR library "curvepar.lib" that computes the invariants of plane algebroid curves. Comparing to the library "hnoether.lib", which also computes the invariants of plane algebroid curves, we have observed that our library is faster in almost half of the examples, while the "hnoether.lib" is faster in the other half. For algorithmic purposes, this is quite important, since both libraries can be combined to obtain a more efficient one by correctly deciding to use the fast one for a given plane algebroid curve.

Another goal for future research is to add new procedures that computes the multiplicity sequence of the branches of a reducible algebroid curve given with the defining ideal $I \subset$ $k\left[\left[x_{1}, . ., x_{n}\right]\right]$ where n is greater than 2 to our SINGULAR library "curvepar.lib".

To conclude, it wouldn't be possible to obtain most of the results in this thesis without the use of computational methods. This thesis is an example showing that the geometric problems can be attacked by computational methods.

REFERENCES

[1] Cahit Arf. Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique. Proc. London Math. Soc. (2), 50:256-287, 1948.
[2] Sefa Feza Arslan. On arf rings, 1994.
[3] V. Barucci, M. D’Anna, and R. Fröberg. ARF characters of an algebroid curve. $J P J$. Algebra Number Theory Appl., 3(2):219-243, 2003.
[4] V. Barucci, M. D’Anna, and R. Fröberg. On plane algebroid curves. In Commutative ring theory and applications (Fez, 2001), volume 231 of Lecture Notes in Pure and Appl. Math., pages 37-50. Dekker, New York, 2003.
[5] M. A. Binyamin. Improving the computation of invariants of plane curve singularities. Analele Stiintifice Ale Universitatii "Ovidius" Constanta.
[6] Maciej Borodzik. An efficient method of finding a puiseux expansion of a parametric singularity.
[7] Maria Bras-Amorós. Improvements to evaluation codes and new characterizations of Arf semigroups. In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 2003), volume 2643 of Lecture Notes in Comput. Sci., pages 204-215. Springer, Berlin, 2003.
[8] Egbert Brieskorn and Horst Knörrer. Plane algebraic curves. Birkhäuser Verlag, Basel, 1986. Translated from the German by John Stillwell.
[9] A. Campillo, F. Delgado, and C. A. Núñez. The arithmetic of Arf and saturated semigroups. Applications. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 82(1):161-163, 1988.
[10] Antonio Campillo. Algebroid curves in positive characteristic, volume 813 of Lecture Notes in Mathematics. Springer, Berlin, 1980.
[11] Antonio Campillo and Julio Castellanos. Arf closure relative to a divisorial valuation and transversal curves. Amer. J. Math., 116(2):377-395, 1994.
[12] Antonio Campillo and Julio Castellanos. Valuative Arf characteristic of singularities. Michigan Math. J., 49(3):435-450, 2001.
[13] Antonio Campillo and Julio Castellanos. Curve Singularities: An Algebraic and Geometric Approach. Actualités Mathématiques. Hermann, 2005.
[14] Antonio Campillo, José Ignacio Farrán, and Carlos Munuera. On the parameters of algebraic-geometry codes related to Arf semigroups. IEEE Trans. Inform. Theory, 46(7):2634-2638, 2000.
[15] Angel Castellanos and Julio Castellanos. Algorithm for the semigroup of a space curve singularity. Semigroup Forum, 70(1):44-60, 2005.
[16] Julio Castellanos. A relation between the sequence of multiplicities and the semigroup of values of an algebroid curve. J. Pure Appl. Algebra, 43(2):119-127, 1986.
[17] I. S. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc., 59:54-106, 1946.
[18] Gerhard Pfister; Nil Şahin; Maryna Viazonska. curvepar.lib singular 3-1-4 a library for computing the resolution of space curve singularities and the numerical invariants of plane curve singularities. 2012. http://www.singular.uni-kl.de.
[19] Steven Dale Cutkosky. Resolution of singularities, volume 63 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2004.
[20] Marco D'Anna. Canonical module and one-dimensional analytically irreducible Arf domains. In Commutative ring theory (Fès, 1995), volume 185 of Lecture Notes in Pure and Appl. Math., pages 215-225. Dekker, New York, 1997.
[21] Theo de Jong and Gerhard Pfister. Local analytic geometry. Advanced Lectures in Mathematics. Friedr. Vieweg \& Sohn, Braunschweig, 2000. Basic theory and applications.
[22] David E. Dobbs and Gretchen L. Matthews. On comparing two chains of numerical semigroups and detecting Arf semigroups. Semigroup Forum, 63(2):237-246, 2001.
[23] Patrick Du Val. The Jacobian algorithm and the multiplicity sequence of an algebraic branch. Rev. Fac. Sci. Univ. Istanbul. Ser. A., 7:107-112, 1942.
[24] Patrick Du Val. Note on Cahit Arf's "Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique.". Proc. London Math. Soc. (2), 50:288-294, 1948.
[25] J. Elias, J. M. Giral, R. M. Miró-Roig, and S. Zarzuela, editors. Six lectures on commutative algebra. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. Papers from the Summer School on Commutative Algebra held in Bellaterra, July 16-26, 1996, Reprint of the 1998 edition.
[26] Federigo Enriques and Oscar Chisini. Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. 2. Vol. III, IV, volume 5 of Collana di Matematica [Mathematics Collection]. Nicola Zanichelli Editore S.p.A., Bologna, 1985. Reprint of the 1924 and 1934 editions.
[27] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[28] Abramo Hefez and Marcelo Escudeiro Hernandes. Computational methods in the local theory of curves. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2001. 230 Colóquio Brasileiro de Matemática. [23rd Brazilian Mathematics Colloquium].
[29] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109-203; ibid. (2), 79:205-326, 1964.
[30] Fernando Hernando Carrillo; Thomas Keilen. alexpoly.lib singular 3-1-3 a library for computing the hamburger-noether expansion of a reduced plane curve singularity and the numerical invariants of plane curve singularities. 2011. http://www.singular.unikl.de.
[31] János Kollár. Lectures on resolution of singularities, volume 166 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007.
[32] Martin Lamm. Hamburger-noether-entwicklung von kurvensingularitaten, 1999.
[33] Joseph Lipman. Stable ideals and Arf rings. Amer. J. Math., 93:649-685, 1971.
[34] Martin Lamm; Christoph Lossen. hnoether.lib singular 3-1-3 a library for computing the hamburger-noether expansion of a reduced plane curve singularity and the numerical invariants of plane curve singularities. 2011. http://www.singular.uni-kl.de.
[35] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and M. B. Branco. Arf numerical semigroups. J. Algebra, 276(1):3-12, 2004.
[36] Judith D. Sally. On the associated graded ring of a local Cohen-Macaulay ring. J. Math. Kyoto Univ., 17(1):19-21, 1977.
[37] Wolfram Decker; Gert-Martin Greuel; Gerhard Pfister; Hans Schönemann. SinGULAR 3-1-3 - A computer algebra system for polynomial computations. 2011. http://www.singular.uni-kl.de.
[38] Sinan Sertöz. Arf rings and characters. Note Mat., 14(2):251-261 (1997), 1994.
[39] Maryna Viazovska. Computation of weierstrass semigroup for space curve singularities. Master's thesis, University of Kaiserslautern, March 2007.
[40] C. T. C. Wall. Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004.

APPENDIX A

The Singular Library "curvepar.lib"

version="SId: curvepar.lib 15103 2012-07-11 10:00:13Z motsak \$",
category="Singularity Theory";
info="
LIBRARY: curvepar.lib Resolution of space curve singularities, semi-group
AUTHOR: Gerhard Pfister email: pfister@mathematik.uni-kl.de Nil Sahin email: e150916@metu.edu.tr
Maryna Viazovska email: viazovsk@mathematik.uni-kl.de
SEE ALSO: spcurve_lib
PROCEDURES:
Blowingup(f,I,l); BlowingUp of $\mathrm{V}(\mathrm{I})$ at the point 0 ;
CurveRes(I);
CurveParam(I)
CurveParam(I);
WSemigroup (X, b);
primparam (x,y,c);
MultiplicitySequence(I);
CharacteristicExponents(I); Multiplicity sequences of the branches of plane curve V(I) IntersectionMatrix(I); Intersection Matrix of the branches of plane curve V(I)
ContactMatrix(I);
plainInvariants(I);
pla
".

LIB "sing.lib";
LIB "primdec.lib";
LIB "linalg.lib";
LIB "ring.lib";
LIB "alexpoly.lib";
LIB "matrix.lib";

//
proc BlowingUp(poly f,ideal I,list l,list \#)
"USAGE: $\operatorname{BlowingUp}(f, \mathrm{I}, 1)$;
$\mathrm{f}=$ poly
b=idea
l=list
ASSUME: The basering is $\mathrm{r}=\boldsymbol{\theta},(\mathrm{x}(1 \ldots \mathrm{n}), \mathrm{a}), \mathrm{dp}$
f is an irrreducible polynomial in $k[a]$,
I is an ideal of a curve(if we consider a as a parameter)
COMPUTE: Blowing-up of the curve at point θ.
RETURN: list C of charts.
Each chart $\mathrm{C}[\mathrm{i}]$ is a list of size 5 (reps. 6 in case of plane curves)
C[i][1] is an integer j. It shows, which standard chart do we consider.
$\mathrm{C}[\mathrm{i}][2]$ is an irreducible poly g in $\mathrm{k}[\mathrm{a}]$. It is a minimal polynomial
for the new parameter.
$\mathrm{C}[\mathrm{i}][3]$ is an ideal H in $\mathrm{k}[\mathrm{a}]$.
c_i=F_i (a_new) for $i=1 . . n$,
a_old $=\mathrm{H}[\mathrm{n}+1]$ (a_new).
$\mathrm{C}[\mathrm{i}][4]$ is a map teta: $\mathrm{k}[\mathrm{x}(1) \ldots \mathrm{x}(\mathrm{n}), \mathrm{a}]-->\mathrm{k}[\mathrm{x}(1) \ldots \mathrm{x}(\mathrm{n})$,a] from the new curve to the old one.
$\mathrm{x}(1)-->\mathrm{x}(\mathrm{j}) * \mathrm{x}(1)$
$x(j)-->x(j)$
$x(n)-->x(j)$ *(c_n+x(n))
$\mathrm{C}[\mathrm{i}][5]$ is an ideal J of a new curve. J=teta(I).
$\mathrm{C}[\mathrm{i}][6]$ is the list of exceptional divisors in the chart

EXAMPLE: example BlowingUp; shows an example

\{
def r=basering;
int $\mathrm{n}=\mathrm{nvars}(\mathrm{r})-1$
ring $\mathrm{r} 1=(0, \mathrm{a}),(\mathrm{x}(1 . . \mathrm{n})), \mathrm{ds}$;
number $f=1 \operatorname{eadcoef}(\operatorname{imap}(r, f)$);
minpoly=f;
ideal $\mathrm{I}=\mathrm{imap}(\mathrm{r}, \mathrm{I})$;
ideal locI=std(I);
ideal J=tangentcone(I);
setring r;
ideal J=imap ($\mathrm{r} 1, \mathrm{~J}$)
ideal locI=imap(r1,locI);
int j;
int i;
list C, E;
list C1;
ideal B;
poly g;
ideal F;
list Z ;
list $\mathrm{Z1}$;
ideal D;
map teta;
ideal D1;
map teta1;
int k, e;
ideal I1;
ideal I2;
int ind;
list $w=m l i s t(1, n)$;
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++$)
\{ ${ }_{B=3}$;
for $(\mathrm{i}=1 ; \mathrm{i}<\mathrm{j} ; \mathrm{i}++) \quad\{\mathrm{B}=\mathrm{B}+\mathrm{x}(\mathrm{w}[\mathrm{i}]) ;\}$
$\mathrm{B}=\mathrm{B}+(\mathrm{x}(\mathrm{w}[\mathrm{j}])-1)$;
$\mathrm{B}=\mathrm{B}+\mathrm{f}$;
if $(\operatorname{dim}(\operatorname{std}(B))==0)$
\{
Z=ZeroIdeal(B);
for ($\mathrm{i}=1$; $\mathrm{i}<\mathrm{j} ; \mathrm{i}++$)
\{
$D[w[i]]=x(w[j]) * x(w[i]) ;$
\}
D[w[j]]=x(w[j]);
for (i=j+1;i<=n;i++)
\{
$D[w[i]]=x(w[j]) * x(w[i]) ;$
\}
D[n+1]=a;
teta=r,D;
I1=teta(locI);
I1=reduce(I1,std(f));
ind $=1$;
for ($\mathrm{i}=1$; $\mathrm{i}<=$ size(I 1) ; $\mathrm{i}++$)
\{ in
ind=1;
while(ind==1)
\{
$\operatorname{if}(\operatorname{gcd}(x(w[j]), I 1[i])==x(w[j]))\{I 1[i]=I 1[i] / x(w[j]) ;\}$ else\{ind=0;\}
3^{3}
$\}^{\}}$
for (k=1; $\mathrm{k}<=\operatorname{size}(\mathrm{Z})$; $\mathrm{k}++$)
\{
$\mathrm{g}=\mathrm{Z}[\mathrm{k}][1]$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) $\{\mathrm{F}[\mathrm{i}]=\mathrm{Z}[\mathrm{k}][2][\mathrm{i}] ;\}$
$\mathrm{b}=\mathrm{Z}[\mathrm{k}]$ [3];
C1[1]=w[j];
C1[2]=g;
C1[3]=F;
for (i=1;i<j;i++)
$\{D[w[i]]=x(w[j]) * x(w[i]) ;\}$
$D[w[j]]=x(w[j])$;
for ($\mathrm{i}=\mathrm{j}+1$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i}++$)
$\{D[w[i]]=x(w[j]) *(F[w[i]]+x(w[i])) ;\}$
$\mathrm{D}[\mathrm{n}+1]=\mathrm{Z}[\mathrm{k}][2][\mathrm{n}+1]$;
teta=r, D;
C1[4]=D;
for (i=1; i<=j;i++)
\{D1[w[i]]=x(w[i]);\}
for ($\mathrm{i}=\mathrm{j}+1$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i}++$)
$\{$ D1 $[w[i]]=F[w[i]]+x(w[i]) ;\}$
D1 $[\mathrm{n}+1]=\mathrm{a}$
teta1=r, D1;
if(nvars(basering)==3)
\{
I2=quickSubst(I1[1],teta1[1],teta1[2],std(g));
\}
\{ ${ }^{\text {fise }}$
I2=teta1(I1);
I2=reduce ($\mathrm{I} 2, \operatorname{std}(\mathrm{~g})$)
\}
C1[5]=I2;
if (nvars(basering)==3)
\{
if(size (\#)>0)
\{
E=\#;
for (e=1;e<=size(E);e++)
\{
$\mathrm{p}=\mathrm{E}[\mathrm{e}]$;
while (subst $(p, x(w[j]), 0)==0)$
\{
$\mathrm{p}=\mathrm{p} / \mathrm{x}(\mathrm{w}[\mathrm{j}])$;
$\operatorname{if}((\operatorname{deg}(E[e])>0) \& \&(\operatorname{deg}(p)==0)$
E[e]=size(E);
\}
\{ ${ }^{\text {else }}$
$\mathrm{E}[\mathrm{e}]=\mathrm{p}$;
\}
$\mathrm{E}[$ size $(\mathrm{E})+1]=\mathrm{x}(\mathrm{w}[\mathrm{j}])$;
C1[6]=E;
\}
else
\{
C1[6]=list(x(w[j]));
\} ${ }^{\}}$
\} $\mathrm{C}=\mathrm{insert}(\mathrm{C}, \mathrm{C} 1)$;
\} ${ }^{3}$
\}
return(C);
\}
examp
"EXAMPLE:"; echo $=2$;
ring $\mathrm{r}=0, \mathrm{x}(1 . .3), \mathrm{a}), \mathrm{dp}$; poly $f=a 2+1$;
ideal $\mathrm{i}=\mathrm{x}(1)^{\wedge} 2+\mathrm{a}^{*} \mathrm{x}(2)^{\wedge} 3, \mathrm{x}(3)^{\wedge} 2-\mathrm{x}(2)$; list $1=1,3,2$; list $\mathrm{B}=\mathrm{BlowingUp}(\mathrm{f}, \mathrm{i}, 1)$;
B;
\}
//============= ACHTUNG ZeroIdeal ueberarbeiten / minAssGTZ rein =======================
//1/2l static proc ZeroIdeal(ideal J)

USAGE: ZeroIdeal(J);
J=ideal
ASSUME: J is a zero-dimensional ideal in $\mathrm{k}[\mathrm{x}(1), \ldots, \mathrm{x}(\mathrm{n})]$.
COMPUTE: Primary decomposition of radical(J). Each prime ideal $J[i]$ has the form: $x(1)-f[1](b), \ldots, x(n)-f[n](b)$,
$\mathrm{f}(\mathrm{b})=0, \mathrm{f}$ irreducible
for some $b=x(1) * a(1)+\ldots+x(n) * a(n)$, $a(i)$ in k.
RETURN: list Z of lists.
Each list $\mathrm{Z}[\mathrm{k}]$ is a list of size 3
$\mathrm{Z}[\mathrm{k}][1]$ is a poly $\mathrm{f}(\mathrm{b})$
$Z[k][2]$ is an ideal $H, H[n]=f[n]$, $\mathrm{Z}[\mathrm{k}][3]$ is a poly $\mathrm{x}(1) * \mathrm{a}(1)+\ldots+\mathrm{x}(\mathrm{n}) * \mathrm{a}(\mathrm{n})$

EXAMPLE:"

\{
intvec opt = option(get);
def $\mathrm{r}=$ basering;
int $\mathrm{n}=$ nvars(r);
if(dim(std(J))!=0) \{return(0);\} ring $\mathrm{s}=0,(\mathrm{x}(1 \ldots \mathrm{n})$), lp ;
ideal A; ideal S; int i; int j; for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) $\{\mathrm{A}[\mathrm{i}]=\mathrm{x}(\mathrm{i}) ;\}$ map phi=r,A;
ideal $\mathrm{J}=\mathrm{phi}(\mathrm{J})$;
ideal I=radical(J);

```
list D=zerodec(I);
list Z; ideal H; intvec w; intvec v; int ind; ideal T; map tau; int q; list u;
ideal Di; poly h;
for(i=1;i<=size(D);i++)
{
    option(redSB);
    ind=0;q=n;
    while(ind==0 and q>0)
    {
        for(j=1;j<=n;j++){T[j]=x(j);}
        T[q]=x(n);
        T[n]=x(q)
        tau=s,T;
        Di=D[i];
        S=std(tau(Di));
        ind=1;
        v=leadexp(S[1]);
        if(leadmonom(S[1])!=x(n)^v[n]){ind=0;}
    for(j=2;j<=n;j++)
    for
        if(leadmonom(S[j])!=x (n-j+1)){ind=0;}
        H[n-j+1]= -S[j]/leadcoef(S[j])+x(n-j+1);
        v=leadexp(H[n-j+1]);
        if(leadcoef(H[n-j+1])*leadmonom(H[n-j+1])!=leadcoef(H[n-j+1])*x(n) ^v[n])
        {ind=0;}
    }
    if(ind==1)
    {
        u[1]=S[1];
        H[n]=x(n);
        H[n]=H[q];
        H[q]=x(n);
        u[2]=H;
        u[3]=x(q);
        z[i]=u;
    }
    q--;
    }
    if(ind==0)
    {
        vector a;
        while(ind==0)
    {
        h=x(n);
        for(j=1;j<=n-1;j++){a=a+random(-10,10)*gen(j);h=h+a[j]*x(j);}
        T=subst(S,x(n),h);
        option(redSB);
        T=std(T);
        ind=1;
        w=leadexp(T[1]);
        if(leadmonom(T[1])!=x(n)^w[n]){ind=0;}
        for(j=2;j<=n;j++)
        {
            if(leadmonom(T[j])!=x(n-j+1)){ind=0;}
            H[n-j+1]= -T[j]/leadcoef(T[j])+x(n-j+1);
        w=leadexp(H[n-j+1]);
        if(leadmonom(H[n-j+1])*leadcoef(H[n-j+1])!=leadcoef(H[n-j+1])*x(n)^w[n])
        {ind=0;}
    }
        if(ind==1)
        {
            list 1;
        1[1]=T[1];
        H[n]=x(n);h=x(n)
        for(j=1;j<=n-1;j++){H[n]=H[n]+a[j]*H[j];h=h-a[j]*x(j);}
        1[2]=H;
        1[3]=h;
        Z[i]=1;
        }
        }
}
setring r;
ideal A;
list Z;
for(i=1;i<=n;i++)
{A[i]=var(i);}
map psi=s,A;
z=psi(Z);
option(set, opt)
return(Z);
}
|////////////////////////////////////////////////////////////////////////////////////////////
//assume that the basering is k[x(1),\ldots, x(n),a]
static proc main(ideal I,ideal Psi,poly f,list m,list l,list HN,intvec v,list HI,list #)
{
def s=basering
```

int i, z;
list C, E, resTree;
list C 1 ;
list C2;
list C3;
list 11 ;
C2 [8] $=\mathrm{HI}$;
list m1;
list HN ;
ideal J;
map psi;
intvec w;
$\mathrm{z}=($ SmoothTest $(\mathrm{I}, \mathrm{f})==1$);
if ((nvars(basering)==3) \&\&z\&\&(size (\#)>0))
\{
z=transversalTest(I,f,\#);
$\}^{z=}$
$i f(z)$
if(z)
\{ $C 2[1]=\mathrm{I}$
C2[2]=Psi;
C2[3]=f;
C2[4] $=\mathrm{m}$;
C2[5]=1;
C2 [6] $=\mathrm{HN}$;
if(nvars(basering)==3)
\{
if(size (\#)>0)
\{
C2[9]=\#;
${ }_{3}{ }^{2} 2[7]$
C2[7]=v;
${ }_{3}$
//C2[8][size(C2[8])+1]=1ist(C2[7],C2[9]);
$\mathrm{C}[1]=\mathrm{C} 2$;
\}
if(!z)
int mm=mult (I,f);
m1=insert (m,mm, size(m));
if(nvars(basering)==3)
\{
if(size (\#)>0
\{
$\mathrm{C} 1=\mathrm{BlowingUp}(\mathrm{f}, \mathrm{I}, \mathrm{l}, \mathrm{E})$;
\}
else
C1=BlowingUp(f,I,1);
\}
\}
else
\{
$\mathrm{C} 1=\mathrm{BlowingUp}(\mathrm{f}, \mathrm{I}, 1)$
\}
for ($\mathrm{j}=1$; $\mathrm{j}<=$ size (C1) ; $\mathrm{j}++$)
\{
C2[1] $=\mathrm{C} 1[\mathrm{j}][5]$;
J=C1[j][4];
psi=s, J;
C2[2]=psi(Psi);
C2[3]=C1[j][2]
C2[4]=m1;
11=insert(1, C1[j][1],size(1));
C2[5]=11;
HN1=psi(HN);
HN1=insert(HN1, C1[j][3], size(HN1)-1);
C2[6] $=\mathrm{HN} 1$;
if(deg(C2[3])>1)
\{
$\}^{w=v,-j ;}$
\}
else
\{
$\mathrm{w}=\mathrm{v}, \mathrm{j}$;

C2[7]=w;
if(nvars(basering) $==3$)
\{
C2[9]=C1[j][6];
C2[8][size(C2[8])+1]=1ist(C2[7],C2[9]);
C3=main(C2[1], C2[2], C2[3], C2[4], C2[5], C2[6], C2[7], C2[8], C2[9]);
$\mathrm{C}=\mathrm{C}+\mathrm{C} 3$;
\}
else
\{
\}
return(C);
\}

隼
static proc transversalTest(ideal I, poly f,list L)
\{
def r=basering;
int $n=n v a r s(r)-1$ int i;
ring $\mathrm{r} 1=(0, \mathrm{a}),(\mathrm{x}(1 . . \mathrm{n})), \mathrm{ds}$; number $f=1$ eadcoef(imap (r,f)); minpoly=f;
ideal $\mathrm{I}=\mathrm{imap}(\mathrm{r}, \mathrm{I})$;
list $\mathrm{L}=\mathrm{imap}(\mathrm{r}, \mathrm{L})$;
ideal $\mathrm{K}=\mathrm{jet}(\mathrm{L}[\operatorname{size}(\mathrm{L})], \operatorname{deg}(\operatorname{lead}(\mathrm{L}[\operatorname{size}(\mathrm{L})]))$);
ideal $\mathrm{T}=1$;
if(size (L) >1)
\{
for $(\mathrm{i}=1$; $\mathrm{i}<=$ size(L) -1 ; $\mathrm{i}++$)
\{
if(subst(L[i],x(1), $0, x(2), 0)==0)$ break;
${ }^{\}}{ }_{i f(i}$
$\mathrm{if}(\mathrm{i}<=$ size(L)-1)
T=jet(L[i],deg(lead(L[i])))
\}
ideal $\mathrm{J}=\mathrm{jet}(\mathrm{I}[1], \operatorname{deg}(\operatorname{lead}(I[1])))$;
setring r;
ideal J=imap ($\mathrm{r} 1, \mathrm{~J}$);
ideal $\mathrm{K}=\mathrm{imap}(\mathrm{r} 1, \mathrm{~K})$;
ideal $\mathrm{T}=\mathrm{imap}(\mathrm{r} 1, \mathrm{~T})$;
int m=size(reduce(J,std(K)))+size(reduce(K,std(J)));
if(m)
m=size(reduce(J+K+T, std(ideal(x(1), $\mathrm{x}(2))))$);
$\}^{\mathrm{m}}$
return(m);
\} $/ / / / 1 /$
//
static proc SmoothTest(ideal I, poly f)
//Assume I is a radical ideal of dimension 1 in a ring $\mathrm{k}[\mathrm{x}(1 . . \mathrm{n})$,a]
//Returns 1 if a curve $V(I)$ is smooth at point θ and returns θ otherwise
\{
int ind;
int 1 ;
def $\mathrm{t}=$ basering;
int $n=n v a r s(t)-1$;
ring $\mathrm{r} 1=(\mathrm{O}, \mathrm{a}),(\mathrm{x}(1 . . \mathrm{n})), \mathrm{dp}$;
number $f=1$ leadcoef(imap (t,f));
minpoly=f;
ideal $\mathrm{I}=\mathrm{imap}(\mathrm{t}, \mathrm{I})$;
matrix $M=j \operatorname{jacob}(I)$;
for ($1=1 ; 1<=\mathrm{n} ; 1++$) $\{\mathrm{M}=\operatorname{subst}(\mathrm{M}, \mathrm{x}(1), 0)$; $\}$
if(mat_rk(M)==(n-1)) \{ind=1;\}
return(ind);
\}
//1/2)
proc CurveRes(ideal I)
"USAGE: CurveRes(I);
I ideal
ASSUME: The basering is $\mathrm{r}=0,(\mathrm{x}(1 . . \mathrm{n}))$
$\mathrm{V}(\mathrm{I})$ is a curve with a singular point 0 .
COMPUTE: Resolution of the curve $\mathrm{V}(\mathrm{I})$.
RETURN: a ring R=basering+k[a]
Ring R contains a list Resolve
Resolve is a list of charts
Each Resolve[i] is a list of size 6
Resolve[i][1] is an ideal J of a new curve. J=teta(I).
Resolve[i][2] ideal which represents the map
teta: $k[x(1) \ldots x(n), a]-->k[x(1) \ldots x(n), a]$ from the
new curve to the old one.
Resolve[i][3] is an irreducible poly g in $\mathrm{k}[\mathrm{a}$]. It is a minimal polynomial for the new parameter a. $\operatorname{deg}(\mathrm{g})$ gives the number of branches in Resolve[i]
Resolve[i][4] sequence of multiplicities (sum over all branches in Resolve as long as they intersect each other !)
Resolve[i][5] is a list of integers l. It shows, which standard charts we considered. Resolve[i][6] HN matrix
Resolve[i][7] (only for plane curves) the development of exceptional divisors
the entries correspond to the i-th blowing up. The first entry is an intvec. The first negative entry gives the splitting of the (over Q irreducible) branches. The second entry is a list of the exceptional divisors. If the entry is an integer i, it says that the divisor is not
EXAMPLE: example CurveRes; shows an example"
def $r=b a s e r i n g ;$
int $\mathrm{n}=\mathrm{nvars}(\mathrm{r})$;
ring $\mathrm{s}=0,(\mathrm{x}(1 \ldots \mathrm{n}), \mathrm{a}), \mathrm{dp}$;
ideal A;
int i;
for (i=1;i<=n;i++)\{A[i]=x(i);\}
for $(1=1 ; 1<=n ;$
map phi=r,
map phi=r,A;
ideal $I=$ phi $(I) ; ~$
poly $f=a$;
list 1 ;
list m;
list $\mathrm{HN}=\mathrm{x}(1)$;
ideal psi;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) $\{\mathrm{psi}[\mathrm{i}]=\mathrm{x}(\mathrm{i})$; $\}$
psi $[\mathrm{n}+1]=\mathrm{a}$;
intvec v ;
list L,Resolve;
if(n=2)
\{
ideal J=factorize(I[1],1);
list resolve;
for (int $\mathrm{k}=1$; $\mathrm{k}<=$ size(J) ; $\mathrm{k}++$)
\{
I=J [k];
resolve=main(I, psi,f,m,l,HN,v,L);
for(i=1;i<=size(resolve);i++)
\{
resolve[i][6]=delete(resolve[i][6],size(resolve[i][6]));
if(size(resolve[i])>=9) \{resolve[i]=delete(resolve[i],9); $\}$
resolve[i]=delete(resolve[i],7);
\}
if(k==1) \{Resolve=resolve; \}
else\{Resolve=Resolve+resolve;\}
${ }^{3}$ \}
\}
else
$\{$
\{
Resolve=main(I,psi,f,m, l, HN, v, L);
for (i=1;i<=size(Resolve); $\mathrm{i}++$)
\{
Resolve[i][6]=delete(Resolve[i][6],size(Resolve[i][6]));
Resolve[i]=delete(Resolve[i],8);
$\}^{\}}$
export(Resolve);
return(s);
${ }^{3}$ \}
\{
"EXAMPLE:"; echo=2;
ring $r=0,(x, y, z), d p$
ideal $\mathrm{i}=\mathrm{x} 2-\mathrm{y} 3, \mathrm{z2}-\mathrm{y} 5$;
def $\mathrm{s}=$ CurveRes(i);
setring s;
Resolve;
\}
///
static proc mlist(list 1, int n)
\{
list N ;
list M
int i;
int j;
for (i=1;i<=n;i++) \{M[i]=i;\}
$\mathrm{N}=1+\mathrm{M}$;
for ($\mathrm{i}=1$; $\mathrm{i}<=\operatorname{size}(\mathrm{N})-1 ; \mathrm{i}++$)
for
$j=i+1$;
while(j<=size(N))
\{ ${ }^{\text {wf }}$
if($N[i]==N[j])\{N=$ delete $(N, j) ;\}$
else
\}
\}
return(N);
${ }^{3}{ }^{\text {re }}$

//Assume that the basering is $\mathrm{k}[\mathrm{x}(1 . . \mathrm{n}), \mathrm{a}$]
static proc mmult(ideal I, poly f)
\{
def r=basering;
int $\mathrm{n}=\mathrm{nvars}(\mathrm{r})-1$;
ring $\mathrm{r} 1=(0, \mathrm{a}),(\mathrm{x}(1 \ldots \mathrm{n})), \mathrm{ds}$;
number $f=1$ eadcoef(imap (r,f));
minpoly=f;
ideal $\mathrm{I}=\mathrm{imap}(\mathrm{r}, \mathrm{I})$;
int m=mult(std(I));
return(m);
3

//---------Parametrization of smooth curve-------------------///

//computes jacobian matrix, considering $\mathrm{x}(1 \ldots \mathrm{n})$ as variables and $\mathrm{a}(1 \ldots \mathrm{~m})$ as parameters
static proc mjacob(ideal I)
\{
def r=basering;
int $n=n v a r s(r)$;
int $\mathrm{k}=$ size(I);
matrix $\mathrm{M}[\mathrm{k}][\mathrm{n}]$;
int i;
int j ;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{k} ; \mathrm{i}++$)
for $(1=1 ; 1<=k ; 1++)$
\quad for $(j=1 ; j<=n ; j++)$
\{
M[i,j]=diff(I[i],x(j));
for $(1=1 ; 1<=n ; 1++)\{M[i, j]=\operatorname{subst}(M[i, j], x(1), 0) ;\}$
$\}^{\}}$
return(M);
\}
//4).
static proc mmi (matrix M,int n)
\{ ideal l;
int $\mathrm{k}=$ nrows (M);
int i;
int j ;
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{k} ; \mathrm{i}++$)
\{ $1[\mathrm{i}]=0$;
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n} ; \mathrm{j}++$)
\{
$1[i]=1[i]+x(j) * M[i, j] ;$
\} ${ }^{\}}$
l $=$ std(1);
int $\mathrm{t}=$ size(1);
$\mathrm{i}=1$;
int mi=0;
while ($\mathrm{mi}==0$ and $\mathrm{i}<=\mathrm{n}-1$)
if(diff(1[i],x(n-i))!=0)\{mi=n-i+1;\}
else\{i++;\}
\}
if $(\mathrm{mi}==0)\{\mathrm{mi}=1 ;\}$
matrix Mi $[k][n-1]$;
for (i=1;i<=k;i++)
\{
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{mi}-1 ; \mathrm{j}++$)
\{
Mi $[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}, \mathrm{j}]$
\}
for ($\mathrm{j}=\mathrm{mi} ; \mathrm{j}<=\mathrm{n}-1$; $\mathrm{j}++$)
Mi $[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}, \mathrm{j}+1 \mathrm{j}$;
\}
\}
list 1 mi=mi, Mi;
return(1mi);
\}
//
static proc mC(matrix Mi,int n)
int k=nrows(Mi);
ideal c;
int i, j;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$)
\{ $c[i]=0$;
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{k} ; \mathrm{j}++$)
\{
$\mathrm{c}[\mathrm{i}]=\mathrm{c}[\mathrm{i}]+\mathrm{y}(\mathrm{j}) * \mathrm{Mi}[\mathrm{j}, \mathrm{i}]$;
$\}^{\}}$
=std(c);
\}
///1)
static proc mmF (ideal C , matrix Mi ,int n ,int k)
${ }^{\text {sta }}$
int $\mathrm{s}=\mathrm{size}(\mathrm{C})$;
intvec mf;
int $\mathrm{p}=0$;
int $\mathrm{t}=0$;
int i;
int j;
int $\mathrm{v}=0$:
for (i=s;i>0;i--)
\{ $\mathrm{p}=$
$\mathrm{j}=1$;
while ($\mathrm{t}==\mathrm{p}$ and $\mathrm{p}+\mathrm{j}<=\mathrm{k}$)
if(diff(C[i],y(p+j))==0)\{j++;\}
if $(\operatorname{diff}(C[i], y(p+j))!=\theta)\{t=p+j ; v++; \operatorname{mf}[v]=t ;\}$
$\}^{3}$
matrix $B[n-1][n-1]$;
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$)
\{
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n}-1 ; \mathrm{j}++$)
\{
$B[i, j]=M i[m f[i], j]$
\}
list $\mathrm{mmf}=\mathrm{mf}, \mathrm{B}$;
return(nmf);
\}

static proc cparam(ideal I, poly f,int n,int m,int N)
\{
def r=basering;
ring $\mathrm{s}=(0, \mathrm{a}),(\mathrm{x}(1 . . \mathrm{n})), \mathrm{lp}$;
number $f=1$ leadcoef(imap (r, f));
minpoly=f;
ideal $\mathrm{I}=\mathrm{imap}(\mathrm{r}, \mathrm{I})$;
matrix $M=m j \operatorname{acob}(\mathrm{I})$;
list $10=\operatorname{mmi}(M, n)$;
int $\mathrm{mi}=10[1]$;
matrix Mi=10[2];
ring $q=(0, a),(y(1 . . k)), l p$;
ring $q=(0, a),(y(1 \ldots k)), 1 p$;
number $f=1$ eadcoef(imap (r, f));
minpoly=f;
matrix Mi=imap(s,Mi);
ideal $\mathrm{D}=\mathrm{mC}(\mathrm{Mi}, \mathrm{n})$;
list $11=m m F(D, M i, n, k)$;
intvec $\mathrm{mf}=11[1]$;
matrix $\mathrm{B}=11[2]$;
setring s;
matrix $\mathrm{B}=\mathrm{imap}(\mathrm{q}, \mathrm{B})$;
matrix $\mathrm{C}=$ inverse (B);
int i;
int j;
ideal P;
for (i=1;i<mi;i++)\{P[i]=x(i);\}
$\mathrm{P}[\mathrm{mi}]=\mathrm{x}(\mathrm{n})$;
for $(i=1 ; i<=n-m i ; i++)\{P[m i+i]=x(m i+i-1) ;\}$
map phi=s, P ;
ideal I1=phi(I);
if(nvars(basering)==2)
\{
setring r;
ideal $\mathrm{I} 1=\mathrm{imap}(\mathrm{s}, \mathrm{I} 1)$;
matrix $\mathrm{C}=\mathrm{imap}(\mathrm{s}, \mathrm{C})$;
list X;
matrix $\mathrm{d}[\mathrm{n}-1][1]$;
matrix $\mathrm{b}[\mathrm{n}-1][1]$;
ideal Q;
map psi;
int 1 ;
int 1 ;
for $(i=1 ; i<=N ; i++)$
for
\{ $\operatorname{for}(j=1 ; j<=n-1 ; j++)$
\{
$\mathrm{d}[\mathrm{j}, 1]=\operatorname{diff}(\mathrm{I} 1[\mathrm{mf}[\mathrm{j}] \mathrm{]}, \mathrm{x}(\mathrm{n})$);
for ($1=1 ; 1<=n ; 1++$)
\{
$d[j, 1]=\operatorname{subst}(d[j, 1], x(1), 0)$;
\}
\}
$\mathrm{b}=-\mathrm{C} * \mathrm{~d}$;

I1=jet(I1,N-i+2);
X[i]=b;
for (j=1;j<=n-1;j++) \{Q[j]=x(n)*(b[j,1]+x(j));\}
$Q[n]=x(n)$;
I1[1]=quickSubst(I1[1], Q[1], Q[2], std(f));
$\mathrm{I} 1=\mathrm{I} 1 / \mathrm{x}(\mathrm{n})$;
\}
list $\mathrm{Y}=\mathrm{X}, \mathrm{mi}$;
return(Y);
\}
list X;
matrix $d[n-1][1]$;
matrix $b[n-1][1]$;
ideal Q ;
map psi;
for (i=1;i<=N; $\mathbf{i + +}$)
\{
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n}-1 ; \mathrm{j}++$)
\{
$d[j, 1]=\operatorname{diff}(\operatorname{I1}[m f[j]], x(n))$;
for $(1=1 ; 1<=n ; 1++)\{d[j, 1]=\operatorname{subst}(d[j, 1], x(1), 0) ;\}$
\} ${ }_{b}=-\mathrm{c}$
$b=-C^{*} d$;
I1=jet(I1,N-i+2);
$\mathrm{x}[\mathrm{i}]=\mathrm{b}$;
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n}-1 ; \mathrm{j}++$) $\{Q[\mathrm{j}]=\mathrm{x}(\mathrm{n}) *(\mathrm{~b}[\mathrm{j}, 1]+\mathrm{x}(\mathrm{j})) ;\}$
$\mathrm{Q}[\mathrm{n}]=\mathrm{x}(\mathrm{n})$;
psi=s, Q ;
I1=psi(I1);
$\mathrm{I} 1=\mathrm{I} 1 / \mathrm{x}(\mathrm{n}) ;$
\}
list $\mathrm{Y}=\mathrm{X}, \mathrm{mi}$;
setring r;
list $\mathrm{Y}=$ imap (s, Y);
return(Y);
\}

//--------Parametrization of singular curve-----------------////

proc CurveParam (list \#)
"USAGE: CurveParam(I)
CurvePar
I ideal
ASSUME: I is an ideal of a curve C with a singular point θ.
COMPUTE: Parametrization for algebraic branches of the curve C.
RETURN: list L of size 1 .
$\mathrm{L}[1]$ is a ring ring $\mathrm{rt}=0,(\mathrm{t}, \mathrm{a}), \mathrm{ds}$;
Ring R contains a list Param
Param is a list of algebraic branches
Each Param[i] is a list of size 3
Param[i][1] is a list of polynomials
Param[i][2] is an irredusible polynomial f in $k[a]$.It is a minimal polynomial for the parameter a .
Param[i][3] is an integer b--upper bound for the conductor of Weierstrass semigroup
EXAMPLE: example curveparam; shows an example"
\{
int i ;
int j;
if(typeof(\#[1])=="ideal")
\{
int d=deg(\#[1][1]);
def $s=$ CurveRes (\#[1]);
\}
else
def $\mathrm{s}=\#[1]$;
\}
setring s;
int n=nvars(s)-1;
list Param;
list 1 ;
ideal $\mathrm{D}, \mathrm{P}, \mathrm{Q}, \mathrm{T}$;
poly f;
map tau;
list Z;
list Y;
list X ;
int mi;
int b ;
int k;
int dd;
for ($\mathrm{j}=1$; $\mathrm{j}<=$ =size(Resolve) ; $\mathrm{j}++$)
\{
b=0;
for ($\mathrm{k}=1$; $\mathrm{k}<=\operatorname{size}$ (Resolve[j][4]) ; $\mathrm{k}++$)
\{
$b=b+$ Resolve[j][4][k]*(Resolve[j][4][k]+1);
if $((n==2) \& \&(\operatorname{size}(\operatorname{Resolve}[j][4])==0))$
\{b=d; \}
$\mathrm{Y}=\mathrm{cparam}$ (Resolve[j][1],Resolve[j][3] ,n, 1,b);
$\mathrm{X}=\mathrm{Y}[1]$;
mi $=\mathrm{Y}[2]$;
$\mathrm{f}=$ Resolve[j][3];
for $(\mathrm{i}=1 ; \mathrm{i}<\mathrm{mi} ; \mathrm{i}++$)
\{
P[i]=0;
for $\left(\mathrm{k}=1 ; \mathrm{k}<=\mathrm{b} ; \mathrm{k}++\right.$) $\left\{\mathrm{P}[\mathrm{i}]=\mathrm{P}[\mathrm{i}]+\mathrm{X}[\mathrm{k}][\mathrm{i}, 1] *\left(\mathrm{x}(1)^{\wedge} \mathrm{k}\right) ;\right\}$
\}
$\mathrm{P}[\mathrm{mi}]=\mathrm{x}(1)$;
for ($\mathrm{i}=\mathrm{mi}+1 ; \mathrm{i}<=\mathbf{n}$; $\mathrm{i}++$)
\{
P[i]=0;
for $\left(\mathrm{k}=1 ; \mathrm{k}<=\mathrm{b} ; \mathrm{k}++\right.$) $\left\{\mathrm{P}[\mathrm{i}]=\mathrm{P}[\mathrm{i}]+\mathrm{X}[\mathrm{k}][\mathrm{i}-1,1] *\left(\mathrm{x}(1)^{\wedge} \mathrm{k}\right)\right.$;
\}
$\mathrm{P}[\mathrm{n}+1]=\mathrm{a}$;
tau=s, P;
T=Resolve[j][2];
//HERE A TEST FOR dd
if(nvars(basering)==3)
\{
dd=boundparam(P[2])
if(dd==1) \{dd=boundparam(P[1]);\}
$\mathrm{P}[1]=\mathrm{jet}(\mathrm{P}[1]$, dd)
$P[2]=j e t(P[2], d d)$;
$\mathrm{Q}[1]=$ quickSubst (T[1], P[1], P[2],std(f));
$\mathrm{Q}[2]=$ quickSubst (T[2], P[1], P[2],std(f));
Q[3]=a;
\}
else
$\mathrm{Q}=\mathrm{tau}(\mathrm{T})$;
\}
for(i=1;i<=n;i++)\{Z[i]=jet(reduce $(Q[i], s t d(f)), b+1)$;
1[1]=Z;
1[2]=f;
1[3]=b;
Param[j]=1;
3
ring rt=0, (t, a), ds
ideal D;
D[1]=t;
$\mathrm{D}[\mathrm{n}+1]=\mathrm{a}$;
map delta=s,D;
list Param=delta(Param)
export(Param)
return(rt);
\}
\{
"EXAMPLE:";echo=2;
ring $\mathrm{r}=0,(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{dp}$;
ideal $i=x 2-y 3, z 2-y 5$;
def $\mathrm{s}=$ CurveParam(i);
setring s;
Param;
\}

//-----------Computation of Weierstrass Semigroup from parametrization--------------------/////

static proc Semi(intvec G,int b)
"USAGE: $\operatorname{Semi}(G, b)$;
$\mathrm{G}=$ intvec
b=int
ASSUME: $G[1]<=G[2]<=\ldots<=G[k]$,
COMPUTE: elements of semigroup S generated by the enteries of G till the bound b .
For each element i of S computes the list of integer vectors v of dimension
$\mathrm{k}=$ size (G), such that $\mathrm{g}[1] * \mathrm{v}[1]+\mathrm{g}[2] * v[2]+\ldots+\mathrm{g}[\mathrm{k}] * v[\mathrm{k}]=\mathrm{i}$. If there exists
conductor of semigroup $S \quad c<b-n$, where n is minimal element of G, then
computes also c+n.
RETURN: list M of size 2 .
$\mathrm{L}=\mathrm{M}[1]$ is a list of size $\min (\mathrm{b}, \mathrm{c}+\mathrm{n})$
$\mathrm{L}[\mathrm{i}]$ is a list of integer vectors
If i is not in a semigroup S than L[i] is empty.
$M[2]$ is an integer $=\min (b, c+n)$
m[3] minimal generators of S
EXAMPLE:"
\{
list L;
list 1 ;
int i;
for (i=1;i<=b;i++) \{L[i]=1; $\}$
int $\mathrm{k}=$ size(G) ;
int $\mathrm{n}=\mathrm{G}[1]$;
int j ;

```
    int t;
    int q;
    int c=0;
    intvec w;
    intvec v
    for(i=1;i<=k;i++)
    {
        for(j=1;j<=k; j++)
        {
        if(j==i){w[j]=1;}
        else{w[j]=0;}
    }
    L[G[i]]=insert(L[G[i]],w);
    }
    list L1=L;
    int s=0;
    int sl=0
    i=1;
    int p;
    while(i<=b and s<n)
    {
        for(j=1;j<=k; j++)
        {
            if(i-G[j]>0)
            {
            if(size(L[i-G[j]])>0)
            {
            for(t=1;t<=size(L[i-G[j]]);t++)
            {
                v=L[i-G[j]][t];
                v=L[1;
                for(q=1;q<j;q++)
                {if(v[q]>0){p=0;}
                }
                if(p==1){v[j]=v[j]+1;L[i]=insert(L[i],v);}
                }
        }
    }
    if(size(L[i])>0){s1=1;}
        s=s1*(s+1);
        s1=0;
        } i++;
    intvec Gmin;
    int jmin=1;
    for(j=1;j<=k;j++)
    {
        if(size(L[G[j]])==size(L1[G[j]]) && G[j]<i)
        {
        Gmin[jmin]=G[j];
        L1[G[j]]=insert(L1[G[j]],0);
        jmin++;
        }}
        }
        list M=L,i-1,Gmin;
        return(M);
    }
```



```
    static proc AddElem(list L,int b,int k,int g,int n)
    "ASSUME: L list of size b. L[i] list of integer vectors of dimension k
        b=int
        k=int as above
        g=int new generator
        n=int. minimal generator
    RETURN: list M
            M[1]=new L;
    {
        int i,j;
        intvec v;
        for(i=1;i<=b;i++)
    {
        if(size(L[i])>0)
        f
            for(j=1;j<=size(L[i]);j++)
            {
            v=L[i][j];
            v[k+1]=0;
            L[i][j]=v;
        }
        }
    intvec w
        w[k+1]=1;
        L[g]=insert(L[g],w);
        int s=0;
```

```
    int s1=0;
    i=1;
    while(i<=b and s<n)
    {
        if(i-g>0)
    {
        if(size(L[i-g])>0)
        {
            for(j=1;j<=size(L[i-g]);j++)
            {
                v=L[i-g][j];
                v[k+1]=v[k+1]+1;
                L[i]=insert(L[i],v);
        }
        }
        if(size(L[i])>0){s1=1;}
        s=s1*(s+1);
        s1=0;
        i++;
    }
    int b1=i-1;
    list M=L,b1;
    return(M);
    }
```



```
    proc WSemigroup(list X,int bo)
    "USAGE: WSemigroup(X,b\otimes);
        X a list of polinomials in one vaiable, say t
        b0 an integer
    COMPUTE: Weierstrass semigroup of space curve C,which is given by a parametrization
            x[1](t),\ldots.,X[k](t), till the bound bo.
    ASSUME: bo is greater then conductor
    RETURN: list M of size 5.
            M[1]= list of integers, which are minimal generators set of the Weierstrass semigroup
            M[2]=integer, conductor of the Weierstrass semigroup.
            M[3]=intvec, all elements of the Weierstrass semigroup till some bound b,
            which is greather than conductor.
WARNING: works only over the ring with one variable with ordering ds
    EXAMPLE: example WSemigroup; shows an example"
    {
        int k=size(X);
        intvec G;
        int i,i2;
        poly t=var(1);
        poly h;
        int g;
        for(i=1;i<=k;i++)
        {G[i]=ord(X[i]);}
        for(i=1;i<k;i++)
    {
        for(i2=i;i2<=k;i2++)
        {
            if(G[i]>G[i2])
            {
            g=G[i];G[i]=G[i2];G[i2]=g
            h=X[i];X[i]=X[i2];X[i2]=h;
        }
        }
    list U=Semi (G,b0);
    list L=U[1];
    int b=U[2];
    G=U[3];
    int k1=size(G);
    list N;
    list l;
    for(i=1;i<=b;i++){N[i]=1;}
    for(i=1
    for(j=b0;j>b;j--){L=delete(L,j);}
    poly p;
    int s;
    int e;
    for(i=1;i<=b;i++)
    {
        for(j=1;j<=size(L[i]);j++)
    {
        p=1;
        for(s=1;s<=k;s++)
        {
            for(e=1;e<=L[i][j][s];e++)
            {
                p=p*X[s];
                p=jet (p,b);
            }
            }
```

```
        N[i]=insert(N[i],p);
    }
1 1 2 5
```

```
\}
int j1;
int j2;
list M;
poly c1;
poly c2;
poly f;
int m;
int b1;
ideal I;
matrix C;
matrix C1;
int q;
int i1;
i=1;
while(i<=b)
    {
        for(j1=2;j1<=size(N[i]);j1++)
    {
        for(j2=1;j2<j1;j2++)
    {
        c1=coeffs(N[i][j1],t)[i+1,1];
        c2=coeffs(N[i][j2],t)[i+1,1];
        f=c2*N[i][j1]-c1*N[i][j2];
        m=ord(f);
        if(m>=0)
        {
            if(size(N[m])==0)
            {
                N[m]=insert(N[m],f);
                if(size(L[m])==0)
                    {
                    M=AddElem(L,b,k,m,G[1]);
                    L=M[1];
                    b1=M[2];
                    G[k1+1]=m;
                    x[k+1]=f;
                    N[m]=insert(N[m],f);
                    k=k+1;
                    k1=k1+1;
                    if(b1<b)
                    {f
                        for(i1=1;i1<=b1;i1++)
                    {
                    for(s=1;s<=size(N[i1]);s++){N[i1][s]=jet(N[i1][s],b1);}
                    }
                    for(s=size(N);s>b1;s--){N=delete(N,s);}
                    for(s=size(L);s>b1;s--){L=delete(L,s);}
                }
                b=b1;
                }
                else
                else
                    for(q=1;q<=size(N[m]);q++){I[q]=N[m][q];}
                I[size(N[m])+1]=f;
                C=coeffs(I,t);
                C1=gauss_col(C);
                if(C1[size(N[m])+1]!=0){N[m]=insert(N[m],f);}
                }
            }
            }
    }
    intvec S;
    for(i=1;i<=b;i++)
        {
        if(size(L[i])>0){S[j]=i;j++;}
    }
        U=Semi (G,b);
        G=U[3];
        list Q=G,b-G[1]+1,S;
        return(Q);
    }
    example
        "EXAMPLE:";echo=2;
        ring r=0, (t),ds;
        list X=t4,t5+t11,t9+2*t7;
    list
}
```


static proc quickSubst(poly h, poly r, poly s,ideal I)
\{
$/ /===$ computes $\mathrm{h}(\mathrm{r}, \mathrm{s}) \bmod \mathrm{I}$ for h in $\mathrm{Q}[\mathrm{x}(1), \mathrm{x}(2), \mathrm{a}]$
attrib(I,"isSB",1);
if $((\mathrm{r}==\mathrm{x}(1)) \& \&(\mathrm{~s}==\mathrm{x}(2)))\{$ return(reduce $(\mathrm{h}, \mathrm{I})) ;\}$
poly q1 $=1$;
poly q2 $=$
poly q3 $=1$;
int $\mathrm{i}, \mathrm{j}, \mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3$;
list L,L1,L2,L3;
if($\mathrm{r}=\mathrm{=x}(1)$)
if(
matrix M=coeffs(h,x(2));
L[1]=1;
for(i=2;i<=nrows(M);i++)
\{
$\mathrm{q} 2=\operatorname{reduce}(\mathrm{q} 2 * \mathrm{~s}, \mathrm{I}) ;$
$\mathrm{L}[\mathrm{i}]=\mathrm{q} 2$;
\}
$\mathrm{i}=1 ;$
$\mathrm{h}=0$
O
while(i <= nrows(M))
\{
if $(M[i, 1]!=0)$
$h=h+M[i, 1] * L[i] ;$
\}
\}
h=reduce (h, I);
return(h);
\}
if(s=x (2))
\{
matrix $M=\operatorname{coeffs}(\mathrm{h}, \mathrm{x}(1))$;
L[1]=1;
for(i=2;i<=nrows(M);i++)
\{
$\mathrm{q} 1=\operatorname{reduce}(\mathrm{q} 1 * \mathrm{r}, \mathrm{I})$;
$\mathrm{L}[\mathrm{i}]=\mathrm{q} 1$;
\}
$\mathrm{i}=1 ;$
$\mathrm{h}=0$
while(i <= nrows(M)
\{
$\operatorname{if}(M[i, 1]!=0)$
$\mathrm{h}=\mathrm{h}+\mathrm{M}[\mathrm{i}, 1] * \mathrm{~L}[\mathrm{i}]$
\}
i++;
\}
$\mathrm{h}=$ reduce (h, I);
\}
for (i=1;i<=size(h);i++)
\{
if(leadexp $(\mathrm{h}[\mathrm{i}])[1]>\mathrm{e} 1)\{\mathrm{e}=1=\operatorname{eadexp}(\mathrm{h}[\mathrm{i}])[1]$; $\}$
if(leadexp $(h[i])[2]>e 2)\{e 2=1 \operatorname{eadexp}(h[i])[2]$; $\}$
if(leadexp(h[i])[3]>e3) \{e3=leadexp(h[i])[3];\}
\}
for $(\mathrm{i}=1 ; \mathrm{i}<=\operatorname{size}(\mathrm{h}) ; \mathrm{i}++)$
$\mathrm{L}[\mathrm{i}]=\operatorname{list}(\operatorname{leadcoef}(\mathrm{h}[\mathrm{i}]), \operatorname{leadexp}(\mathrm{h}[\mathrm{i}])$);
$\}$
$\mathrm{L} 1[1]=1 ;$
$\mathrm{L} 1[1]=1 ;$
$\mathrm{L} 2[1]=1 ;$
L3[1]=1;
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{e} 1 ; \mathrm{i}++$)
\{
$\mathrm{q} 1=\operatorname{reduce}(\mathrm{q} 1 * \mathrm{r}, \mathrm{I})$;
$\mathrm{q} 1=$ reduce
$\mathrm{L} 1[\mathrm{i}+1]=\mathrm{q} 1 ;$
\}
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{e} 2 ; \mathrm{i}++$)
\{
$\mathrm{q} 2=\operatorname{reduce}(\mathrm{q} 2 * \mathrm{~s}, \mathrm{I})$
L2 [i+1]=q2;
${ }_{3}{ }_{\text {for }}$
for ($\mathrm{i}=1 ; \mathrm{i}<=e 3 ; i++$)
for
q3 $=\operatorname{reduce}(q 3 * \operatorname{var}(3), \mathrm{I})$;
L3[i+1]=q3;
\}
int m=size(L);
$\mathrm{i}=1$;
$\mathrm{h}=0$;
while ($\mathrm{i}<=\mathrm{m}$)
\{
$\mathrm{h}=\mathrm{h}+\mathrm{L}[\mathrm{i}][1] * \mathrm{~L} 1[\mathrm{~L}[\mathrm{i}][2][1]+1] * \mathrm{~L} 2[\mathrm{~L}[\mathrm{i}][2][2]+1] * \mathrm{~L}[\mathrm{LL}[\mathrm{i}][2][3]+1]$;
$\}^{1+}$
$\mathrm{h}=$ reduce (h, I);
return(h);
\}
static proc semi2char(intvec v
\{
intvec $\mathrm{k}=\mathrm{v}[1 . .2]$
intvec $\mathrm{w}=\mathrm{v}[1]$;
int $\mathrm{i}, \mathrm{j}, \mathrm{p}, \mathrm{q}$; for(i=2;i<size(v);i++)
\{
$w[i]=\operatorname{gcd}(w[i-1], v[i])$
${ }^{3}+$
for (i=3;i<=size(v);i++)
k[i]=v[i];
for ($\mathrm{j}=2$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
\{
$\mathrm{k}[\mathrm{i}]=\mathrm{k}[\mathrm{i}]-(\mathrm{w}[\mathrm{j}-1 \mathrm{]}$ div $w[\mathrm{j}]-1) * \mathrm{v}[\mathrm{j}]$
\}
return(k);

proc primparam(poly x, poly y,int c)
proc primparam(poly x, poly y, int c$)$
"USAGE: MultiplicitySequence ($\mathrm{x}, \mathrm{y}, \mathrm{c}$); x poly, y poly, c integer
ASSUME: x and y are polynomials in $k(a)[t]$ such that (x, y) is a primitive parametrization of
a plane curve branch and $\operatorname{ord}(x)<\operatorname{ord}(y)$.
RETURN: Hamburger-Noether Matrix of the curve branch given parametrically by (x, y).
EXAMPLE: example primparam; shows an example
"
int i, h;
poly F, z;
list L;
while $(\operatorname{ord}(\mathrm{x})>1)$
\{ list v;
while (ord(y) $>=\operatorname{ord}(x)$)
while $(\operatorname{ord}(\mathrm{y})>=\operatorname{ord}(\mathrm{x})$
\{ $=$ divide $(\mathrm{y}, \mathrm{x}, \mathrm{c})$;
F=divide $(\mathrm{y}, \mathrm{x}, \mathrm{c})$
$\mathrm{if}(\operatorname{ord}(\mathrm{F})=0)$
\{
$\mathrm{v}=$ insert(v , subst($\mathrm{F}, \mathrm{t}, 0$), size(v))
$\mathrm{y}=\mathrm{F}-\operatorname{subst}(\mathrm{F}, \mathrm{t}, 0)$;
\}
else
$\mathrm{v}=$ insert($\mathrm{v}, \mathrm{0}, \operatorname{size}(\mathrm{v})$);
$\mathrm{y}=\mathrm{F}$;
\}
$\mathrm{v}=$ insert($\mathrm{v}, \mathrm{t}, \operatorname{size}(\mathrm{v})$);
L=insert(L, transform(v), size(L));
$\mathrm{z}=\mathrm{x}$;
$\mathrm{x}=\mathrm{y} ;$
$\mathrm{y}=\mathrm{z} ;$
kill v;
\}
if(ord $(x)==1)$
\{
list v;
while(i<c)
\{
F=divide ($\mathrm{y}, \mathrm{x}, \mathrm{c}$);
if $(\operatorname{ord}(F)==0)$
\{
$\mathrm{v}=$ insert($\mathrm{v}, \operatorname{subst}(\mathrm{F}, \mathrm{t}, 0)$, size(v))
$\mathrm{y}=\mathrm{F}$ - subst($\mathrm{F}, \mathrm{t}, 0$);
\}
else
$\mathrm{v}=$ insert(v, $\mathrm{e}, \operatorname{size}(\mathrm{v})$);
$\mathrm{y}=\mathrm{F}$;
\}
if $(y==0)$
\{
$\mathrm{v}=$ insert($\mathrm{v}, \mathrm{t}, \operatorname{size}(\mathrm{v})$);
break;
\}
${ }^{\text {1++ }}$
$\mathrm{L}=$ insert(L,transform(v), size(L));
${ }_{3}{ }_{\text {retu }}$
(compose(L))
\}

```
    {
    "EXAMPLE:"; echo=2;
    ring r=(0,a),t,ds;
    poly x=t6;
    poly y=t8+t11;
    int c=15;
    primparam(x,y,c);
    }
1 3 9 5
    //////////////////////////////////////
    //L is a list of polynomials
    //////////////////////////////////////
    static proc transform(list L)
    4 0 0
    matrix m2;
        matrix m1=matrix(L[1]);
        for(int i=2;i<=size(L);i++
    {
        m2=matrix(L[i]);
        m1=concat(m1,m2)
    }
    return(m1);
    }
    //L is a list of matrices
    //////////////////////////////////////
    static proc compose(list L)
    {
        matrix M[ncols(L[1])][1]=transpose(L[1]);
        for(int i=2;i<=size(L);i++)
        {
        M=concat(M, transpose(L[i]));
    }
    }
```



```
    static proc rduce(poly p)
    {
        int n=ord(p);
        poly q=p/(t^n);
        return(q);
    }
    ////////////////////////////////////////////////////
    static proc divide(poly p,poly q,int c)i
    {
        int n=ord(p);
        int m=ord(q);
        poly p'=rduce(p);
        poly q'=rduce(q);
        poly r=t^(n-m)*p)*jet (1,q',c);
        return(jet(r,c));
    }
    /////////////////////////////////////////////////////
    static proc contact(list L)
    {
        def M=L[1];
        intvec v=L[2];
        int s,j,i;
        for(i=1;i<=size(v);i++)
        {
            if(v[i]<0){v[i]=-1-v[i];}
            for(j=1;j<=v[i];j++)
            {
            s=s+1;
            if(find(string(M[i,j]),"a")!=0){return(s);}
        }
    }
```



```
    static proc converter(list L)
    sta
    def s=basering;
    list D;
    int i,c;
    for(i=1;i<=size(L);i++)
        {D=insert(D,deg(L[i][2]),size(D));}
    ring r=(0,a),(t),ds;
    list L=imap(s,L);
    poly x,y,z;
    list A,B;
    for(i=1;i<=size(L);i++)
        {A[5]=D[i];
        x=L[i][1][1];
        y=L[i][1][2];
        if(ord(x)<=ord(y)) {A[3]=0;}
        else{A[3]=1;
            z=x;
```

1475
$\mathrm{x}=\mathrm{y} ;$
$\mathrm{y}=\mathrm{z} ;$
j
c=bound (x, y);
if(c==-1) \{ERROR("Bound is not enough"); \}
$\mathrm{A}[1]=\operatorname{primparam}(\mathrm{x}, \mathrm{y}, \mathrm{c})$;
$\mathrm{A}[2]=$ lengths $(\mathrm{A}[1])$;
A[4]=0;
$\mathrm{B}=$ insert (B,A,size(B));
$\mathrm{A}=$ list() ;
A=1
\}
ring $\mathrm{r} 1=(\mathrm{o}, \mathrm{a}),(\mathrm{x}, \mathrm{y}), \mathrm{ds}$;
list hne=fetch (r, B);
export(hne);
return(r1);
\}
///
static proc intermat(list L)
\{
int $\mathrm{s}=$ size(L);
intvec $\mathrm{v}=\mathrm{L}[1][5]$;
intvec w1;
int $\mathrm{i}, \mathrm{j}, \mathrm{d}, \mathrm{b}, \mathrm{l}, \mathrm{k}, \mathrm{c}, \mathrm{o}, \mathrm{p}$;
for (i=2;i<=s;i++)
\{v=v,L[i][5];\}
intvec $u=v[1]$;
for (i=2; $i<=s ; i++$
for
$\mathrm{l}=\mathrm{u}[\operatorname{size}(\mathrm{u})]+\mathrm{v}[\mathrm{i}]$
$\mathrm{u}=\mathrm{u}, \mathrm{l}$;
\}
int
int $\mathrm{m}=\mathrm{u}[\operatorname{size}(\mathrm{u})]$
intmat M[m][m];
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{m} ; \mathrm{i}++$)
\{
for ($\mathbf{j}=\mathbf{i}+1 ; \mathrm{j}<=\mathrm{m} ; \mathrm{j}++$)
\{
d=sorting(u,i);
b=sorting(u, j);
if(d==b) \{k=contact (L[d]);
w1=multsequence (L[d]);
if(size (w1)<k) $\{$ for (p=size(w1) $+1 ; \mathrm{p}<=\mathrm{k} ; \mathrm{p}++$)
\{w1=w1,1;\} \}
for $(0=1 ; 0<=k ; 0++$) $\{c=c+w 1[0] * w 1[0]$; \}
M[i,j]=c;
$\}^{c=0 \text {; }}$
\}
else
\{M[i,j]=intersection(L[d],L[b]);\}
\}
\}
return (M);
${ }^{3}$
///1)
static proc lengths(matrix M)
\{
intvec v;
int $\mathrm{s}, \mathrm{i}, \mathrm{j}$;
for (i=1; $\mathrm{i}<=$ nrows (M); $\mathrm{i}++$)
\{
for (j=1; ${ }^{\text {< }=\text { ncols }(M) ; ~}{ }^{\text {++ }}$)
\{
if $(M[i, j]==t)$
\{
$\mathrm{v}[\mathrm{i}]=\mathrm{j}-1$;
if $(\mathrm{i}=$ =nrows (M)) $\{\mathrm{s}=1$;
break;
$\}^{\}}$
\}
if $(s==0)\{v[$ nrows $(\mathrm{M})]=-\mathrm{j} ;\}$
return(v);
\}
//1
static proc sorting(intvec u,int k)
\{
int $\mathrm{s}=$ size(u);
int i;
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{s} ; \mathrm{i}++$)
if (u[i]>=k) \{break; \}
\}
return(i);
\}

proc MultiplicitySequence(ideal i)
"USAGE: MultiplicitySequence(i); i ideal
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

```
    RETURN: list X of charts. Each chart contains the multiplicity sequence of
        the corresponding branch.
    EXAMPLE: example MultiplicitySequence; shows an example
```

```
\{
def \(\mathrm{s}=\) CurveParam(i);
setring s;
int \(\mathrm{j}, \mathrm{k}\);
def \(\mathrm{r} 1=\) converter (Param);
setring r ;
list \(\mathrm{Y}=\) hne ;
list X ;
for ( \(\mathrm{j}=1\); \(\mathrm{j}<=\operatorname{size}(\mathrm{Y})\); \(\mathrm{j}++\) )
\{
for \((\mathrm{k}=1 ; \mathrm{k}<=\mathrm{Y}[j][5] ; \mathrm{k}++)\)
\{
X=insert(X, multsequence \((\mathrm{Y}[\mathrm{j}])\), size( X\()\) );
\(\}^{\}}\)
return \((X)\);
\}
example
\{
"EXAMPLE:"; echo = 2;
ring \(\mathrm{r}=0,(\mathrm{x}, \mathrm{y})\), ds ;
ideal \(i=x 14-x 4 y 7-y 11\);
MultiplicitySequence(i);
\}
```



``` proc IntersectionMatrix(ideal i)
"USAGE: IntersectionMatrix(i); i ideal
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
RETURN: intmat of the intersection multiplicities of the branches.
EXAMPLE: example IntersectionMatrix; shows an example
"
def \(\mathrm{s}=\) CurveParam(i);
setring s;
int j,k;
def r1=converter (Param);
setring r 1 ;
list \(Y=\) hne;
return(intermat(Y));
\({ }^{3}{ }^{\text {examp }}\)
example
\{
"EXAMPLE:"; echo = 2;
ring \(\mathrm{r}=0,(\mathrm{x}, \mathrm{y})\), ds ;
ideal \(\mathrm{i}=\mathrm{x} 14-\mathrm{x} 4 \mathrm{y} 7-\mathrm{y} 11\);
IntersectionMatrix(i)
\}
////////////////////////////////////////////////////////////////////////////////1.| proc CharacteristicExponents(ideal i)
"USAGE: CharacteristicExponents(i); i ideal
ASSUME: \(i\) is the defining ideal of a (reducible) plane curve singularity.
RETURN: list \(X\) of charts. Each chart contains the characteristic exponents of the corresponding branch.
EXAMPLE: example CharacteristicExponents; shows an example
\{
def \(\mathrm{s}=\) CurveParam(i);
setring s;
int \(\mathrm{j}, \mathrm{k}\);
def r1=converter(Param);
setring r 1 ;
list X ;
list \(\mathrm{Y}=\mathrm{hne}\);
for ( \(\mathrm{j}=1\); \(\mathrm{j}<=\operatorname{size}(\mathrm{Y})\); \(\mathrm{j}++\) )
\{
for \((\mathrm{k}=1 ; \mathrm{k}<=\mathrm{Y}[\mathrm{j}][5] ; \mathrm{k}++\) )
\{
\(\mathrm{X}=\mathrm{insert}(\mathrm{X}, \operatorname{invariants}(\mathrm{Y}[\mathrm{j}])[1], \operatorname{size}(\mathrm{X})\) )
\(\}^{\}}\)
return(X);
\}
example
\{
"EXAMPLE:"; echo = 2 ;
ring \(\mathrm{r}=0,(\mathrm{x}, \mathrm{y}), \mathrm{ds}\);
ideal \(\mathrm{i}=\mathrm{x} 14-\mathrm{x} 4 \mathrm{y} 7-\mathrm{y} 11\);
CharacteristicExponents(i);
```



```
static proc contactNumber(int a,intvec v1,intvec v2)
\{
//==== a is the intersection multiplicity of the branches
\(/ /====\mathrm{v} 1, \mathrm{v} 2\) are the multiplicity sequences
```

int $\mathrm{i}, \mathrm{c}, \mathrm{d}$;
if(size(v1)>size(v2))
\{
for(i=size(v2) +1 ; $\mathrm{i}<=\operatorname{size}(\mathrm{v} 1) ; \mathrm{i}++$)
\{2[i]=1;
$\}^{3}$
\}
if(size(v1)<size(v2))
for(i=size(v1) +1 ;i<=size(v2);i++)
\{
\}
\}
while((c<a)\&\&(d<size(v1)))
र d++;
$c=c+v 1[d] * v 2[d]$;
${ }_{3}{ }^{\mathrm{c}=\mathrm{c}} \mathrm{if}$ (c
if(c<a)
$d=d+a-c ;$
\}
return(d);

proc ContactMatrix(ideal I)
"USAGE: ContactMatrix(I) ; I ideal
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
RETURN: intmat N of the contact matrix of the braches of the curve.
EXAMPLE: example ContactMatrix; shows an example
"
def $\mathrm{s}=$ CurveParam(I) ;
setring s;
int $\mathrm{j}, \mathrm{k}, \mathrm{i}$;
def r1=converter (Param);
setring r1;
list $\mathrm{Y}=\mathrm{hne}$;
list L ;
for ($\mathrm{j}=1$; $\mathrm{j}<=\operatorname{size}(\mathrm{Y})$; $\mathrm{j}++$)
\{
\{
L=insert(L, multsequence $(\mathrm{Y}[\mathrm{j}]$), size(L$)$);
\}
\}
intmat $M=$ intermat (Y);
intmat $N[\operatorname{nrows}(M)][\operatorname{ncols}(M)]$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\operatorname{nrows}(\mathrm{M}) ; \mathrm{i}++$)
\{
for ($\mathrm{j}=\mathrm{i}+1$; $\mathrm{j}<=\mathrm{ncols}(\mathrm{M})$; $\mathrm{j}++$)
\{
N[i,j]=contactNumber(M[i,j],L[i],L[j]);
$N[j, i]=N[i, j] ;\}$
\}
return(N);
\}
example
"EXAMPLE:"; echo $=2$;
ring $\mathrm{r}=\mathrm{\theta},(\mathrm{x}, \mathrm{y}), \mathrm{ds}$;
ideal $i=x 14-x 4 y 7-y 11$;
ContactMatrix(i);
\}
///
proc plainInvariants(ideal i)
"USAGE: plainInvariants(i); i ideal
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
RETURN: list L of charts. $L[j]$ is the invariants of the j th branch and the last entry of L is a list containing the intersection matrix, contact matrix, resolution graph of the curve.
$\mathrm{L}[\mathrm{j}][1]$: intvec (characteristic exponents of the j th branch)
$L[j][2]: \quad$ intvec (generators of the semigroup of the j th branch)
$\mathrm{L}[j][3]$: intvec (first components of the puiseux pairs of the j th branch)
L[j][4]: intvec (second components of the puiseux pairs of the j th branch)
$\mathrm{L}[\mathrm{j}][5]$: int (degree of conductor of the j th branch)
$\mathrm{L}[\mathrm{j}][6]$: intvec (multiplicity sequence of the j th branch.
L[last][1]: intmat (intersection matrix of the branches)
L[last][2]: intmat (contact matrix of the branches)
L[last][3]: intmat (resolution graph of the curve)
SEE ALSO: MultiplicitySequence, CharacteristicExponents, IntersectionMatrix, ContactMatrix
EXAMPLE: example plainInvariants; shows an example
"
def $s=$ CurveParam(i);
setring s;
int $\mathrm{j}, \mathrm{k} ;$
def $\mathrm{r} 1=$ converter (Param)
setring r 1 ;
setring r1;
list $\mathrm{Y}=\mathrm{hne}$;
list $\mathrm{L}, \mathrm{X}, \mathrm{Q}$;
list $\mathrm{L}, \mathrm{X}, \mathrm{Q}$;
for $(\mathrm{j}=1 ; \mathrm{j}<=\operatorname{size}(\mathrm{Y}) ; \mathrm{j}++)$
for $(\mathrm{j}=1 ; \mathrm{j}<=\operatorname{size}(\mathrm{Y}) ; \mathrm{j}++$)
for $(\mathbf{k}=1 ; \mathbf{k}<=\mathrm{Y}[\mathrm{j}][5] ; \mathrm{k}++$)
\{
L=insert(L,invariants(Y[j]),size(L)); //computes the same thing again
$\mathrm{X}=$ insert $(\mathrm{X}, \mathrm{invariants}(\mathrm{Y}[\mathrm{j}])[1]$, size(X));
3
${ }^{3}$
L=insert(L, list(),size(L));
L[size(L)]=insert(L[size(L)],intermat(Y), size(L[size(L)]));
intmat $N[n r o w s(i n t e r m a t(Y))][n c o l s(i n t e r m a t(Y))] ;$
for ($\mathrm{k}=1 ; \mathrm{k}<=\operatorname{nrows}($ intermat (Y)) ; $\mathrm{k}++$)
\{
for ($\mathrm{j}=\mathrm{k}+1$; $\mathrm{j}<=$ =ncols(intermat(Y)) ; $\mathrm{j}++$)
\{
$\mathrm{N}[\mathrm{k}, \mathrm{j}]=$ contactNumber(intermat(Y) $[\mathrm{k}, \mathrm{j}], \mathrm{L}[\mathrm{k}][6], \mathrm{L}[\mathrm{j}][6])$;
$N[j, k]=N[k, j]$;
${ }^{3}$
$\mathrm{L}[\operatorname{size}(\mathrm{L})]=\operatorname{insert}(\mathrm{L}[\operatorname{size}(\mathrm{L})], \mathrm{N}, \operatorname{size}(\mathrm{L}[\operatorname{size}(\mathrm{L})]))$
$\mathrm{Q}=\mathrm{L}[$ size $(\mathrm{L})][2], \mathrm{X}$;
L[size(L)]=insert(L[size(L)], resolutiongraph(Q), size(L[size(L)]));
return(L);
\}
example
\{
"EXAMPLE:"; echo = 2;
ring $r=0,(x, y), d s$;
ideal $\mathrm{i}=\mathrm{x} 14-\mathrm{x} 4 \mathrm{y} 7-\mathrm{y} 11$
plainInvariants(i);
\}
$1 / 1$
static proc bound(poly x,poly y)
\{
poly $\mathrm{z}=\mathrm{x}+\mathrm{y}$;
int $m=o r d(z)$;
int i;
int $c=-1$;
for (i=2; $\mathrm{i}<=\operatorname{size}(z) ; i++$)
\{
if $(\operatorname{gcd}(m, l \operatorname{eadexp}(z[i])[1])==1)$
\{
$\mathrm{c}=2 * 1 \operatorname{eadexp}(\mathrm{z}[\mathrm{i}])[1]$;
break;
\}
flse
$\mathrm{m}=\operatorname{gcd}(\mathrm{m}$, leadexp $(\mathrm{z}[\mathrm{i}])[1])$;
\}
\}
return(c);
\}

static proc boundparam(poly f)
${ }^{\text {stat }}$
int i;
int l=size(f);
int $m=1 \operatorname{eadexp}(f[1])$ [1];
for ($\mathrm{i}=1-1$; $\mathrm{i}>=1$; $\mathrm{i}--$)
${ }^{\text {for }}{ }^{\text {if }}$
if(gcd(m,leadexp(f[i])[1])==1)
\{
i=i-1;
break;
${ }^{3}{ }^{\text {br }}$
else
$m=\operatorname{gcd}(m, l \operatorname{eadexp}(f[i])[1])$;
$\}^{\}}$
return $\left(2^{*} 1\right.$ eadexp $\left.(f[i+1])[1]\right)$;
\}

APPENDIX B

The Singular Library "ArfClosure.lib"

```
    //////////////////
    version="$Id: $"
    category="Singularity Theory";
    info="
```


//////////////////// version="SId: \$";

category="Singularity Theory
LIBRARY: space_curve.lib
AUTHOR: Feza Arslan email: feza.arslan@msgsu.edu.tr Nil Sahin
eail: e150916@metu edu.tr

Roctars:

Blwup(L, c); BlowingUp of the ring generated by the elements of L
$\operatorname{Arfjet}(\mathrm{L}, \mathrm{c})$; \quad Arf Closure of the ring generated by the elements of L in

Puiseux (x, y); Generators of the maximal ideal of the Arf Closure of the ring generated by the elements of L
Puiseux exponents of the curve generated by ($x(t), y(t)$) Converts puiseux exponents to characteristic exponents

LIB "sing.lib";
LIB "qhmoduli.lib"

proc Blwup(list L,intc)
"USAGE: Blwup(L, c);
L=list
$\mathrm{c}=$ integer
ASSUME: The basering is $\mathrm{r}=0, \mathrm{t}, \mathrm{d}$
L is a list of polynomials in r
COMPUTE: First blowing up of the ring with for which has the maximal ideal generated by the elements of L.

RETURN: list of polynomials which generates the maximal ideal of the blowing up
EXAMPLE: example BlowingUp; shows an example"
\{list $\mathrm{F}=\mathrm{list}()$;
int $\mathrm{s}=$ size(L);
int $\mathrm{i}=1$;
while(i<=s) \{int s_i=ord(L[i]);
$\operatorname{def} \mathrm{A}=\mathrm{F}$;
def $\mathrm{F}=$ insert (A, s _i);
i++;\}
list E=list();
int $\mathrm{j}=1$;
int $m=\operatorname{Min}(F)$;
while (j<=s) \{if(ord (L[j])=m) \{int $k=1$;
while ($k<=s$) $\{\mathrm{if}(\mathrm{k}!=\mathrm{j})\{\operatorname{def} \mathrm{K}=\operatorname{insert}(\mathrm{E}, \operatorname{divide}(\mathrm{L}[\mathrm{k}], \mathrm{L}[\mathrm{j}], \mathrm{c})$); def $\mathrm{E}=\mathrm{K} ;\}$
else\{def $\mathrm{K}=\mathrm{insert}(\mathrm{E}, \mathrm{L}[\mathrm{j}])$;
def $\mathrm{E}=\mathrm{K} ;\}$
k++; \}
break; \}
else\{j++;\}\}
return(E);
\}
example
"EXAMPLE:"
"ring r=0,t,ds;
list $\mathrm{L}=\mathrm{t}^{\wedge} 3, \mathrm{t}^{\wedge} 5$
int $\mathrm{c}=10$;
ring $\mathrm{r}=0, \mathrm{t}, \mathrm{ds}$;
list $\mathrm{L}=\mathrm{t}^{\wedge} 3, \mathrm{t}^{\wedge} \mathrm{s}$
int $\mathrm{c}=10$;
1890
(//1/4
static proc rduce (poly p) \{
int $\mathrm{n}=\operatorname{ord}(\mathrm{p})$;
1895 poly q=p/(t^n)
return(q);
\}
//
static proc invers(poly p,int k)
1900
poly $\mathrm{q}=1 / \mathrm{p}[1]$;
poly re=q;
$\mathrm{p}=\mathrm{q}^{*}(\mathrm{p}[1]-\mathrm{jet}(\mathrm{p}, \mathrm{k}))$;
poly $\mathrm{s}=\mathrm{p}$;
while $(\mathrm{p}!=0$)
\{re=re+q*p;
$\mathrm{p}=\mathrm{jet}(\mathrm{p} * \mathrm{~s}, \mathrm{k})$; $\}$
return(re);
3

static proc divide(poly p,poly q,int c)
//Assume the order of p is greater than or equal to the order of q //Divides p by q till the terms of power c .
\{
int $n=\operatorname{ord}(p) ;$
int $m=\operatorname{ord}(q) ;$
poly p'=rduce(p);
poly $q^{\prime}=$ rduce (q);
poly $\mathrm{r}=\mathrm{t}{ }^{\wedge}(\mathrm{n}-\mathrm{m}){ }^{\text {* }} \mathrm{p}^{\prime *}$ *invers($\left.\mathrm{q}^{\prime}, \mathrm{c}\right)$;
1920
return(jet(r, c));
\}
//1)
static proc sub(list L)
//Assume L is a list of polynomials
1925 //Subtracts the constant terms from the entries of L.
\{
int $\mathrm{s}=$ size(L);
int $\mathrm{i}=1$;
while(i<=s) \{
if(leadmonom $(L[i])==1)\{L[i]=L[i]-l e a d(L[i]) ;\}$
i++;\}
return(L);
\}
//
static proc mmbrshp(list L, poly f)
// returns 1 , if f is an elemnt of L; returns 0 if not.
\{
int $\mathrm{s}=$ size(L);
int $\mathrm{i}=1$;
1940 while ($\mathrm{i}<=\mathrm{s}$) $\{\mathrm{if}(\mathrm{L}[\mathrm{i}]==\mathrm{f})$ \{break; \}
else\{i++;\}
\}
if(i=ss+1) \{return (0) ; \}
else\{return(1); \}
1945
//1
static proc Orders(list L)
//Assume L is a list of polynomials
//Returns a new list consisting of the orders of the elements of L (in reverse order)
1950
list $\mathrm{F}=$ list();
int $\mathrm{s}=\mathrm{size}(\mathrm{L})$;
int $\mathrm{i}=1$;
while(i<=s) \{int s_i=ord(L[i]);
1955
def $\mathrm{F}=$ insert (A,s_i);
i++;\}
return (F);
ret
3
///1)
static proc MinOrdElt(list L)
//Assume L is a list of polynomials
//Returns minimum ordered element of L
\{
int $m=\operatorname{Min}(\operatorname{Orders}(L))$;
poly f=FindOr(L, m);
return(f);
\}
/Deletes the 0's from the list L
\{
poly f=0;
while (mmbrshp(L,f)==1) \{
int $\mathrm{j}=$ Place(L) ;
def $\mathrm{T}=\mathrm{L}$;
def L=delete (T, ${ }^{\text {) }}$;

1980 //1).|
static proc Place(list L)
//L is a list of polynomials
//Returns the index of the minimum ordered element of L
\{
while(ord(L[j])!=Min(Orders(L))) \{j++; $\}$
return(j);
retu
$\}$
//
list $\mathrm{X}=$ list()
while(Min(Orders(irredundant(sub(L))))!=1) \{
def $\mathrm{K}=$ irredundant (sub(L))
def $\mathrm{L}=\mathrm{Bl} \operatorname{wup}(\mathrm{K}, \mathrm{c})$;
poly h=g;
poly $\mathrm{g}=\mathrm{h} * \mathrm{MinOrdElt}(\mathrm{K})$;
2000
def $\mathrm{X}=\operatorname{insert}(\mathrm{Y}, \mathrm{g})$;
def X
return(X);
\}
2005 //1)
proc Arfjet(list L,int c)
"USAGE: $\operatorname{Arfjet(L,c);~}$
L list
c integer
2010
2015
\{ \quad example Arfjet; shows an example"
list S=Arfclosure(L, c);
int $\mathrm{s}=$ size(S);
poly f=S[1];
int $\mathrm{k}=\operatorname{ord}(\mathrm{f})$;
int $\mathrm{i}=1$;
while (i<=s) \{S[i]=jet (S[i],k);
i++;\}
return(S);
2030
example
\{
"EXAMPLE:";
"ring $\mathrm{r}=\mathrm{0}, \mathrm{t}, \mathrm{ds}$;
list $\mathrm{L}=\mathrm{t} 5, \mathrm{t} 7+\mathrm{t} 9, \mathrm{t} 11$;
int $\mathrm{c}=17$;
Arfjet (L, c);
";
2040 ring r=0,t,ds;
list $\mathrm{L}=\mathrm{t} 5, \mathrm{t} 7+\mathrm{t} 9, \mathrm{t} 11$;
int $\mathrm{c}=17$;
Arfjet(L, c);
\}
2045 //1).
proc genlist(list L,int c)
"USAGE: genlist(L, c) ;
L list
c integer
2050
2055

RETURN: A list S of polynomials of degree less than or equal to c
If the output is $\mathrm{K}=\mathrm{K}[1], \mathrm{K}[2], \ldots, \mathrm{K}[\mathrm{m}]$, the Arf Closure is $\mathrm{k}[[\mathrm{K}[1], \ldots, \mathrm{K}[\mathrm{m}]]]$

EXA
list C=list();
list $A=\operatorname{Arfjet}(\mathrm{L}, \mathrm{C})$
int $\mathrm{s}=\operatorname{size}(\mathrm{A})$;
2065
while(i<=s)\{list B=insert (C,ord(A[i]));
def $C=B$;
i++;\}
def $D=$ reorder (B);
int $\mathrm{n}=\mathrm{Min}(\mathrm{D})$;
int $\mathrm{h}=\mathrm{D}[\mathrm{s}]$;
int $\mathrm{j}=1$;
while (j<h) \{int k=D[1];
def $\mathrm{E}=$ insert ($\mathrm{D}, \mathrm{k}+1$);
def $D=E$;
j++;\}
list $\mathrm{F}=$ generator $(\operatorname{reorder}(\mathrm{D})$);
int $\mathrm{k}=1$;
list $\mathrm{M}=1 \mathrm{list}()$;

if (mmbrshp ($\operatorname{Orders}(\mathrm{A}), \mathrm{p})==0$) \{list $\mathrm{K}=\operatorname{insert}\left(\mathrm{M}, \mathrm{t}^{\wedge} \mathrm{p}\right)$;
def $M=K ;\}$
else\{poly $q=\operatorname{FindOr}(A, p)$.
list $\mathrm{K}=\operatorname{insert}(\mathrm{M}, \mathrm{q})$;
def $M=K ;\}$
k++; \}
return(K);\}
example
\{
"EXAMPLE:";
"ring r=0, t, ds;
list L=t5, t7+t9, t11;
int $\mathrm{c}=17$;
gen1
";
ring $\mathrm{r}=0, \mathrm{t}, \mathrm{ds}$;
list $\mathrm{L}=\mathrm{t} 5, \mathrm{t} 7+\mathrm{t} 9, \mathrm{t} 11$;
int $\mathrm{c}=17$;
genlist(L, c);
$\}$
///)
static proc Findor (list L,int n)
//Gives the first element of L of order n
\{
int $\mathrm{s}=$ size(L)
int $\mathrm{i}=1$;
while(i<=s) \{if(ord(L[i])==n) \{break;\}
else\{i++;\}
\}
return(L[i]);
ret
3

//Assume L is a list of integers which is sorted in increasing order
//Finds an Apery set for L with respect to L[1]
//Fi
int s=size(L);
int m_1=Min(L);
int $\mathrm{i}=2$;
list $M=0 ;$
list $G=m _1 ;$
while(i<=s) \{int m_i=L[i] mod m_1;int t=mmbrshp(M,m_i);
if(t==1) \{i++;\}
else\{def $T=\operatorname{insert}\left(\mathrm{M}, \mathrm{m} _\mathrm{i}\right)$;
def $M=T$;
def $\mathrm{K}=\operatorname{insert}(\mathrm{G}, \mathrm{L}[\mathrm{i}])$;
$\operatorname{def} G=K$;
2130
return(G);
\}

static proc reorder(list L)
//aligns the elements of L in the revers order. That is, first element of //L becomes the last and so on.
\{
int $\mathrm{s}=$ size(L);
int i=2;
2140
int $\mathrm{k}=\mathrm{L}$ [1]
list $\mathrm{E}=\mathrm{k}$;
while (i<=s) \{def T=E;
def $\mathrm{E}=\mathrm{insert}(\mathrm{T}, \mathrm{L}[\mathrm{i}])$;
i++;

//----------------Finding the Puiseux Expansion------------------////
///
proc Puiseux (poly x, poly y)
"USAGE: Puiseux (x, y) ;
x polynomial
y polynomial
ASSUME: Base ring is $r=0, \mathrm{t}, \mathrm{d}$.
COMPUTE: Puiseux form of the parametrization $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$) by using the
Borodzik's Algorithm
2160
\{ poly $\mathrm{P} 0=\mathrm{y}$;
number $\mathrm{p}=$ ord (x)
number $q=o r d(y)$;
list $\mathrm{L}=\mathrm{p}, \mathrm{q}$;
number $\mathrm{p} 1=\operatorname{gcd}(\mathrm{p}, \mathrm{q})$;
if(p1!=1)
if(p
poly $x^{\prime}=\operatorname{diff}(x, t)$;
poly $y^{\prime}=\operatorname{diff}(y, t)$;
85 P2=diff(P1,t)***x'-x'^2*(r1/p)*P1-(2*k-1)*(x')***(P1);
$\operatorname{r2}=\operatorname{ord}(\mathrm{P} 2)-(2 * \mathrm{k}+1) *(\mathrm{p}-1)$;
$\mathrm{L}[3+\mathrm{k}]=\mathrm{r} 2$;
$\mathrm{p} 2=\operatorname{gcd}(\mathrm{p} 2, \mathrm{r} 2)$;
P1=P2;
2190
$\mathrm{k}=\mathrm{k}+1$;
$\mathrm{k}=\mathrm{k}+1$
\}
$\}$
return(L);
2195
example
\{
EXAMPLE: ;
"ring r=0, t, ds;
poly $\mathrm{x}=\mathrm{t} 12+\mathrm{t} 13+(37 / 28)$ *t14;
poly $\mathrm{y}=\mathrm{t} 18+(3 / 2) * \mathrm{t} 19+(33 / 14) * t 20+(13 / 14) * t 21+(675 / 1568) * t 22-(675 / 3136) * t 23$;
Puiseux (x, y);
ring $r=0, t, d s$;
2205 poly $\mathrm{x}=\mathrm{t} 12+\mathrm{t} 13+(37 / 28) * \mathrm{t} 14$;
poly $y=t 18+(3 / 2) * t 19+(33 / 14) * t 20+(13 / 14) * t 21+(675 / 1568) * t 22-(675 / 3136) * t 23$;
Puiseux (x, y) ;
///1
EXAMPLE: example PuiseuxTochar; shows an example"
\{
list A;
A[1]=L[1];
int $\mathrm{i}=2$;
2225
int $r=\operatorname{int}(L[1])$
int p ;
while(r! $=1$)
\{
$\mathrm{p}=\operatorname{gcd}(\mathrm{r}, \operatorname{int}(\mathrm{L}[\mathrm{i}]))$;
if(p<r)
\{
A[size(A) +1$]=L[i]$;

2235
\}
i++;
\}
return(A);
\}
2240
\{
"list L=6,12,18,21,25;
PuiseuxToChar(L);";
list $\mathrm{L}=6,12,18,21,25$
2245 PuiseuxToChar(L);
\}
//

VITA

PERSONAL INFORMATION

Name, Surname: Nil Şahin
Date and Place of Birth: 19 September 1983, Ankara
Nationality: Turkish (TC)
Phone: (+90) 5075797263
E-mail : e150916@metu.edu.tr

EDUCATION

Degree	Institution	Year
Visiting Scholar	Technische Universitat Kaiserslautern, Department of Mathematics	2011
BS	Ankara University, Department of Mathematics	$2001-2005$
High School	Çankaya High School	$1997-2001$

FOREIGN LANGUAGES

English (Fluent), German (Beginner)

RESEARCH INTERESTS

Computational Algebraic Geometry and Commutative Algebra

- Arf Rings and their Hilbert Functions,
- Gluing of Monomial Curves and their Hilbert Functions,
- Invariants of Plane Algebraic Curves

SCHOLARSHIPS

- Ph. D. Scholarship Program, TUBITAK, 2005-2010
- Research Scholarship for Ph.D. students, TUBITAK, march 2011-december 2011

PUBLICATIONS, WRITTEN CODES

- Symmetric Numerical Semigroup Families Supporting Rossi’s Conjecture (submitted) - curvepar.lib , SINGULAR 3-1-4 Library for Curve Resolutions

