
1

SINGULARITY THEORY AND ARF RINGS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NİL ŞAHİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

DECEMBER 2012

Approval of the thesis:

SINGULARITY THEORY AND ARF RINGS

submitted by NİL ŞAHİN in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Mathematics Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mustafa Korkmaz
Head of Department, Mathematics

Assoc. Prof. Dr. Ahmet İrfan Seven
Supervisor, Mathematics Dept., METU

Assoc. Prof. Dr. Feza Arslan
Co-supervisor, Mathematics Dept., Mimar Sinan Fine Arts Univer-
sity

Examining Committee Members:

Prof. Dr. Ali Sinan Sertöz
Mathematics Dept., Bilkent University

Assoc. Prof. Dr. Ahmet İrfan Seven
Mathematics Dept., METU

Prof. Dr. Yıldıray Ozan
Mathematics Dept., METU

Prof. Dr. Mustafa Korkmaz
Mathematics Dept., METU

Prof. Dr. Hurşit Önsiper
Mathematics Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: NİL ŞAHİN

Signature :

iii

ABSTRACT

SINGULARITY THEORY AND ARF RINGS

Şahin, Nil

Ph.D, Department of Mathematics

Supervisor : Assoc. Prof. Dr. Ahmet İrfan Seven

Co-Supervisor : Assoc. Prof. Dr. Feza Arslan

December 2012, 131 pages

Arf closure of a local ring corresponding to a curve branch, which carries a lot of information

about the branch is an important object of study. Though both Arf rings and Arf semigroups

are being studied by many mathematicians, there is not an implementable fast algorithm for

constructing the Arf closure. The main aim of this thesis is to give an easily implementable

fast algorithm to compute the Arf Closure of a given local ring. The speed of the algorithm

is a result of the fact that the algorithm avoids computing the semigroup of the local ring.

Moreover, in doing this, we give a bound for the conductor of the semigroup of the Arf

Closure without computing the Arf Closure by using the theory of plane branches. We also

give an exposition of plane algebroid curves and present the SINGULAR library written by

us to compute the invariants of plane algebroid curves.

Keywords: Arf Rings, Multiplicity Sequence, Singularity Theory, Arf Closure, Hilbert Series

iv

ÖZ

TEKİLLİK TEORİSİ VE ARF HALKALARI

Şahin, Nil

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ahmet İrfan Seven

Ortak Tez Yöneticisi : Doç. Dr. Feza Arslan

Aralık 2012, 131 sayfa

Bir eğri koluna karşılık gelen lokal halkanın Arf kapanışı, o eğri kolu ile ilgili birçok bilgi

taşıyan, önemli bir çalışma objesidir. Arf Halkaları ve yarı grupları birçok matematikçi

tarafından çalışılmasına rağmen, Arf kapanışını inşa eden, hızlı bir algoritma bulunmamak-

tadır. Bu tezin asıl amacı, Arf kapanışını hesaplamak için kolay uygulanabilir bir algo-

ritma vermektir. Algoritmanın hızı, lokal halkanın yarıgrubunu hesaplamadan çalışmasının

bir sonucudur. Bunların yanında, Arf kapanışının yarı grubunun kondaktörüne, düzlem eğri

kollarının teorisini kullanarak, Arf kapanışını hesaplamadan bir sınır veriyoruz. Düzlem eğri

kollarının teorisini açıklayıp, bizim tarafımızdan yazılan ve düzlem eğri kollarının invaryant-

larını hesaplayan SINGULAR kütüphanesini tanıtıyoruz.

Anahtar Kelimeler: Arf Halkaları, Çok katlılık Dizisi, Tekillik Teorisi, Arf Kapanışı, Hilbert

Serileri

v

To my family

vi

ACKNOWLEDGMENTS

It is a great pleasure for me to thank people who made it possible to write this thesis.

I would like to express my heartfelt thanks to Professor Feza Arslan not only for his guidance

about my research and mathematics, but also for his generous help in life. Because of his

patience, I had the encourage to ask any questions that I have in my mind. Besides his math-

ematical intelligence, his humanity have provided a good example for me. One simply could

not wish for a better or friendlier supervisor. I would also like to thank Professor Ahmet İrfan

Seven and all the members of the department of mathematics of the Middle East Technical

University who helped me in my supervisor’s absence.

The thesis jury who kindly accepted to report on my work are also acknowledged.

I am deeply grateful to Prof. Dr. Gerhard Pfister for introducing me the library ”space-

curve.lib” and helping me to understand it in every step. I have been extremely lucky to have

a supervisor like him in Germany who cared so much about my work and who responded my

questions patiently.

My sincere thanks also goes to Prof. Dr. Dr.h.c. Gert-Martin Greuel for giving me the

opportunity to work with the SINGULAR group and introducing me with Professor Gerhard

Pfister.

Completing this thesis with my sanity would definitely be harder without the support of my

friends Zeynep, Köksal, Sevtap, Nuray, Hakan, Canan, Dürdane, Nagehan, Arzu and Sidre.

I would like to thank all of them for helping me to get through the hard times and for all the

fun we had together during these past seven years. I would like to thank Hakan and Köksal

in advance for sharing their office with me, providing me a nice working environment and

making me smile all the time. I am also grateful to Canan for tutoring me for an exam in the

last minute and for all her advices about my future.

I wish to thank Christian Eder and Martin Lee from the mathematics department of Technische

Universitat Kaiserslautern for helping me both in SINGULAR and my life in Kaiserslautern.

vii

They have been perfect hosts, office mates and friends. I also thank Petra Basell for her kind

and warm friendship. It was very nice to know there were people that I can talk to when I

needed help. Without them, it wouldn’t be possible for me to get used to living in Germany.

I especially thank my mom, dad and sister for their endless support, unconditional love and

care. They have been my best friends and they have a big role in me completing this thesis. I

love them so much.

Finally, I want to thank The Scientific and Technological Research Council of Turkey, TUBITAK

for supporting me financially both in Turkey and Germany.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1 INTRODUCTION . 1

2 THEORETICAL BACKGROUND . 4

2.1 Curve Branches . 4

2.1.1 Parametrization . 5

2.2 Resolution of Singularities . 8

2.2.1 Blowing up . 8

2.2.1.1 Blowing up of An at a point 9

2.2.1.2 Blowing up of a variety at a point 10

2.2.2 Blowing up of a branch 11

2.2.3 Singularity Theory . 12

3 PLANE CURVE SINGULARITIES . 17

3.1 Plane Curve Branches . 17

3.2 Reducible Plane Algebroid Curves 30

4 HAMBURGER NOETHER EXPANSIONS AND MATRICES 39

4.1 Hamburger Noether Expansions Of Plane Curve Branches 39

4.1.1 Intersection Multiplicity, Contact numbers and Hamburger-
Noether expansions . 46

ix

4.1.2 Characteristic Exponents and Hamburger-Noether expan-
sions . 47

4.2 Hamburger-Noether Expansions For General Curve Branches 48

4.2.1 Hamburger-Noether Matrices 51

5 ARF THEORY . 54

5.1 Notation and Basic Definitions . 54

5.2 Arf Rings, Arf Semigroups . 56

5.3 Characteristic Semigroup, Arf Characters 58

5.4 Computation of the Arf Closure . 59

5.4.1 Computation of the Arf Closure of a Semigroup 59

5.4.2 The modified Jacobian Algorithm 59

5.4.3 Computation of the Arf Closure of a ring 60

5.4.4 Examples . 61

5.5 Arf Closure and Hamburger-Noether matrices 64

6 A FAST ALGORITHM FOR COMPUTING THE ARF CLOSURE 68

6.1 Challenges . 71

6.2 Solution . 75

6.2.1 Conductor of the Arf Closure for the Plane Algebroid Branches 79

6.2.2 A Bound for the Conductor of the Arf Closure for Space
Branches . 82

7 HILBERT FUNCTIONS OF ARF RINGS 84

7.1 Conjecture . 85

8 RESOLUTION AND PARAMETRIZATION OF REDUCIBLE CURVES GIVEN
IN CLOSED FORM . 89

8.1 Algorithms for the library ”spacecurve.lib” 91

8.2 The new library ”curvepar.lib” . 95

8.3 Timings . 96

9 CONCLUSION . 98

REFERENCES . 100

APPENDICES

A The Singular Library ”curvepar.lib” . 103

x

B The Singular Library ”ArfClosure.lib” . 124

VITA . 129

xi

LIST OF TABLES

TABLES

Table 7.1 Rings having the Arf Closure k[[t4 + t6, t9, t10, t11]] 86

Table 7.2 Rings having the Arf Closure k[[t6, t8, t10, t11, t13, t15]] 86

Table 7.3 Rings having the Arf Closure k[[t7, t23, t25, t27, t29, t31, t33]] 87

Table 7.4 Rings with Arf Closure k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35]] . . 87

Table 7.5 Rings having the Arf Closure k[[t6, t15, t19, t20, t22, t23]] 87

Table 7.6 Rings with Arf Cl. k[[t14, t21, t30, t32, t34, t36, t37, t38, t39, t40, t41, t43, t45, t47]] 87

Table 7.7 Rings with Arf Closure k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32, t34, t35]] . . 88

Table 7.8 Rings having the Arf Closure k[[t10, t15, t28, t31, t32, t33, t34, t36, t37, t39]] . . . 88

Table 7.9 Rings with Arf Cl. k[[t12, t16 + t30, t20, t31, t33, t34, t35, t37, t38, t39, t41, t42]] . 88

Table 8.1 Time Comparison . 97

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Nodal cubic . 5

Figure 2.2 Blowing up of origin . 9

Figure 2.3 Blowing up of the nodal cubic . 10

xiii

CHAPTER 1

INTRODUCTION

In this thesis, we focus on space curve singularities. The study of singularities goes back to

1918’s to Enriques-Chisini [26]. Together with Zariski’s studies, singularities of plane curves

had been been fully worked out with the theory of characteristic exponents. Du Val in 1942,

showed that there are some special numbers, which he calls the characters of the branch. If the

modified Jacobian Algorithm is applied to these characters, the multiplicity sequence of the

curve branch is obtained [23]. Contrary to the well-known plane case, in which characteristic

exponents, multiplicity sequence and characters determine each other, it was not known how

to obtain the characters in space case, until Cahit Arf developed his theory [1]. In 1946, Arf

showed that the characters of a space branch could be obtained from the completion of the

local ring corresponding to the branch by constructing its canonical closure, later known as

Arf closure [1]. His method was fully algebraic, but the results were also answering some

very important geometric questions, The geometrical aspects of Arf’s results were made clear

by Du Val in 1949 [24]. Since then, many algebraic geometers and algebraists have worked on

Arf rings, Arf closure and the the invariants of the curve singularities [3], [11], [12], [20]. Arf

semigroups and their applications in coding theory have been a recent area of interest [7], [9],

[14], [22], [35]. In the meantime, Hamburger-Noether expansions developed by Ancochea

has been a major tool in the computation of the invariants of the curve singularities [10], [13].

Castellanos has also presented the construction of Arf closure by using Hamburger-Noether

matrices [16].

In spite of the fact that many mathematicians are interested in Arf rings and Arf closure, there

is not a fast implementable algorithm for the computation of Arf closure in the literature. The

only implemented algorithm is given by Arslan [2]. The algorithm uses Arf’s method and

starts with determining the semigroup of values and the conductor of the branch. Determining

1

the semigroup of values and the conductor of the branch is a difficult problem, which has been

studied by many mathematicians and different algorithms have been given [15], [28]. Noting

that the special case of this problem is the famous Fobenius problem (or coin problem) makes

it clear, why this problem is difficult, and it is unnecessary to mention that there is a vast

literature on the Frobenius problem.

In this thesis, our main aim is to give a fast and easily implementable algorithm for the com-

putation of the Arf closure, which does not need determining the semigroup of values and

the conductor of the branch. Our second aim is to give codes in the computer algebra pro-

gram SINGULAR both for the computation of the Arf closure and the invariants of a plane

algebroid curve.

The thesis is organized as follows. In Chapter 2, we give the basic definitions and theory

related with a space curve singularity or an algebroid curve. We also recall the necessary

theory about the blowing up and desingularization process of the branches. We also explain

the singularity theory and characters of curve branches as Du Val did in [23].

In Chapter 3, we focus on plane curve singularities. We consider both reducible and irre-

ducible algebroid curves. This expository chapter contains the multiplicity sequence, charac-

teristic exponents, semigroup of values, Puiseux pairs and resolution graphs of irreducible

curve branches. The facts that are presented in this section for plane branches are used

strongly in Chapter 6 to give a bound for the conductor of the value semigroup of the Arf

closure of the local ring, which is crucial in our proposed fast algorithm. This chapter is

also essential for understanding the importance of Arf theory. We also give the definitions

of the contact numbers of branches of reducible algebroid curves and the resolution graph of

reducible algebroid curves are defined.

Chapter 4 is devoted to the study of Hamburger-Noether expansions. We study the subject in

two parts as 2-dimensional and n-dimensional case by using [10] and [13]. First, Hamburger-

Noether expansions for plane branches and the method of determining the invariants from

the Hamburger-Noether expansions are explained. Moreover, obtaining the intersection mul-

tiplicity and the contact numbers of two branches from their Hamburger-Noether expansions

is presented. Then, Hamburger-Noether expansions for curve branches in n-dimensional case

is explained and Hamburger-Noether matrices are defined in the general case. The theory in

this chapter is used in Chapter 8, while writing the codes in SINGULAR.

2

In Chapter 5, we describe Arf theory [1]. Arf rings, Arf semigroups, the computation of the

Arf closure and Arf characters are presented with many examples. The construction of Arf

closure by using Hamburger-Noether matrices is also presented.

In Chapter 6, we present our ideas and main contributions. We propose a new fast algorithm

for constructing the Arf Closure of a local ring without determining the semigroup of values

and the conductor. After giving the theoretical framework, explaining why the algorithm

works, we give a bound for the conductor of the Arf closure of a local ring. In doing this, we

combine the results in Chapter 3 with our results presented in this chapter.

In Chapter 7, we state some results about the Hilbert series of Arf rings and present a conjec-

ture of Arslan and Sertoz about the Hilbert series of Arf rings having the same Arf Closure.

We also present a lot of examples obtained by the algorithm given in Chapter 6 that support

the conjecture.

In Chapter 8, we describe the SINGULAR library ”curvepar.lib” written by us with Gerhard

Pfister and Maryna Viazovska [18]. That library computes the resolution graph and the in-

variants of the branches of an algebroid plane curve. The library computes all the invariants

for a reducible algebroid plane curve.

Finally, we conclude the thesis by some remarks and ideas about the future research.

3

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Curve Branches

Throughout this thesis, our main objects of interest are algebroid curve branches, so we start

with its definition.

Definition 2.1.1 A space curve singularity or an algebroid curve is C = Spec R, where

(R,m, k) is a local ring, complete for the m-adic topology, with Krull dimension 1 and having

k as a coefficient field (k ⊂ R and k � R/m). Moreover, if R is also a domain, then C is called

an irreducible algebroid curve or an algebroid curve branch, [13].

Definition 2.1.2 Let C = Spec R be an algebroid curve. The embedding dimension of C is

defined to be the dimk(m/m2) and it is denoted by embdim(R). The embedding dimension of

R is also defined to be embdim(R) = dimk(m/m2).

Theorem 2.1.3 Let C = Spec R be an algebroid curve. Then the following holds.

(i)[17, Cohen’s Structure Theorem] There exists an ideal I in k[[x1, ..., xn]] with R � k[[x1, ..., xn]]/I

and n = embdim(R).

(ii) There exists prime ideals p1, ..., ps ∈ k[[x1, ..., xn]] with pi 1 p j for i , j and I =
⋂s

i=1 pi.

(p1, ..., ps are minimal prime ideals.)

Thus, we will be working with local rings of the form k[[x1, ..., xn]]/I, and we can reformulate

the algebroid curve branch definition as follows.

4

Definition 2.1.4 The algebroid curve C = Spec k[[x1, ..., xn]]/I is called an algebroid curve

branch (or an irreducible algebroid curve), if I is a prime ideal in k[[x1, ..., xn]].

Example 2.1.5 Consider the nodal cubic curve defined as the zero set of the polynomial

y2 − x2(1 + x). Since we are interested in the behavior around the point (0, 0), we work with

the algebroid curve Spec k[[x, y]]/〈y2 − x2(1 + x)〉. Observing that

√
1 + x = ±

(
1 +

1
2

x −
1
8

x2 + ...

)
we have

y2 − x2(1 + x) =

(
y − x −

1
2

x2 +
1
8

x3 − ...

) (
y + x +

1
2

x2 −
1
8

x3 + ...

)
in the formal power series ring k[[x, y]]. Thus, we have two branches Spec k[[x, y]]/p1 and

Spec k[[x, y]]/p2, where p1 = 〈y− x − 1
2 x2 + 1

8 x3 − ...〉 and p2 = 〈y + x + 1
2 x2 − 1

8 x3 + ...〉. This

example clarifies, why we work with the completion of the local ring at the singularity. (See

Figure 2.1.)

Figure 2.1: Nodal cubic

2.1.1 Parametrization

Let R be the local ring of an algebroid curve branch over an algebraically closed field k. Let

us denote the integral closure of the local ring R in its ring of fractions by R. Then, R � k[[t]],

i.e. R is a discrete valuation ring [10]. As a consequence, there is a natural valuation υR on

the elements of R induced by this isomorphism. For an arbitrary element r of R there exists

5

an element f (t) of k[[t]] such that r = f (t) and υR(r) = υ(f) where υ is the natural valuation

on k[[t]], which is given by the order at t of the associated series defined below.

Definition 2.1.6 Let f be an element of the power series ring k[[t]]. The order of the power

series f is defined to be the smallest power appearing in the series f and it is denoted by

ord(f).

Example 2.1.7 Let f (t) = t4 + t7 + t12 , g(t) = t21 + t12 + t31 and h(t) = 1 + t3 + t11 be power

series in R[[t]]. Then ord(f)= 4 , ord(g)= 12 and ord(h)= 0.

We can now introduce a parameterization of an algebroid curve.

Definition 2.1.8 Let C = Spec R be an algebroid curve singularity and {x1, ..., xN} be the

system of generators for the maximal ideal m of R, where N = embdim(R). An algebraic

parametrization of C corresponding to {x1, ..., xN} is a continuous k-algebra homomorphism

P : k[[X1, ..., XN]]→ k[[t]]

where t is an indeterminate, im(P) 1 k and kernel of the map ς : k[[X1, ..., XN]] → R, which

sends Xi to xi is contained in the kernel of P (ς exists by Cohen’s Theorem). In other words,

an algebraic parametrization is the set of power series {x1(t), ..., xN(t)}, where each xi(t) is

different than 0 and for each f in the kernel of ς, f (x1(t), ..., xN(t)) = 0.

Note that algebraic parameterizations are not unique for algebroid curves, so we answer the

question next, how we distinguish between two parameterizations.

Definition 2.1.9 Let P and P′ be two parameterizations of the algebroid curve C. The

parametrization P is said to be derived from P′ if there exists a power series f (T) ∈ k[[T]] of

positive order such that P is given by {x1(f (T)), .., xN(f (T))}, where the parametrization P′

is given by {x1(t), ..., xN(t)}. In this case, we say P′ ≺ P.

Proposition 2.1.10 The relation ≺ is a partial order on the class of algebraic parameteriza-

tions of C.

6

Definition 2.1.11 Two parameterizations P and P′ is said to be equivalent, if P′ ≺ P and

P ≺ P′ or equivalently, if they can be derived from each other.

Definition 2.1.12 A parametrization is said to be primitive, if it is minimal in the class of

algebraic parameterizations of C up to the equivalence.

Remark 2.1.13 [10, 1.3.11] Let {x1(t), .., xN(t)} be a primitive parametrization of C. Then

any other parametrization in the same basis is obtained by a substitution of type

f (T) = chT h + ch+1T h+1 + ..., h > 0, ci ∈ k, ch , 0.

The new parametrization is primitive if and only if h = 1.

Proposition 2.1.14 A parametrization given by {x1(t), .., xN(t)} is primitive if and only if the

greatest common divisor of the powers of the terms appearing in series x1(t), ..., xN(t) is 1.

Proof. (⇒:)

Let P be a primitive parametrization given by {x1(t), .., xN(t)} and assume that the greatest

common divisor of the powers of the terms of x1(t), ..., xN(t) is k , 1, which implies that

x′i(t) = xi(t
1
k) is again a power series for i = 1, ..,N. Hence, P is derived from the parametriza-

tion given by the series x′1(T), ..., x′N(T) by substituting T = f (t) = tk, which contradicts the

primitiveness of P.

(⇐:)

Let the greatest common divisor of the powers of the terms appearing in the series is 1 and

assume that the parametrization is not primitive. Then there exists a power series f (T) ∈

k[[T]] of positive order k, and a primitive parametrization P′ such that P is derived from P′

by substituting f (T) and is given by x1(f (T)), ..., xN(f (T))). This immediately implies that

k = 1 (Otherwise greatest common divisor can not be 1). Then from Remark 2.1.13, P is also

primitive, in other words P is equivalent to P′. �

The next proposition can be considered as a reformulation of the definition of an algebroid

branch.

7

Proposition 2.1.15 [13, Proposition 1.3.1] For an algebroid curve C = Spec R, and fixed set

of generators for m, there is a bijection between the primitive parameterizations of C and the

algebraic branches of C.

We can redefine an algebroid branch as an equivalence class of primitive parameterizations

for an algebroid curve.

2.2 Resolution of Singularities

Before giving the definition of the blowing up of an algebroid curve C = Spec R at its maximal

ideal, we give the basic theory of resolution of singularities of a variety. The general idea

of the resolution of singularities of a variety V is determining a smooth variety V ′ and a

birational map φ : V ′ → V (i.e. φ has an inverse defined on the complement of finitely

many subvarieties of V). The existence of such maps is first proved by Newton in the case of

plane curves over the fields of characteristic 0. Then Hironaka proved it for the varieties with

arbitrary dimensions over the field of 0 characteristics in 1964. For the varieties of positive

characteristic, resolution is known for the dimensions 1 (curves), 2 (surfaces) and 3 for the

characteristic greater than five [19].

While there may be many nonsingular projective models for the varieties in higher dimen-

sions, this is not the case for the curve singularities. Although there are several methods of

proving the existence of resolution of curve singularities [31], they all construct the same non-

singular projective model. Among the ways of constructing the unique nonsingular projective

model for the curves, we present the method of blowing up. We blow up the curve until, we

obtain a smooth curve.

2.2.1 Blowing up

Blowing up of a variety V ⊂ An in a singular point P can be thought as just replacing the

singular point P by a Pn−1, which corresponds to the tangent directions of that point. To

define the blowing up, we use Hartshorne’s notation [27].

8

2.2.1.1 Blowing up of An at a point

We first explain the notion of blowing up of the point O = (0, ..., 0) in An. Let x1, x2, ..., xn

be the affine coordinates in An and let y1, y2, ..., yn be the homogeneous coordinates in Pn−1.

In the product space An × Pn−1, the closed subsets are the polynomials in xi, y j which are

homogeneous in y j.

The blow up of An at the point O is defined to be the closed subset of An × Pn−1 defined by

the equations {xiy j − x jyi} for 1 ≤ i, j ≤ n, and let us denote this by X.

Consider the natural morphism π : X → An defined by the composition of the natural inclu-

sion ι : X ↪→ An × Pn−1 and the projection to the first factor from An × Pn−1 to An.

• For a point P of the affine n-space other than O, π−1(P) is a single point.

• π−1(O) = (0, ..., 0) × [y1 : ... : yn] so π−1(O) is isomorphic to Pn−1.

• φ gives an isomorphism from X − π−1(O) to An − O.

• The points of π−1(O) are in one to one correspondence with the lines of An through O.

Definition 2.2.1 The fibre E = π−1(O) isomorphic to Pn−1 is called the exceptional divisor.

Figure 2.2: Blowing up of origin

9

2.2.1.2 Blowing up of a variety at a point

Definition 2.2.2 For a variety V of An with singularity at the origin, blowing up of V at the

origin is the Zariski closure of the inverse image π−1(V−O), where π : X → An is the blowing

up of An at O. The restriction of π : X → An is also denoted by π : Ỹ → V

Similar to the blowing up of An, π induces an isomorphism from Ỹ − π−1(O) to Y −O, that is,

π is a birational morphism of Y on to Ỹ .

Blowing up of a variety or An at a point P , O can be done in the same way, after a linear

change of coordinates sending P to O.

Example 2.2.3 Let V be the nodal cubic curve given by the equation y2 = x2(1 + x) in A2.

It has a singularity at the origin O = (0, 0). If we set u, v to be the homogeneous coordinates

of P1, the blow up of A2 at the origin is given by xv − yu. Blowing up of the curve is given

by this equation together with the equation of the curve. That is, if we look at the blown up

curve in the chart u , 0, we have y = xv. Substituting this in the equation of the curve, we

get x2(v2 − 1 − x) = 0, which says that the blow up has two components. One is x = 0, which

corresponds to the exceptional divisor, and the other is v2 = 1 + x. Observe that the two

intersects at two points: (0, 0) × [1 : −1] and (0, 0) × [1 : 1], see Figure 2.3.

Figure 2.3: Blowing up of the nodal cubic

Example 2.2.4 Let C be the cuspidal cubic with the defining equation y2 = x3. The blow up

10

of C in the chart u , 0 is the smooth curve v2 = x and it intersects the exceptional divisor at

the point (0, 0) × [1 : 0].

Observe that we got a nonsingular curve after blowing up the nodal cubic and the cuspidal

cubic curve, but this is not the case for all the curves. That is, we may get a singular curve

even after blowing up a singular curve.

Example 2.2.5 Let C be the curve defined by the equation y2 = x5. First blow up gives

the curve v2 = x3 in the first chart u , 0. The intersection of the blown up curve with the

exceptional divisor is (0, 0) × [1 : 0] and the blown up curve is singular there. Relabeling the

blown up curve as y2 = x3 and blowing up again at the point (0, 0), we get a smooth curve

y2 = x.

Observe that in the first example, we have started with a node, which has two local compo-

nents around the point (0, 0) (branches), the blown up curve and the exceptional divisor had

intersections at two different points. On the other hand, in the second and third examples, we

had started with a branch, so that the exceptional divisor and the blown up curve had intersec-

tion at exactly one point, namely the singular point of the blown up curve. We can continue

blowing up at that point.

Remark 2.2.6 [38] The blow up of an algebroid branch has intersection with exceptional

divisor at most one point.

2.2.2 Blowing up of a branch

Let the algebroid curve branch C = Spec R be given by the parametrization

{x1 = ϕ1(t), x2 = ϕ2(t), ..., xn = ϕn(t)}

with ϕ1(t) having the smallest order.

The blowing up of C at its maximal ideal is the algebroid branch C1 = Spec R1 given by the

parametrization

{x1 = ϕ1(t), x2 =
ϕ2(t)
ϕ1(t)

, ..., xn =
ϕn(t)
ϕ1(t)

}

11

Definition 2.2.7 [13, Remark 1.9.1] The multiplicity of the algebroid curve branch with

parametrization {x1 = ϕ1(t), x2 = ϕ2(t), ..., xn = ϕn(t)} is the minimum of the orders of

the series ϕi(t) for 1 ≤ i ≤ n.

Note that the multiplicity of an algebroid curve branch C = Spec R is also equal to the multi-

plicity of the local ring R and denoted by e(R).

Example 2.2.8 Let C be the algebroid curve branch given by parametrization {x1 = t2, x2 =

t3}, and thus with multiplicity 2. Note that the local ring k[[t2, t3]] is the completion of the

localization at the singular point (0,0) of the coordinate ring of the cuspidal cubic. Then the

blow up of C is given by the parametrization {x1 = t, x2 = t2} which has multiplicity 1.

Remark 2.2.9 [29] Let V be a singular variety over a field of characteristic zero. The singu-

larity can be resolved by applying finitely many blowing ups to V.

2.2.3 Singularity Theory

Let C = C0 be a curve branch with singularity of multiplicity m = m0 at the origin O = O0.

Blowing up C0 at O0, we get a curve branch C1, the blowing up map π1 : C1 → C0 and the

exceptional divisor E1 = π1
−1(O0) of the blow up. E1 and C1 meet at exactly one point, say

O1. Let m1 be the multiplicity of O1. Now, blowing up C1 at O1, we get a curve branch C2, a

map π2 : C2 → C1 and the exceptional divisor E2 = π−1
2 (O1). E2 and C2 meet at a point O2

with multiplicity m2. Continuing k steps in this way inductively, we get

Ck
πk
−→ Ck−1

πk−1
−→ · · ·

π3
−→ C2

π2
−→ C1

π1
−→ C0

Definition 2.2.10 The sequence of points (O0,O1, ...,Ok) is called the infinitely near points

of C . The sequence of natural numbers (m0,m1, ...,mk) is called the multiplicity sequence of

the curve branch. The sum m0 + m1 + ... + mi is said to be the ith multiplicity sum or the

multiplicity sum corresponding to the point Oi.

Definition 2.2.11 Two curve branches are said to be equiresoluble or simply equivalent iff

they have the same multiplicity sequence.

12

Our purpose is to classify curve branches up to their multiplicity sequences. In [23], Du Val

showed that there are some ‘special’ numbers, which he called the characters of the curve.

By applying the modified Jacobian algorithm to these numbers, we obtain the multiplicity

sequence of the curve branch. We first give some necessary definitions to understand the

geometric significance of these characters.

Definition 2.2.12 The point Oi is said to be proximate to the point O j iff Oi is in the proper

transform of E j under the morphism πi ◦ πi−1 ◦ · · · ◦ π j+1 for i > j + 1.

Remark 2.2.13 Let (O0,O1, ...,Ok) be the infinitely near points of C. Then, Oi is proximate

to Oi−1 for any i.

Proposition 2.2.14 [23] Let (O0,O1, ...,Ok) be the infinitely near points of C in n space. Then

the following hold:

• If Oi is proximate to O j and Os with s < j < i, then O j is also proximate to Os.

• The number of points that Oi is proximate to can not be greater than n.

• The multiplicity of C at Oi is equal to the sum of the multiplicities of the points which

are proximate to Oi.

Definition 2.2.15 The restriction of a point Oi, namely r(Oi) is defined to be the number of

points to which Oi is proximate to.

Definition 2.2.16 A point Oi is said to be a leading point iff its restriction is less than the

restriction of Oi+1.

Definition 2.2.17 The multiplicity sum corresponding to a leading point is called a character

of the curve branch.

Example 2.2.18 Consider the irreducible plane curve C defined by y2 − x3 = 0.

13

6

-

?

� %$x

y

C : y2 − x3 = 0

Blowing up C, we get the curve C1 given by y2 − x = 0 and the exceptional divisor E1 given

with (0, 0) × [1 : v].

6

-

?

%& v

x

E1

C1 : x − v2 = 0

Now we have a smooth curve but the intersection of C1 and E1 is not transversal so we

continue blowing up till we reach a good resolution. We get the curve C2 given by y = x and

the exceptional divisor (0, 0) × [u : 1].

6

-

?

�
�
�
�
�
�

E1

E2

C2

Again, intersection of C2 is not transversal with the exceptional divisor, blowing up once

more, we reach:

14

6

-

?

E3

C3

E1 E2

So we see that E3 intersects E1. This shows that O1 is on E3, that is, O3 is proximate to O1.

We already know that O2 is proximate O1. Then r(O1) = 0, r(O2) = 1 and r(O3) = 2 telling

us that O1 and O2 are leading points. As the multiplicity sequence of the curve branch is

(2, 1, 1), the multiplicity sum corresponding to O1 is 2 and the multiplicity sum corresponding

to O2 is 1 + 2 = 3. So the characters of the curve branch are 2 and 3.

Example 2.2.19 [21, Example 5.3.7] For the curve C with defining equation y4 − 2x3y2 −

4x5y + x6 − x7 = 0, we can see from [21] that the exceptional divisors look like:

We already know the proximity relations O5 → O4, O4 → O3, O3 → O2 and O2 → O1 as

every point is proximate to its predecessor. But from the resolution process, we see from the

graph that E3 intersects E1 so O3 is also proximate to O1 and O5 is also proximate to O3

as E5 intersects E3. These all say that r(O1) = 0, r(O2) = 1, r(O3) = 2, r(O4) = 1 and

r(O5) = 2 and the leading points of the curve branch are O1, O2 and O4. It can be shown that

the multiplicity sequence of the curve branch is (4, 2, 2, 1, 1) so the characters of the curve

branch are, 4, 4 + 2 = 6, 4 + 2 + 2 + 1 = 9.

Remark 2.2.20 Observe that we can check the proximity relations in Example 2.2.18 and

15

Example 2.2.19 by the help of Proposition 2.2.14. Indeed, for the Example 2.2.18, we know

that the multiplicity sequence is (2, 1, 1). That is, we have the relations m1 = m2 + m3 and

m2 = m3. Then the last part of Proposition 2.2.14 tells us that O3 and O2 are proximate to

O1 and O3 is proximate to O2. In the same way, we can see that m1 = m2 + m3, m2 = m3,

m3 = m4 + m5 and m4 = m5 for Example 2.2.19. Hence O2 and O3 are proximate to O1, O3

is proximate to O2, O4 and O5 are proximate to O3 and O5 is proximate to O4 which supports

our previous results.

Proposition 2.2.21 If the characters of the curve branch are defined as above, the modified

Jacobian algorithm applied to these characters gives the multiplicity sequence of the curve

branch.

Example 2.2.22 For the curve branch defined by y2−x3 = 0, we now know that the characters

are 2 and 3. Applying the modified jacobian algorithm to the characters, we indeed obtain

the the multiplicity sequence (2, 1, 1). In the same way, for the curve branch defined by y4 −

2x3y2 − 4x5y + x6 − x7 = 0, the characters are 4, 6, 9 and the modified jacobian algorithm

applied to these numbers gives (4, 2, 2, 1, 1), which is indeed the multiplicity sequence of the

branch.

In his paper [23], Du Val explains the modified Jacobian Algorithm and proved the previous

statement. However, it was not known how to compute the characters of a space curve branch.

In [1], Cahit Arf found the algebraic pattern behind this geometric problem and presented a

way to calculate these characters, which will be explained in Chapter 5.

16

CHAPTER 3

PLANE CURVE SINGULARITIES

In this chapter we give a summary of the results obtained in the study of plane algebroid

curves. To understand the significance of Arf’s contribution, we must understand the plane

algebroid curve case. In the first section, we deal with irreducible plane (algebroid) curves,

namely plane (algebroid) curve branches. Certain numbers and graphs which can be obtained

from the local ring of an algebroid curve branch are said to be invariants. We introduce the

invariants of plane curve branches and the relations between them. The invariants that we are

interested in are the semigroup of values, Puiseux pairs, characteristic exponents, multiplicity

sequence and resolution graph of the curve branch. We also present the Puiseux expansions

and Hamburger-Noether expansions. In the second section, we deal with reducible algebroid

plane curves, plane curves with multiple branches. We give the definition of the contact

number of the branches of curve and the definition of resolution graph for reducible plane

algebroid curves. These two are the invariants of reducible plane curves together with the ones

we mention for the plane branches. We introduce the relation between the contact number and

the intersection multiplicity of the branches. We also explain the relation between the contact

numbers together with the resolution graph of branches and resolution graph of reducible

plane curve. For most of the definitions and theorems, we follow [21].

3.1 Plane Curve Branches

In this section, we work with irreducible algebroid plane curves. The word irreducible here

means that the curve does not have multiple branches, it has only one branch. That is, if

f (x, y) = 0 is the defining equation of an algebroid plane curve, f is irreducible in k[[x, y]].

17

Let R be the local ring of the plane curve branch C and let R be the integral closure of R in its

ring of fractions. As we have already mentioned in 2.1.1, R � k[[t]].

Definition 3.1.1 The number dimk(R/R) is called the δ invariant of the branch and it is de-

noted by δ(R).

Definition 3.1.2 The set W(R) = {ord(r) | r ∈ R} consisting of the orders of the elements of R

is called the semigroup of values or semigroup of orders of R.

Theorem 3.1.3 [21, Lemma 5.2.2] The δ invariant is equal to the number of gaps in the

semigroup of values of R. That is, δ(R) is equal to the cardinality of the set N −W(R).

Definition 3.1.4 The number min{h ∈ W(R) | h + N ⊂ W(R)} is called the conductor of the

semigroup of values of R.

Theorem 3.1.5 (Gorenstein)[21, Theorem 5.2.4] Let c be the conductor of the semigroup of

values of R. Then c = 2δ(R).

Remark 3.1.6 Note that this is true for plane algebroid curves. In general, for a space

curve branch, c ≤ 2δ(R) [15]. For the curve branches with symmetric semigroup of values,

c = 2δ(R).

Remark 3.1.7 [40, Theorem 2.1.1] Let C be a plane curve branch given by the primitive

parametrization x(t), y(t) ∈ k[[t]]. With a coordinate change and interchanging x and y if

necessary, we can assume that the parametrization is of Puiseux type. That is x(t) = tn and

y(t) =
∑

aiti with ord(y(t)) ≥ n and ai ∈ k .

Let C be a plane curve branch given in Puiseux form x(t) = tn and y(t) =
∑

aiti with n ≤

ord(y(t)). Let β0 be n and consider the powers of the terms appearing in the power series y(t).

Let β1 be the smallest power that is not divisible by n and let e1 be the greatest common divisor

of β0 and β1. Then define inductively βi to be the smallest power for which gcd(β0, β1, ..., βi) <

gcd(β0, β1, ..., βi−1) and ei = gcd(β0, β1, ..., βi). After finitely many steps, we get eq = 1 for

some q and we stop.

18

Definition 3.1.8 The set {β0, β1, ..., βq} is called the characteristic exponents of the curve

branch.

Definition 3.1.9 The number q is called the genus of C.

Example 3.1.10 Let C be a plane curve branch given with the parametrization x(t) = t6 and

y(t) = t12 + t15 + t18 + t20. Then,

β0 = 6,

β1 = 15, e1 = gcd(6, 15) = 3

β2 = 20, e2 = gcd(6, 15, 20) = 1

So the characteristic exponents are {6,15,20}.

Remark 3.1.11 Plane curve branches with only one characteristic exponent {β0 = 1} are

smooth.

Theorem 3.1.12 [40, Theorem 3.5.5] Let C be a plane curve branch with local ring R and

characteristic exponents {β0, β1, ..., βq} and let R1 be the local ring of the blowing-up of C.

Then the characteristic exponents of the blown up curve is,

(i) {β1, β1 − β0, ..., βq − β0} if β1 > 2β0

(ii) {β1 − β0, β0, β2 − β1 + β0, ..., βq − β1 + β0} if β1 < 2β0 and β1 − β0 does not divide β0

(iii) {β1 − β0, β2 − β1 + β0, ..., βq − β1 + β0} if β1 < 2β0 and β1 − β0 divides β0.

Example 3.1.13 Consider the plane curve branch C in Example 3.1.10. According to the

Theorem 3.1.12, the plane curve branch C′, that is obtained by blowing up C, will have

characteristic exponents (6, 9, 14) as β1 = 15 > 2β0 = 12 for C.

Indeed, by blowing up C, we see that C′ is parameterized by x = t6, and y = t6 + t9 + t12 + t14

by 2.2.2. Now it is easy to see from the definition of characteristic exponents that C′ has

characteristic exponents (6, 9, 14).

Before explaining the connection of the multiplicity sequence and the characteristic expo-

nents, we need to introduce a notation. Let m and n be two natural numbers with m > n. If

19

the Euclidian algorithm applied to m and n gives:

m = q0n + r1

n = q1r1 + r2

.... ...

rs−1 = qsrs

The sequence n, ..., n︸ ︷︷ ︸
q0 times

, r1, ..., r1︸ ︷︷ ︸
q1 times

, ..., rs, ..., rs︸ ︷︷ ︸
qs times

is denoted by M(n,m).

The next lemma expressed in a different way can be found in [10, Lemma 3.3.6], but the proof

given belongs to us.

Lemma 3.1.14 Let n and m be two natural numbers, e = gcd(n,m) and also let di be the

divisors obtained by applying the Euclidian algorithm to n and m. In this case
∑

i

di = n+m−e

Proof. We prove the lemma by induction on k = the number of different divisors. Without

loss of generalization, assume n < m.

Let k = 2.

n m

n m − n
...

...

n m − k1n

(k1 + 1) n − m m − k1n
...

...

n − (k2 − 1)(m − k1n) m − k1n

n

n
...

k1 times

m − k1n

m − k1n
...

m − k1n

k2 times

Here, k1n < m < (k1 + 1) n , n = k2(m− k1n) and n− (k2 − 1)(m− k1n) = m− k1n = gcd(n,m).

Then the sum of divisors is k1n + k2(m− k1n) = k1n + n = n + m−m + k1n = n + m−gcd(n,m).

Now assume we have k different divisors and assume also the claim is true for k-1 different

divisors . Then,

n m
...

...

n m − (k1 − 1)n

n m − k1n
...

...

e e

n
...

n

k1 times

m − k1n
...

e

k − 1 different divisors

20

Here, we have k1n < m < (k1 + 1) n and e = gcd(n,m). Observing that e = gcd(n,m −

k1n) also, the sum of the divisors is the summation of k1n and the sum of divisors in the

Euclidian algorithm of n and m − k1n. From the induction assumption, the sum of divisors in

the Euclidian algorithm of n and m − k1n is n + m − k1n − e. Thus, the sum of the divisors

obtained by applying the Euclidian algorithm to n and m is k1n + n + m− k1n− d = n + m− e,

which completes the proof. �

Now, as a consequence of Theorem 3.1.12, we can state the next theorem, which will be used

in the latter chapters.

Theorem 3.1.15 [4] Let C be a plane curve branch with characteristic exponents {β0, β1, ..., βq}.

Then ei being gcd(β0, ..., βi) and q being the smallest number such that eq = 1, the multiplicity

sequence of C is M(β0, β1),M(e1, β2 − β1), ...,M(eq−1, βq − βq−1).

Example 3.1.16 Let C be the plane curve branch with the parametrization x = t6 and y =

t12 + t15 + t18 + t20. In Example 3.1.10, we have shown that the characteristic exponents are

{6, 15, 20}. So the multiplicity sequence of the curve branch is M(6, 15), M(gcd(6, 15), 20 −

15), which gives 6, 6, 3, 3, 3, 2, 1, 1

The following lemma and Lemma 3.1.14 give us the opportunity to prove Corollary 3.1.18

which will also be used in the latter chapters.

Lemma 3.1.17 Let a1, a2, . . . , ak be natural numbers s.t. gcd(a1, . . . , ak) = 1. Define

b1 = a1 , bi = gcd(bi−1, ai) = gcd(a1, . . . , ai) (1 < i ≤ k) inductively. Then,

gcd(bi−1, ai − ai−1) = bi

Proof. Since bi = gcd(bi−1, ai) and bi−1 = gcd(bi−2, ai−1), we have bi−1 = bih, ai = bir,

ai−1 = bi−1 p and bi−2 = bi−1q, where gcd(h, r) = 1 and gcd(p, q) = 1. Then gcd(bi−1, ai −

ai−1) = gcd(bih, bi(r − hp)) = bi as gcd(h, r) = 1 �

Corollary 3.1.18 Let C be a curve branch with characteristic exponents {β0, β1, ..., βq}. Then

the sum of the multiplicities appearing in the multiplicity sequence of C is β0 + βq − 1

21

Proof. By Lemma 3.1.14, the sum of the multiplicities is β0 + β1 − gcd(β0, β1) + gcd(β0, β1) +

β2−β1 +gcd(gcd(β0, β1), β2−β1)+ ...+gcd(β1, ..., βq−1)+βq−βq−1−1 and by Lemma 3.1.17,

this is equal to β0 + βq − 1. �

Corollary 3.1.19 [40, Theorem 3.5.6] Characteristic exponents of a plane curve branch C

determine the multiplicity sequence of C and the multiplicity sequence determines the char-

acteristic exponents.

Let C be a plane curve branch with the characteristic exponents {β0, β1, ..., βq}. Let n1 and m1

be natural numbers such that β1
β0

=
n1
m1

and gcd(m1, n1) = 1. Similarly for i = 2, ..., q, define

the natural numbers ni and mi such that βi
β0

=
ni

m1...mi
and gcd(mi, ni) = 1.

Definition 3.1.20 The pairs {(m1, n1), ..., (mq, nq)} defined above are called the Puiseux pairs

of C.

Remark 3.1.21 [21, Remark 5.2.9] Puiseux pairs determine the characteristic exponents and

characteristic exponents determine the Puiseux pairs.

Remark 3.1.22 Characteristic exponents are independent of the chosen parametrization of

the curve branch.

Next, we present another method for considering the resolution of the plane curve branch.

Definition 3.1.23 Let C be a plane curve branch with a singularity at the origin and consider

the resolution process of C:

Ck
πk
−→ Ck−1

πk−1
−→ · · ·

π2
−→ C1

π1
−→ C

The resolution is said to be a good resolution, if Ci−1 still has a singular point for i ≤ k or

Ci−1 is smooth but the intersection of Ci−1 with the exceptional divisor Ei−1 is not transversal.

Furthermore Ck is smooth and has transversal intersection with the exceptional divisor.

Remark 3.1.24 The multiplicity sequence for a good resolution ends with a sequence of 1’s.

22

Definition 3.1.25 The weighted graph constructed by associating ”•” for each Ei and a ”∗”

for Ck as vertices, and connecting the vertices if they intersect is called the resolution graph

of C. The weight of Ei is i in the graph.

Example 3.1.26 Consider the irreducible plane curve C defined by y2 − x3 = 0. We already

know from Example 2.2.18 that the exceptional divisors look like:

6

-

?

E3

C3

E1 E2

So, the resolution graph of C must be:

s s s
∗

1 3 2

Example 3.1.27 [21, Example 5.3.7] For the curve C with defining equation y4 − 2x3y2 −

4x5y + x6 − x7 = 0, the exceptional divisors look like:

So the resolution graph looks like:

23

s s
s

s
s

∗

1 3 2

4
5

Theorem 3.1.28 [21, Theorem 5.3.9] Let C be a plane curve branch. The following data for

C determine each other:

1. the Puiseux pairs of C.

2. the characteristic exponents of C.

3. the minimal set of generators for the semigroup of C.

4. the multiplicity sequence of C.

5. the resolution graph

We already know that 1, 2, 3, 4 determine each other, so let us explain the relationship between

the characteristic exponents and the resolution graph. For all the proofs and details, see [21].

Let (β0, β1, ..., βq) be the characteristic exponents of a curve branch C and let ei be the greatest

common divisor of β0, β1, ..., βi for 0 ≤ i ≤ q. The multiplicity sequence of C is M(β0, β1),

M(e1, β2 − β1), ...,M(eq−1, βq − βq−1) from Theorem 3.1.15. Here, each Euclidian algorithm

forms a layer S (i) of the resolution graph and each different divisor in a Euclidian algorithm

corresponds to a building block S (i)
j of S (i). To be more precise, consider M(β0, β1). It forms

the first layer S (1) of the resolution graph:

β1 = q(1)
1 β0 + r(1)

1

β0 = q(1)
2 r(1)

1 + r(1)
2

.... ...

r(1)
s1−2 = q(1)

s1 e1

24

Here, we have s1 different divisors (β0, r
(1)
1 , .., r(1)

s1−2, e1), so the first layer contains s1 building

blocks S (1)
1 , .., S (1)

s1 . For the first division, we have q(1)
1 as the quotient, so the first building

block S (1)
1 is {1, 2, ..., q(1)

1 }.

s s s s
1 2 q(1)

1 − 1 q(1)
1

S (1)
1 p p p p p

Similarly, since we have q(1)
i as a quotient in the ith division r(1)

i−2 = q(1)
i r(1)

i−1+r(1)
i , w(1)

i−1 denoting

the largest weight on S (1)
i−1, S (1)

i is:

s s s s
w(1)

i−1 + 1 w(1)
i−1 + 2 w(1)

i−1 + q(1)
i

S (1)
i p p p p p

Observing that w(1)
i = w(1)

i−1 + q(1)
i , we can start connecting the building blocks of S (1).

If s1 > 2 and j + 2 ≤ s1, we connect the end point of S (1)
j with the start point of S (1)

j+2.

Otherwise, we connect the end point of S (1)
j with the end point of S (1)

j+1.

S (1)
1 , S (1)

2 , ..., S (1)
s1 connected in this way forms the first layer S (1) of the resolution graph.

Similarly S (i) is formed by the Euclidian algorithm M(ei+1, βi+2 − βi+1) for i = 2, ..., q.

βi+2 − βi+1 = q(i)
1 ei+1 + r(i)

1

ei+1 = q(i)
2 r(i)

1 + r(i)
2

.... ...

r(i)
si−2 = q(i)

si ei+1

S (i) will be formed by S (i)
1 , S (i)

2 , ..., S (i)
si by connecting the end point of S (i)

j with the start point

of S (i)
j+2, if si > 2 and j + 2 ≤ si, and the end point of S (i)

j with the end point of S (i)
j+1 otherwise.

The smallest weight of S (i)
1 will be the largest weight of the last building block of S (i−1) plus

one. (Note that, the point with the smallest weight is said to be the start point and the point

with the largest weight is said to be the end point of S (i)
j . Here, S (i)

j is

25

s s s s
w(i)

j−1 + 1 w(i)
j−1 + 2 w(i)

j−1 + q(i)
j

S (i)
j p p p p p

The resolution graph of C is formed from S (1), ...S (q) by connecting the end point of S (i)
si with

the start point of S (i+1)
1 if q(i+1)

1 , 0. If q(i+1)
1 = 0, the connection point depends on si+1. To be

more precise, if q(i+1)
1 = 0 and si+1 ≥ 3, the end point of S (i)

si is being connected with the start

point of S (i+1)
3 , if q(i+1)

1 = 0 and si+1 = 2, then S (i)
si is being connected with the end point of

S (i+1)
2 .

Example 3.1.29 Let’s find the resolution graph of the curve branch given with the equation

y2 − x3 = 0. Since it can be parameterized as x = t2, y = t3, its characteristic exponents are

(2, 3). This implies that the resolution graph of C will consist of only one layer S (1), which is

determined by the Euclidian algorithm M(2, 3).

3 = 1 · 2 + 1

2 = 2 · 1

S (1)
1 = {1} as q(1)

1 = 1 and S (1)
2 = {2, 3} as q(1)

2 = 2 and as s1 = 2, we connect the end point of

S (1)
1 with the end point of S (1)

2 . So the resolution graph is

s s s
∗

1 3 2

We can check from Example 3.1.26, that our result is the same with that one.

Example 3.1.30 Let C be the curve in Example 3.1.27, defined by x−4y−4xy−xy2−x2y2 = 0.

It can be shown that its characteristic exponents are (4, 6, 7). So the resolution graph of C

contains two layers, which are determined by M(4, 6) and M(2, 1) respectively. First, the

Euclidian algorithm is

6 = 1 · 4 + 2

4 = 2 · 2

26

So S (1)
1 = {1}, S (1)

2 = {2, 3}. We connect the end point of S (1)
1 with the end point of S (1)

2 as

s1 = 2. The second Euclidian algorithm is

1 = 0 · 2 + 1

2 = 2 · 1

So S (2)
1 = ∅, S (2)

2 = {4, 5}. As q(2)
1 = 0 and s2 = 2, we connect the end point of S (1)

2 with the

end point of S (2)
1 . So the resolution graph of C is

s s
s

s
s

∗

1 3 2

4
5

Example 3.1.31 Let C be the curve in Example 3.1.10 with characteristic exponents (6, 9, 20).

Let’s form the resolution graph of C. The resolution graph consists of two layers S (1) and S (2),

which are determined by Euclidian algorithms M(6, 15) and M(3, 5) respectively. First Eu-

clidian algorithm is

15 = 2 · 6 + 3

6 = 3 · 2 + 0

which tells us S (1)
1 = {1, 2} and S (1)

2 = {3, 4}. We connect the end point of S (1)
1 with the end

point of S (1)
2 as s1 = 2. The second Euclidian algorithm is

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

So the second layer contains S (2)
1 = {5}, S (2)

2 = {6} and S (2)
3 = {7, 8}. The resolution graph of

C is:

27

s s s s
s s s s

∗

1 2 4 3

5 7 8 6

Example 3.1.32 Let C be the curve defined by the parametrization x(t) = t28, y(t) = t56 +

t64 + t66 + t77. Let’s find the resolution graph of C. The characteristic exponents of C are

(28, 64, 66, 77) so the resolution graph consists of three layers, which are determined by the

Euclidian algorithms M(28, 64), M(4, 2) and M(2, 11) respectively. The first Euclidian algo-

rithm gives

64 = 2 · 28 + 8

28 = 3 · 8 + 4

8 = 2 · 4 + 0

So the first layer S (1) is determined by S (1)
1 = {1, 2}, S (1)

2 = {3, 4, 5} and S (1)
3 = {6, 7}.

The second Euclidian algorithm gives

2 = 0 · 4 + 2

4 = 2 · 2 + 0

So the second layer S (2) is determined by the building blocks S (2)
1 = ∅ and S (2)

2 = {8, 9}.

The last Euclidian algorithm gives

11 = 5 · 2 + 1

2 = 2 · 1 + 0

The third layer is determined by S (3)
2 = {10, 11, 12, 13, 14} and S (2)

2 = {15, 16}. As a result,

the resolution graph is:

28

s s s s s s s
s s
s s s s s s s

∗

1 2 6 7 5 4 3

9 8

10 11 12 13 14 16 15

Now, we have understood how to obtain the resolution graph from the characteristic expo-

nents. To obtain the characteristic exponents from the resolution graph, we simply start from

the first layer of the resolution graph. We group the consecutive weights starting from the last

and find the building blocks. Then starting from the last layer and the last building block, we

write the Euclidian algorithms by using the S (i)
j ’s.

Example 3.1.33 Let’s find the characteristic exponents of the curve branch given by the res-

olution graph:

s s s
s s s

s s s s s
∗

1 3 2

5 6 4

7 8 9 11 10

There are three layers so there must be three Euclidian algorithms, four characteristic ex-

ponents. Starting from the first layer, we see that S (1)
1 = {1}, S (1)

2 = {2, 3}. Passing to the

second layer, observe that the largest weight 3 of the first layer is not connected to the small-

29

est weight 4 of the second layer. This hints us that q(2)
1 = 0 so that S (2)

1 = ∅. Continuing on

the second layer, S (2)
2 = {4} and S (2)

3 = {5, 6}. Finally, for the last layer, S (3)
2 = {7, 8, 9} and

S (3)
1 = {10, 11}. Then, we construct the Euclidian algorithms going backwards. We know that

the last greatest common divisor must be 1 in the last Euclidian algorithm. The cardinality

2 of the set S (3)
1 says that the last step of the last Euclidian algorithm must be 2 = 2 · 1 + 0

(Quotient corresponds to the cardinality of S (3)
1). This hints us that the remainder is 1 and the

divisor is 2 in the previous division. As the cardinality of S (3)
2 is 3, division must be 7 = 3·2+1.

We pass to the second layer keeping in mind that the divisor must be 2 and the remainder must

be 0, since we change layers. The cardinality of S (2)
3 is 2 giving us the division 4 = 2 · 2 + 0.

From this division, we keep 4 as the divisor, 2 as the remainder and we use the cardinality 1

as the quotient for the previous division, we get 6 = 1 · 4 + 2. As we have already mentioned,

S (2)
1 = ∅, q(2)

1 = 0 and division must be 4 = 0 · 6 + 4. Continuing in this manner, it’s not hard

to see that the divisions corresponding to the first layer are:

18 = 1 · 12 + 6

12 = 2 · 6 + 0

To sum up, we read the first two characteristic exponents 12 and 18 from the first line of the

Euclidian algorithm corresponding to the first layer. Second euclidian algorithm

4 = 0 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0

tells us that the third characteristic exponent is 18 + 4 = 22. Finally, last Euclidian algorithm

7 = 3 · 2 + 1

2 = 2 · 1 + 0

tells us that the fourth characteristic exponent is 22 + 7 = 29. That is, the characteristic

exponents of the curve branch with the given resolution graph are (12, 18, 22, 29).

3.2 Reducible Plane Algebroid Curves

We first define the good resolution for reducible plane algebroid curves. Let C be a reducible

plane algebroid curve, having the branches C(1), C(2) ,..., C(r), where r ≥ 2. Consider the

resolution process of C.

Ck
πk
−→ Ck−1

πk−1
−→ · · ·

π2
−→ C1

π1
−→ C

30

with strict transforms Ci = (π1 ◦ π2 ◦ · · · ◦ πi)−1(C − {0}) and exceptional divisors Ei =

(π1 ◦ π2 ◦ · · · ◦ πi)−1(0).

Definition 3.2.1 [21, Definition 5.4.1] The resolution of C is said to be a good resolution, if

all branches of Ck are smooth, they do not intersect with each other, they do intersect with

only one component of Ek and they do intersect with this component transversally.

Definition 3.2.2 The contact number for the branches C(i) and C(j) is defined to be the small-

est integer s for which C(i)
s ∩C(j)

s = ∅ where C(i)
s is the ith branch of Cs and C(i)

0 := C(i).

Given a reducible algebroid curve, we already know how to form the resolution graph for

each of its components. Now, we understand how to do it for the reducible plane algebroid

curve without losing the information on the branches.

Definition 3.2.3 The weighted graph constructed by associating a ” • ” for each component

of Ek and a ” ∗ ” for each component of Ck as vertices and connecting vertices if the corre-

sponding components intersect is called the resolution graph of the reducible plane algebroid

curve C.

Example 3.2.4 [8] Consider the reducible plane algebroid curve C defined by x(x2−y3)(x3−

y2) = 0. C has three branches C(1), C(2) and C(3) defined by x = 0, x2− y3 = 0 and x3− y2 = 0

respectively.

6

?

-� %$
$'
C(1)

C(3)

C(2)

Blowing up C, we get the curve C1:

31

%& & %E1

C(1)
1

C(2)
1 C(3)

1

We see that C(3)
1 and C(1)

1 are separated in the first blowing up. Hence, contact of the branches

C(1) and C(3) is one. Similarly, contact number of the branches C(2) and C(3) is one. On the

other hand, observe that the branches C(1) and C(2) are still not separated. We blow up the

curve again.

�
�
�
�
�
�

�
�
�
�
�
�

E2

E1 E1

C(1)
2

C(2)
2 C(3)

2

We see that the contact number of the first and second branches is two as they are separated in

the second blowing up. But we need to continue blowing up as the intersection of the second

and third branches are not transversal with the exceptional divisors.

E3

C(1)
3

E2

C(2)
3

E1 E2

C(3)
3

E1

Now, we have a good resolution and from this resolution, we conclude that the resolution

graph of the reducible algebroid curve is:

32

s s s s s
∗ ∗ ∗

2 3 1 3 2

Observe that the first star corresponds to the branch C(1), the second to C(2) and the third to

C(3).

Theorem 3.2.5 [21, Theorem 5.4.5] For a reducible curve C, the following data determine

each other:

(i) resolution graph of C

(ii) resolution graph of the branches of C together with the contact numbers.

We explain how the procedure works while passing from the resolution graph of the curve to

the resolution graph and the contact numbers of branches and vice versa.

Definition 3.2.6 A point on a resolution graph is called contractible, if it satisfies one of the

following:

(1) It is connected to a star and only to another point of lower weight.

(2) It is not connected to a star but connected to only points of lower weight.

Assume we have a reducible curve C and its resolution graph. Let C(1), C(2),...,C(r) be the

branches of C. We want to find the resolution graph of C(i) and the contact number of C(i)

with C(j) for i , j and 1 ≤ i, j ≤ r. For the resolution graph of C, we start by erasing all ∗’s,

which do not belong to C(i). Then we start erasing points, if they are contractible. We stop

when there are no contractible points.

Example 3.2.7 Let C be the curve given by equation x(x2−y3)(x3−y2) = 0 in Example 3.2.4.

Let’s try to find the resolution graph of the third branch C(3) given by x3 − y2 = 0. We know

from Example 3.2.4 that the resolution graph of C is:

33

s s s s s
∗ ∗ ∗

2 3 1 3 2

Erasing the first two stars corresponding to the first two branches, we get:

s s s s s
∗

2 3 1 3 2

As 3 on the left hand side is only connected to the points 1 and 2 of lower weights, we erase 3

and get:

s s s s
∗

2 1 3 2

Now, the 2 on the left hand side is only connected to the point 1 of lower weight. Hence, we

erase it and get:

s s s
∗

1 3 2

34

Now, there is nothing else left to erase. Indeed, we can check from Example 3.1.29 that we

have obtained the right resolution graph.

We can now explain the process of finding the contact numbers between the branches from

the resolution graph of the reducible algebroid curve. To find the contact number of branches

C(i) and C(j), we keep the stars corresponding to C(i) and C(j) and erase all the others. Then

we remove the contractible points. We continue till there are no contractible points. Then we

pick out the following points from the resolution graph we obtained after erasing stars and

contractible points:

(1) The maximal number occurring as weight just once in the last resolution graph.

(2) The weights of the points connected to the stars in the last resolution graph.

Then the contact number is the smallest one among these three points.

Example 3.2.8 Let us find the contact numbers between the branches of the curve C given by

x(x2 − y3)(x3 − y2) = 0 from the resolution graph of C. We already know the resolution graph

of C by Example 3.2.4. To find the contact number of C(1) and C(2), we start by erasing the

star corresponding to C(3).

s s s s s
∗ ∗

2 3 1 3 2

Now, 3 is a contractible point. Erasing 3, it is not hard to see that 2 is also contractible, so

we erase it too. Hence, we end up with:

s s s
∗ ∗

2 3 1

35

The numbers that we pick are 3, 2, 3 and our contact number is 2, which is the smallest of

these numbers.

To find the contact number of the branches C(1) and C(3), we erase the star corresponding to

C(2).

s s s s s
∗ ∗

2 3 1 3 2

The 3 on the left is contractible, so we erase it.

s s s s
∗ ∗

2 1 3 2

The 2 on the left is contractible, as it is connected to a star and only to a point of lower weight.

Hence, we erase it also.

s s s
∗ ∗

1 3 2

The numbers to be picked are 3, 1, 3 so the contact number of C(1) and C(3) is one. The contact

number for the branches C(2) and C(3) can be found in a similar way.

We now give another example, which shows how we can find the resolution graph of a re-

ducible algebroid curve C, if we know the resolution graphs of the branches of C and their

36

contact numbers.

Example 3.2.9 Let us again consider the curve x(x2 − y3)(x3 − y2) = 0 in Example 3.2.4. The

resolution graphs of the branches are:

s
∗

1

s s s
∗

1 3 2

s s s
∗

1 3 2

Let us glue C(2) with C(3) first. We know that the contact number is one for the chosen

branches. In other words, they are separated in the first blowing up.

s s s s s
∗ ∗

2 3 1 3 2

Now, we glue the resolution graph of C(1) to this resolution graph. For this, we look for

the contact numbers of C(1) with the other branches. From Example 3.2.4, we know that the

contact number of C(1) and C(2) is 2, and C(1) and C(3) is 1. We see that the maximum contact

number is achieved with the branch C(2). Hence, we glue C(1) with C(2). As the contact

number is 2, we get:

s s s s s
∗ ∗∗

2 3 1 3 2

For more complicated examples and the whole explanation of the process, see [21].

37

We can now state the next theorem summarizing the invariants of reducible plane algebroid

curves.

Theorem 3.2.10 [21, Theorem 5.4.7] For a reducible plane algebroid curve C, the following

data determine each other:

1. Resolution graph of C

2. Resolution graphs of the branches of C and their contact numbers.

3. Multiplicity sequences of the branches of C and their contact numbers.

The last theorem that we present in this section is the following one, which we use in our

codes to compute the contact numbers of the branches.

Theorem 3.2.11 [21, Theorem 5.4.8] Let C and C′ be two irreducible plane algebroid curves

with contact number k. If the multiplicity sequences of the branches are (m1, ...,mr) and

(m
′

1, ...,m
′

s) respectively, then taking mi = 1 if k > r and m
′

i = 1 if k > s, the intersection

multiplicity of C and C
′

is:
k∑

i=1

mi.m
′

i

Example 3.2.12 Let us find the intersection multiplicity of the irreducible algebroid curves

defined by x = 0 and x2 − y3 = 0. We know from Example 3.2.4 that the contact number of the

branches is 2 and the multiplicity sequences are (1) and (2, 1, 1) respectively. Then, from the

previous theorem the intersection multiplicity of the branches is: 2 · 1 + 1 · 1 = 3.

38

CHAPTER 4

HAMBURGER NOETHER EXPANSIONS AND MATRICES

In general, we are interested in curve branches over an algebraically closed field of zero

characteristic, but it has to be noted that some of the procedures we use are not valid in the

positive characteristic case like the Puiseux expansions. However, Hamburger Noether expan-

sions, which can be used instead of Puiseux expansions work in any characteristic. Moreover,

we can actually define Hamburger Noether expansions not only for the plane curve branches.

but also for the higher dimensional curve branches. We associate a matrix to a Hamburger

Noether expansion and it is also possible to the read the invariants of the curve branch from

that matrix. Hamburger Noether expansions can also be used to find the parametrization of a

curve branch, if it is given in closed form. In this chapter, we explain how we get Hamburger

Noether expansions and matrices from the parametrization of the curve branch and how we

determine the invariants from the Hamburger Noether matrices. To understand the process

better, we start with the plane case.

4.1 Hamburger Noether Expansions Of Plane Curve Branches

Let C be a plane curve branch given in parametric form x(t) and y(t). Without loss of general-

ity, suppose that the order of x(t) is smaller than the order of y(t). We construct the Hamburger

Noether expansion of C by doing successive divisions. Normally, Hamburger Noether expan-

sions can be found for any parametrization regardless of whether they are primitive or not.

However, for our future purposes, we explain the procedure only for the primitive param-

eterizations [10]. Let (x(t), y(t)) be a primitive parametrization. Divide y by x and let y1

be the power series obtained from this division. If the constant term of y1 is a01, then set

y1 =: y1 − a01. If ord(x) ≤ ord(y1), apply the same procedure by taking y1 instead of y till

39

you get a power series of order less than the order of x. At the end, we get an expression

for y as y = a01x + a02x2 + ... + a0r xr + xrz1 with ord(z1) < ord(x). If ord(x) > ord(y1),

we have a similar expression for y as y = a01x + xz1 with ord(z1) < ord(x) (z1 = y1 in this

case). Now in either case, if ord(z1) = 1, we write x in terms of z1 by dividing x by z1 and the

algorithm stops. Otherwise, we continue in the same manner by taking x as the dividend and

z1 as the divisor and we get an expression for x as x = a11z1 + a12z1
2 + ... + a1r1z1

r1 + z1
r1z2

with ord(z2) < ord(z1). Again, if ord(z2) = 1, we write z1 in terms of z2 by dividing z1 by

z2 and the algorithm stops. Otherwise, we continue with z1 and z2. But as we have started

with a primitive parametrization, after finitely many steps, we get ord(zs) = 1 for some s.

Expressing zs−1 in terms of zs, and the algorithm stops ([10, Corollary 2.2.6]). Hence, we

obtain a set of expressions for the parametrization system {x(t), y(t)}:

y = a01x + a02x2 + ... + a0r xr + xrz1

x = a11z1 + a12z1
2 + ... + a1r1z1

r1 + z1
r1z2

... (4.1)

zs−1 = as1zs + as2z2
s +

where the ai j’s are from the coefficient field, z j’s are power series with descending orders, that

is ord(y) > ord(x) > ord(z1) > ... > ord(zs) = 1.

Definition 4.1.1 The expressions we have for {x(t), y(t)} in 4.1 are called the Hamburger-

Noether expansion for the curve branch defined by {x(t), y(t)}. For the sake of simplicity, we

simply denote the Hamburger-Noether expansion given in 4.1 by

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1

with z−1 = y, z0 = x and 0 ≤ j ≤ r.

Example 4.1.2 Let C be the curve given by parametrization x(t) = t2 and y(t) = t3. Let us

find the Hamburger-Noether expansion of C. We have z0 = x and z−1 = y to start with.

y1 =
y
x

=
t3

t2 = t

The constant term of y1 is 0, so a01 = 0 and ord(x) = 2 > 1 = ord(y1). Hence, we have the

expression

z−1 = z0z1

40

for z−1, where z1 = t. We write z0 in terms of z1 and the algorithm stops, as we have reached an

order one element, z1. As z0 = z1
2, the Hamburger-Noether expansion for the parametrization

system {x(t), y(t)} is:

z−1 = z0z1

z0 = z1
2

We can now give more complicated examples.

Example 4.1.3 Let C be the curve with the parametrization x(t) = t4 + t7 and y(t) = t10 +

2t13 + t16. Let’s find the Hamburger-Noether expansion of C. Dividing y by x, we get

y1 =
t10 + 2t13 + t16

t4 + t7 = t6 + t9

a01 = 0 and as ord(y1) = 6 > 4 = ord(x), we continue dividing y1 by x and get

y2 =
y1

x
=

t6 + t9

t4 + t7 = t2

a02 = 0 and ord(y2) = 2 < 4 = ord(x). Hence, having the expression

z−1 = z2
0z1

where z−1 = y, z0 = x and z1 = t2, we continue dividing z0 by z1.

y1 =
z0

z1
=

t4 + t7

t2 = t2 + t5

a11 = 0 and ord(y1) = 2 = ord(z1), we continue dividing y1 by z1.

y2 =
y1

z1
=

t2 + t5

t2 = 1 + t3

Hence, a12 = 1 and y2 := y2 − a12 = t3. Thus, ord(y2) = 3 > ord(z1), so we continue dividing

y2 by z1.

y3 =
y2

z1
=

t3

t2 = t

a13 = 0 and as ord(y3) = 1 < 2 = ord(z1), we have

z0 = z1
2 + z1

3z2

where z2 = t. Now, we express z1 in terms of z2 and the algorithm stops, as ord(z2) = 1. As

z1 = z2
2, Hamburger-Noether expansion for the curve branch is:

z−1 = z2
0z1

z0 = z1
2 + z1

3z2

z1 = z2
2

41

Example 4.1.4 Let C be the plane curve branch with parametrization x(t) = t4 + t7 + t10

and y(t) = t10 + 2t13 + 3t16 + 2t19 + t22. Let us find the Hamburger-Noether expansion of C.

Dividing y by x, we get

y1 =
t10 + 2t13 + 3t16 + 2t19 + t22

t4 + t7 + t10 = t6 + t9 + t12

a01 = 0 and as ord(y1) = 6 > 4 = ord(x), we continue dividing y1 by x and get

y2 =
y1

x
=

t6 + t9 + t12

t4 + t7 + t10 = t2

a02 = 0 and ord(y2) = 2 < 4 = ord(x). Hence, having the expression

z−1 = z2
0z1

where z−1 = y, z0 = x and z1 = t2, we continue dividing z0 by z1.

y1 =
z0

z1
=

t4 + t7 + t10

t2 = t2 + t5 + t8

a11 = 0 and ord(y1) = 2 = ord(z1), we continue dividing y1 by z1.

y2 =
y1

z1
=

t2 + t5 + t8

t2 = 1 + t3 + t6

Hence, a12 = 1 and y2 := y2 − a12 = t3 + t6. ord(y2) = 3 > ord(z1), so we continue dividing

y2 by z1.

y3 =
y2

z1
=

t3 + t6

t2 = t + t4

a13 = 0 and as ord(y3) = 1 < 2 = ord(z1), we have

z0 = z1
2 + z1

3z2

for z0 where z2 = t + t4. Now, we write z1 in terms of z2 and the algorithm stops ord(z2) = 1.

As

z1 = z2
2 +

Hamburger-Noether expansion for the curve branch is:

z−1 = z2
0z1

z0 = z1
2 + z1

3z2

z1 = z2
2 +

42

The following algorithm for finding the Hamburger-Noether expansion of the curve branch

with parametrization {x(t), y(t)} can be found in [32]:

Algorithm 1 PrimParam-HNE
Input: (x(t), y(t)) is a primitive parametrization with ord(x(t)) < ord(y(t))

Output: Hamburger Noether expansion z j−1 =

h j∑
i=1

a jizi
j + zh j

j z j+1, j = 1, ..., r

1: z−1 ← y, z0 ← x, s← 0

2: i← 1, y0 ← zs−1

3: Calculate asi ∈ k and yi ∈ k[[t]] with yi−1
zs

= asi + yi and ord(yi) > 0

4: if asi , 0 and ord(zs) = 1 then

5: STOP

6: end if

7: if yi−1 = 0 then

8: as j ← 0 for all j > i and STOP

9: end if

10: if ord(yi) ≥ ord(zs) then

11: i← i + 1 and go to 3

12: else

13: i← hs

14: end if

15: s← s + 1, zs ← yhs−1 and go back to 2.

Having understood the algorithm to find the Hamburger-Noether expansions, we can talk

about the importance of these expansions. It is actually possible to read the invariants of

the curve branch from its Hamburger-Noether expansion. Our aim now is to understand this

process.

Proposition 4.1.5 [10, Proposition 2.2.9] Let C be a curve branch with parametrization

{x(t), y(t)} and Hamburger-Noether expansion

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1

Let C1 be the blow-up of C with parametrization {x, y1} where y1 =
y
x − a01. Then the

Hamburger-Noether expansion for C1 is:

43

(1) If r0 > 1,

y1 = a02x + ... + a0r0 xr0−1 + xr0−1z1

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 1 ≤ j ≤ s

(2) If r0 = 1,

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 1 ≤ j ≤ s

Example 4.1.6 Let C be the curve branch given with {t4 + t7, t10 + 2t13 + t16}. We know that

the Hamburger-Noether expansion of C is

z−1 = z2
0z1

z0 = z1
2 + z1

3z2

z1 = z2
2

from Example 4.1.3. We also know from section 2.2.2 that blowing up of C is given by the

parametrization {t4 + t7, t6 + t9}. According to Proposition 4.1.5, as r0 = 2 > 1, Hamburger-

Noether expansion of the blown up curve is

z−1 = z0z1

z0 = z1
2 + z1

3z2

z1 = z2
2

Indeed, If we find the Hamburger-Noether expansion of C1 from the algorithm: z−1 = t6 + t9,

z0 = t4 + t7, y1 =
z−1
z0

= t2, ord(y1) < ord(z0) so z1 = t2 and we get:

z−1 = z0z1

We divide z0 by z1, but as z0 and z1 are the same with the ones in Example 4.1.3, the rest of

the algorithm should be the same and we get the expressions

z0 = z1
2 + z1

3z2

z1 = z2
2

Hence, the Hamburger-Noether expansion for C1 is:

z−1 = z0z1

z0 = z1
2 + z1

3z2

z1 = z2
2

as expected.

44

Proposition 4.1.7 [10, Proposition 2.2.10] Let C be a curve branch with parametrization

{x(t), y(t)} and Hamburger-Noether expansion

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1

ni being the order of the power series zi for 0 ≤ i ≤ s. Then the multiplicity sequence of C is

n0, ..., n0︸ ︷︷ ︸
r0 times

, n1, ..., n1︸ ︷︷ ︸
r1 times

, ..., ns, ..., ns︸ ︷︷ ︸
rs times

Example 4.1.8 For the curve branch C defined by {t4 + t7, t10 + 2t13 + t16} in Example 4.1.3,

n0 = ord(z0) = 4 h0 = 2

n1 = ord(z1) = 2 h1 = 3

n2 = ord(z2) = 1 h2 = 2

Hence, from Proposition 4.1.7, the multiplicity sequence of C is:

4, 4, 2, 2, 2, 1, 1

Indeed, we know from section 2.2.2 that the blowing up of C gives C1 with parametrization

(t4 + t7, t6 + t9). The multiplicity of the singular point of the branch C1 is 4 and the blowing up

of C1 gives the curve C2 with parametrization (t2, t4+t7). The multiplicity is 2 and the blowing

up of C2 is C3, defined by (t2, t2 + t5) with singular point of multiplicity 2. C4, which is the

blowing up of C3, has the parametrization (t2, t3) and the multiplicity is 2. Finally, C4 and C5

have parameterizations (t, t2), (t, t) and singular points have multiplicities 1, 1 respectively.

Thus, C has multiplicity sequence 4, 4, 2, 2, 2, 1, 1 indeed.

Corollary 4.1.9 [10, Corollary 2.2.11] Let C and C∗ be two curve branches with Hamburger-

Noether expansions

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 0 ≤ j ≤ s

z∗j−1 =

r∗j∑
i=1

a∗jiz
∗
j
i
+ z∗j

r∗j z∗j+1, 0 ≤ j ≤ s∗

respectively. Then C and C∗ are equivalent (equiresoluble) iff s = s∗, r j = r∗j and n j = n∗j for

0 ≤ j ≤ s.

Example 4.1.10 The curve branches with parameterizations (t4 + t7, t10 + 2t13 + t16) and

(t4 + t7 + t10, t10 + 2t13 + 3t16 + 2t19 + t22) respectively are equivalent, as it can be checked

from their Hamburger-Noether expansions obtained in Examples 4.1.3 and 4.1.4.

45

4.1.1 Intersection Multiplicity, Contact numbers and Hamburger-Noether expansions

Definition 4.1.11 Let C be a curve branch defined by (x(t), y(t)) and let D be another curve,

not necessarily irreducible, defined by g(x, y) ∈ k[[x, y]]. The intersection multiplicity of C

and D is the order of the power series g(x(t), y(t)).

Proposition 4.1.12 [10] Let C and C∗ be two curve branches with Hamburger-Noether ex-

pansions

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 0 ≤ j ≤ s

z∗j−1 =

r∗j∑
i=1

a∗jiz
∗
j
i
+ z∗j

r∗j z∗j+1, 0 ≤ j ≤ s∗

respectively. Let k be the greatest integer for which r0 = r∗0, r1 = r∗1, ..., rk−1 = r∗k−1 and

a jl = a∗jl for j ≤ k − 1 and l ≤ r j. Let i be the least index such that aki , a∗ki (i ≤ rk + 1,

i ≤ r∗k + 1). The integer

N = r0 + r1 + ... + rk−1 + i

is equal to the contact number of C and C∗.

Example 4.1.13 Let C and C∗ be two curve branches with Hamburger-Noether expansions

z−1 = z0
2z1

z0 = z1
2 + z1

2z2

z1 = z2
3

and
z∗
−1 = z∗0

2z∗1

z∗0 = z∗1
2z∗2

z∗1 = z∗2
3

respectively. Then k = 1 and i = 2 with the notation of the previous proposition. So the

contact number of the branches C and C∗ is

r0 + i = 2 + 2 = 4

Remark 4.1.14 Knowing the contact numbers and multiplicity sequences from the Hamburger-

Noether expansions, the intersection multiplicity of the curve branches can be found by The-

orem 3.2.11.

46

Example 4.1.15 For the curve branches in Example 4.1.13, it is not hard to show that the

multiplicity sequences are (6, 6, 3, 3, 1, 1, 1) and (7, 7, 3, 3, 1, 1, 1) respectively. Hence, the

intersection multiplicity of the curve branches is 6 · 7 + 6 · 7 + 3 · 3 + 3 · 3 = 102. Indeed, it

is not hard to show that (t6 + t7, t15 + 2t16 + t17) is the parametrization of C and x17 − y7 = 0

is the defining equation of C∗. We can also check from Definition 4.1.11 that the intersection

multiplicity is 102 as the order of the polynomial (t6 + t7)17 − (t15 + 2t16 + t17)7 is 102.

4.1.2 Characteristic Exponents and Hamburger-Noether expansions

Let C be a plane algebroid curve with Hamburger-Noether expansion

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 0 ≤ j ≤ s

Setting n j = ord(z j), we know that the multiplicity sequence of C is n0...n0, n1...n1, ..., ns...ns.

Looking at n j’s, we pick out the different indices m1, ...,mq if nmi divides nmi−1. We assume

m0 = 0.

Example 4.1.16 If the multiplicity sequence is 4, 4, 3, 1, 1, 1, n0 = 4, n1 = 3 and n2 = 1. Then

m0 = 0 and m1 = 2 as n2 divides n1.

Proposition 4.1.17 q is exactly the genus of C.

Definition 4.1.18 Let C be a plane curve branch with Hamburger-Noether expansion

z j−1 =

r j∑
i=1

a jizi
j + zr j

j z j+1, 0 ≤ j ≤ s

Then the characteristic exponents β0, β1, ..., βq are:

β0 = n0

βv+1 =

mv∑
j=0

r jn j + nmv + nmv+1 − n0, 0 ≤ v ≤ q − 1

Example 4.1.19 For the curve branches in Example 4.1.13, the characteristic exponents are

(5, 15, 16) and (7, 17) respectively. For the curve branch C, the multiplicity sequence is

(6,6,3,3,1,1,1). So, m0 = 0 by definition and m1 = 1 as n1 divides n0 and m2 = 2 as n2

47

divides n1. Hence,

β0 = n0 = 6

β1 = r0n0 + n0 + n1 − n0 = 2 · 6 + 3 = 15

β2 =

m1∑
j=0

r jn j + n1 + n2 − n0 = 12 + 6 + 3 + 1 − 6 = 16

For the curve branch C∗, the multiplicity sequence is (7, 7, 3, 3, 1, 1, 1). Hence m0 = 0, m1 = 2

as n2 divides n1. Hence,

β0 = n0 = 7

β1 = r0n0 + n0 + n1 − n0 = 2 · 7 + 3 = 17

4.2 Hamburger-Noether Expansions For General Curve Branches

In this section, we generalize these expansions to the curves in higher dimensions. Let C be

a curve branch given in primitive parametric form (x1(t), x2(t), ..., xn(t)) such that 0 ≤ ord(xi)

for 2 ≤ i ≤ n. Choose the index i0 with ord(xi0(t)) = min{x1(t), ..., xn(t)}. Then,

(i) If ord(xi0) = 1, we write

xi(t) =
∑
p≥1

aip xp
i0

(t)

for all i , i0 and keep the information (i0, xi0).

(ii) Else, we divide all xi but xi0 by xi0 , subtract the constant terms and get the series

yi0(t) = xi0(t)

yi(t) =
xi(t)
xi0 (t) − ai1 f or i , i0

We keep the information i0, ai1 and start the same process with the parametrization (y1(t), ..., yn(t)).

After applying (ii) a couple of times, we reach (i) eventually. Then the information we have

kept throughout the process is called the Hamburger-Noether expansion for the branch C.

48

Algorithm 2 HNE for Twisted curves
Input: (x1(t), ..., xn(t)) is a primitive parametrization with ord(x1) ≤ ord(xi(t))

Output: Hamburger Noether expansion Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r

Step 1. We set Z−1 = Y =

x2

.

.

xn

and z0 = x1

Step 2. We divide all the series xi with x1 and subtract the constant terms for 1 < i ≤ n and

continue dividing until one of the series have order less than the order of x1.

Step 3. This step is divided into two cases:

• If one of the series obtained has order 1, then we have (N − 1) × 1 matrices A0i for 1 ≤ i

with entries from the ground field, and an expansion for Y as

Z−1 = Y = A01x1 + A02x1
2 +

and the algorithm stops.

• If none of the series obtained has order 1, then we have (N−1)×1 matrices A0i for 1 ≤ i ≤ r0

with entries from the ground field, an (N − 1) × 1 matrix with entries from the power series

ring and an expansion for Y as

Z−1 = Y = A01x1 + A02x1
2 + ... + A0hx1

r0 + Z1x1
r0

with at least one of the entries of Z1 has order less than the order of x1. In this case, we pick

out an entry of Z1 with smallest order and call it z1. Then we continue doing the same process

starting from step one with the parametrization system (z1, x, z13, ..., z1n), where z13, ..., z1n are

the entries of Z1 other than z1.

We set Z0 =

x

z13

.

z1n

. We divide the entries of Z0 by z1 and get an expansion for Z0. After

finitely many steps, we obtain an order one power series and the algorithm stops.

Eventually, we obtain an expression of type:

49

Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r

Example 4.2.1 Let C be the space curve given with the parametrization x1(t) = t4+t6, x2(t) =

t6 + t8, x3(t) = t9 + t11. We can now determine the Hamburger-Noether expansion of C. We

start by setting Z−1 =

 x2

x3

 and z0 = x1, and continue with dividing the entries of Z−1 by z0,

which gives x2
x1

= t6+t8
t4+t6 = t2 and x3

x1
= t9+t11

t4+t6 = t5. As we have at least one series with order less

than the order of x1, we continue with the parametrization (t2, t4 + t6, t5), but before that, we

have an expansion for Z−1 as:

Z−1 = z0Z1

Z−1 and z0 are as explained before and Z1 =

 t2

t5

 here. Hence to continue with the

parametrization system (t2, t4 + t6, t5), we take Z0 =

 t4 + t6

t5

, z1 = t2 and start dividing

the entries of Z0 with z1 to obtain t4+t6
t2 = t2 + t4 and t5

t2 = t3. None of the series has order less

than the order of z1 = t2, so we continue dividing the series with z1. We obtain t2+t4
t2 = 1 + t2

(we subtract the constant term 1 and get the series t2) and t3
t2 = t. We now have a series with

order less than the order of z1 = t2, so we can write Z0 as,

Z0 = A12z1
2 + Z2z1

2

where A12 =

 1

0

 and Z2 =

 t2

t

. As we have reached an order one series, we have one

more step and the algorithm stops. We continue with the parametrization system (t, t2, t2). We

have

 t2

t2

 as Z1 and t as z2. So, we can write

Z1 = A22z2
2

where A22 =

 1

1

. Hence, the Hamburger-Noether expansion for C is:

Z−1 = z0Z1

Z0 = A12z1
2 + Z2z1

2

Z1 = A22z2
2

50

Remark 4.2.2 Note that the Hamburger-Noether expansion for a curve branch is not unique.

It depends on the smallest ordered element that we pick from the parametrization. But

when we fix the smallest ordered elements that we choose in each step, we have a unique

Hamburger-Noether expansion.

Proposition 4.2.3 [10, Remark 2.4.9] Let Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r be a

Hamburger-Noether expansion for the curve branch C. n j being the order of the element z j,

the different multiplicities that we have in the blowing up process of C are the natural numbers

n j’s.

Corollary 4.2.4 [10, Remark 2.4.9] Let Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r be a

Hamburger-Noether expansion for the curve branch C. n j being the order of the element

z j, the multiplicity sequence of C is:

n0, ..., n0︸ ︷︷ ︸
h0 times

, n1, ..., n1︸ ︷︷ ︸
h1 times

, ..., ns, ..., ns︸ ︷︷ ︸
hr times

Example 4.2.5 Let C be the curve branch given with parametrization x1(t) = t4 + t6, x2(t) =

t6 + t8, x3(t) = t9 + t11 in Example 4.2.1. Then the multiplicity sequence of C is: (4,2,2,1,1).

Corollary 4.2.6 [10, Remark 2.4.9] Let C and C∗ be two curve branches with Hamburger-

Noether expansions

Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r

Z∗j−1 =

h∗j∑
i=1

A∗jiz
∗
j
i
+ z∗j

h∗j Z∗j+1, j = 0, ..., r∗

respectively. Then, C and C∗ are equiresoluble if and only if h j = h∗j , and n j = n∗j .

4.2.1 Hamburger-Noether Matrices

Let C be a curve branch given with parametrization (x1(t), ..., xn(t)) and with the Hamburger-

Noether expansion

Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r

51

The data contained in the Hamburger-Noether expansion of C can be given with a matrix,

which is called Hamburger-Noether Matrix. The matrix has n rows, r + 1 boxes and the jth

box represents the expansion Z j−1. Hence, the jth box has h j columns. Each box has a marked

row starting with a 1, exactly to mark the divider. Finally, the entries of the boxes represent

the constants that we have been subtracted in the expansion. To understand the process better,

we give an example.

Example 4.2.7 For the curve branch C with parametrization x1(t) = t4 + t6, x2(t) = t6 +

t8, x3(t) = t9 + t11 in Example 4.2.1, we know that the Hamburger-Noether expansion is:

Z−1 = z0Z1

Z0 = A12z1
2 + Z2z1

2

Z1 = A22z2
2

As we are dealing with a space curve, our Hamburger-Noether matrix will have 3 rows and as

the Hamburger-Noether expansion consists only of Z−1, Z0, Z1, Hamburger-Noether matrix

has 3 boxes. It looks like roughly:
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Before starting to fill out the boxes, recall that the parameterizations we have used throughout

the process are:

(t4 + t6, t6 + t8, t9 + t11)

(t4 + t6, t2, t5)

(t2, t2, t)

For the first box, we have h0 = 1, so the box has only one column. We have used t4 + t6 as z0,

which is the first in parametrization, so the first row should be marked and 1. All the constants

are 0, so we have:
1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

in the first box. Continuing with the second box, we know that h1 = 2, hence the box has 2

columns. The dividend t2 is in the second row in the parametrization, so the second row of

the second box should be marked and [1 0]. And recall that we subtract 1 from the first series

52

in the second division, so we put a 1 to the first row second column of the current box. Other

entries should be 0 as the other constants are 0 for the second expansion.
1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1

1 0

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

For the last box, the third row should be marked, as the dividend t is the in the third row of

the parametrization. And we have ones in the second columns of the first and second row, as

we have subtracted 1’s in the second division. Other entries should be 0. So the Hamburger-

Noether matrix is:
1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1

1 0

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1

0 1

1 0

53

CHAPTER 5

ARF THEORY

In this chapter, we give a review of Arf theory. As we have mentioned in Chapter 2, with this

theory, Arf answers the important question asked by Du Val: ‘Given the parametrization of

a space branch, how can we find its characters?’ While answering this question, he develops

new algebraic concepts, which we present in this chapter.

For a branch given by the parametrization {x1 = ϕ1(t), x2 = ϕ2(t), ..., xn = ϕn(t)}, the

completion of the local ring of the curve branch is k[[ϕ1(t), ..., ϕn(t)]], Arf shows that the

characters can be obtained by following these steps:

• Construct a ring with a method described later, called the canonical closure (Arf clo-

sure) from the ring k[[ϕ1(t), ..., ϕn(t)]].

• Form the semigroup of orders of the elements in the canonical closure of the ring

k[[ϕ1(t), ..., ϕn(t)]].

• Pick some of the numbers from that semigroup with a method to be described later.

We obtain the multiplicity sequence of the curve branch by applying the Jacobian Algorithm

to these characters. Before describing each step in detail, we give the necessary definitions

and background.

5.1 Notation and Basic Definitions

In this section, we use the notation in [38]. Let R be a subring of the formal power series

ring with one indeterminate k[[t]]. We define W(R) as the set consisting of the orders of the

54

elements of R:

W(R) = {ord(r)|r ∈ R}

= {i0 = 0 < i1 < ... < ir < ...}

Clearly, W(R) is a semigroup of nonnegative integers.

Theorem 5.1.1 [1, Theorem 1] Let v be the greatest common divisor of the elements of W(R).

Then for a sufficiently large natural number m, there exists a power series of order 1

τ = t(1 +

∞∑
l=1

βltl), βl ∈ k

such that im+1 = im + v, im+2 = im + 2v, ..., ir+k = ir + kv, ... and every element

of R is of the form
∑∞

j=0 α jτ
jv .

As a consequence of this theorem, we can say that if v = 1, then for sufficiently large m,

R contains the power series of all orders greater than or equal to m. We will generally be

working with rings having v = 1.

Note that a ring R with v = 1 can be given as

R = k + kS i1 + kS i2 + ... + k[[t]]S ir ,

where S i j is an arbitrary element in R with order i j, and i1 < i2 < ... < ir are elements in the

semigroup W(R), which contains every integer greater than or equal to ir.

For an element n of N, define In as

In = {r ∈ R | ord(r) ≥ n},

which is the subset of R consisting of all elements of order greater than or equal to n.

Theorem 5.1.2 [1, Theorem 2] Let r be an element of R of order 0. The multiplicative inverse

of r is again an element of R, .

Remark 5.1.3 [1] For an order 0 element r of R, nth root of r is again an element of R,

Remark 5.1.4 In is an ideal of R.

55

Consider the set

In/S n = {r.S −1
n | ord(r) ≥ n}

where S n is an element of R of order n. That is, In/S n is the set consisting of the quotients of

elements of In by S n. Note that, In/S n is not always a ring. Hence, we consider the smallest

subring of R inside k[[t]] containing In/S n, and denote it by [In/S n].

Theorem 5.1.5 [1, Theorem 3] The ring [In/S n] is independent of the chosen element S n of

order n .

As a consequence, without loss of generalization, we can set [In] instead of [In/S n]. So, [In]

is the smallest subring of k[[t]] containing In/S n.

Example 5.1.6 [1] Let R be the subring of the formal power series ring with one indetermi-

nate generated by the elements X = t4 and Y = t10 + t15. Then

W(H) = {0, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, ...}

Setting S 4 = X, the orders of the elements of I4/S 4 are,

0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, ...

The semigroup generated by these elements are:

0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, ...

but the element (Y/X)2 − X3 = 2t17 + t22 is also in the ring [I4], so 17 ∈ W([I4]).

This example of Cahit Arf shows that the semigroup W([In]) contains the integers in − in =

0, in+1 − in, in+2 − in, ..., which are the orders of the elements of Iin/S in , but it may contain

more than those. This is an example of a ring, for which In/S n , [In] for n = 4. Indeed, In/S n

is always a ring only for some special rings R.

5.2 Arf Rings, Arf Semigroups

Definition 5.2.1 [1] A ring R is called an Arf Ring, if for all n ∈ W(R), [In] is equal to In/S n.

56

Example 5.2.2 The ring k[[t]] is a trivial example of an Arf ring.

Cahit Arf calls the rings mentioned above as ‘canonical rings’, which are named by Lipman

as Arf Rings in [33]. Similarly, Arf defines ‘canonical semigroups’, which are called later as

Arf Semigroups.

Definition 5.2.3 [1] A semigroup G = {i0 = 0 < i1 < i2 < ... < in < ...} is called an Arf

Semigroup, if {in − in, in+1 − in, in+2 − in, ...} is a semigroup for all in ∈ G.

Example 5.2.4 The semigroup N is a trivial example of an Arf Semigroup.

Remark 5.2.5 [1] If R is an Arf Ring, W(R) is an Arf Semigroup, but the reverse is not true.

Theorem 5.2.6 [1] (i) Intersection of Arf rings is again an Arf ring.

(ii) Intersection of Arf semigroups is again an Arf semigroup.

Theorem 5.2.7 [1] If R is an Arf ring, then [In] is also an Arf ring for any n.

We can now understand the structure of Arf rings and Arf semigroups. Let R be an Arf ring.

For a sufficiently large N, we have (N − 1)v, Nv, ... ∈ W(R) and [I(N−1)v] = k[[T]] where

T = τv by Theorem 5.1.1, [1]. We choose an element Tr−1 of order vr−1in the Arf ring

[I(N−1)v]. Then, we have

[Iir−1] = k + Tr−1[I(N−1)v]

where ir = (N − 1)v. The ring [Iir−1] and the semigroup W([Iir−1]) = {0, vr−1 + vN} are Arf

by Remark 5.2.5 and Theorem 5.2.7. Now, we choose an element Tr−2 ∈ [Iir−1] of order vr−2.

Then, we have

[Iir−2] = k + Tr−2[Iir−1]

= k + kTr−2 + kTr−2Tr−1k[[T]]

and W([Iir−2]) = {0, vr−2, vr−2 + vr−1 + vN}. Continuing in this manner, we obtain the Arf Ring

R = k + kT1 + kT1T2 + ... + kT1T2...Tr−2 + k[[T]]T1T2...Tr−2Tr−1

and the Arf Semigroup

W(H) = {0, v1, v1 + v2, ..., v1 + v2 + ... + vr−2, v1 + v2 + ... + vr−1 + vN}

57

If ord(Th) = vh and if Th = kTh+1 +kTh+1Th+2 + ...+k[[T]]]T1T2...Tr−1, then vh ∈ {vh+1, vh+1 +

vh+2, ..., vh+1 + vh+2 + ... + vr−1 + vN}.

Noting that k[[t]] is an Arf ring and N is an Arf semigroup, we can give the following defini-

tions.

Definition 5.2.8 For a subring R of formal power series ring, the smallest Arf ring containing

R is called the Arf Closure of R. In other words, the Arf closure of a ring is the intersection of

all Arf rings containing it. We denote the Arf closure of R by R∗.

Definition 5.2.9 For a subsemigroup G of nonnegative integers, the smallest Arf semigroup

containing G or equivalently, intersection of all Arf Semigroups containing G is called the Arf

Closure of G. We denote the Arf Closure of G by G∗.

5.3 Characteristic Semigroup, Arf Characters

It is now time to define the characters of the branch, which are the integers giving the multi-

picity sequence after an application of the modified Jacobian algorithm.

Theorem 5.3.1 [1] Let G be a subsemigroup of the non negative integers. The intersection

of all semigroups g with G∗ = g∗ is a semigroup gχ and g∗χ = G∗.

Definition 5.3.2 [1] The semigroup gχ =
⋂

g∗=G∗
g in Theorem 5.3.1 is called the characteristic

subsemigroup of G.

Observe that the characteristic semigroup is the smallest semigroup, whose Arf closure is

equal to the Arf Closure of G. For a subsemigroup G of N, the minimal generators χ1, χ2, ..., χh

of G are defined in the following way:

(i) G = {α1χ1 + ... + αhχh | α1, ..., αh ∈ N+}

(ii) χ1 is the smallest nonzero integer in G.

(iii) χn is the smallest nonzero integer in G − 〈χ1, ..., χn−1〉 for n ≥ 2

58

Definition 5.3.3 [1] The minimal generators χ1, ..., χh of the characteristic subsemigroup gχ

of G are said to be the characters of G.

Theorem 5.3.4 [1] Let G be a semigroup generated by {χ1, χ2, ..., χl}. Then the set of char-

acters of G is a subset of {χ1, χ2, ..., χl}.

5.4 Computation of the Arf Closure

We start with the computation of the Arf closure of a semigroup, which is much simpler.

5.4.1 Computation of the Arf Closure of a Semigroup

Theorem 5.4.1 Let G be a semigroup with characters χ1 < χ2 < ... < χh and the integers

v1, ..., vN−1, v be obtained by applying the modified Jacobian algorithm to χ1 < χ2 < ... < χh.

Then G∗ = {0, v1, v1 + v2, ..., v1 + v2 + ... + vN−1 + Nv} is the Arf closure of the semigroup G.

The integers v1, ..., vN−1, v are the divisors in the algorithm explained below and the quotients

represent the number of times each divisor is repeated in the sequence v1, ..., vN−1, v.

At this point, it is a good idea to give a quick summary of Du Val’s [23] modified Jacobian

algorithm.

5.4.2 The modified Jacobian Algorithm

To apply the modified Jacobian algorithm to the set G = {g1, g2, ..., gn} ⊂ N, start by forming

g1, g2, ..., gn as the first row and choosing the smallest gi0 among them as the divisor of the

first row. Divide the smallest element g j0 in G − {gi0} with gi0 . Let the quotient be m. Subtract

mgi0 from all elements in the first row except gi0 and obtain the second row. Apply the same

process to the second row and continue in the same manner. If 0 is obtained, omit that column.

The algorithm stops, when a row with only one element is obtained.

Example 5.4.2 We apply the modified Jacobian Algorithm to the set {100, 150, 275, 290,

59

312}.

100 150 275 290 312 1

100 100 100 100

100 50 175 190 212 2

100 100 100 100

50 75 90 112 1

50 50 50

50 25 40 62 1

25 25 25 1

25 25 15 37 1

15 15 15

10 10 15 22 1

10 10 10

10 5 12 2

10 10

5 2 2

4

1 2 2

2

1

The divisors in the algorithm give us the different multiplicities of the points and the quotients

corresponding to each divisor tells us how many times each multiplicity is repeated in the

sequence. Hence, the multiplicity sequence corresponding to the characters in this example

is (100, 50, 50, 50, 25, 15, 10, 5, 5, 2, 2, 1, 1).

5.4.3 Computation of the Arf Closure of a ring

Let R be a subring of k[[t]]. If the semigroup of orders of R is W(R) = {0 = i0, i1, ..., ih−1, ih +

Nv} with i0 < i1 < ... < ih, we have seen that R can be presented as

R = k + kS i1 + kS i2 + ... + kS ih−1k[[T]]S ih

60

where S in is an element of R of order in and T = τv is as explained in Theorem 5.1.1. Let R1

be the ring

[Ii1] =
∑

k
(
S i2

S i1

)α2
(
S i3

S i1

)α3

...

(
S ih−1

S i1

)αh−1

+ k[[T]]
S ih

S i1

where the sum is over all α2, α3, ..., αh−1 satisfying

α2(i2 − i1) + α3(i3 − i1) + · · · + αh−1(ih−1 − i1) < (ih − i1)

Then, R ⊂ k + R1S i1 ⊂ R∗. Taking the Arf closure of both sides, we obtain R∗ = k + R∗1S i1

and applying the same procedure to R1 and continuing inductively, we have RN = k[[T]] for

sufficiently large N. Hence,

R∗ = k + kT1 + kT1T2 + · · · + kT1T2 · · · TN−1 + k[[T]]T1T2 · · · TN−1TN

where Ti+1 is an element with the smallest order in Ri.

5.4.4 Examples

Example 5.4.3 Let R be the ring generated by the elements X = t4, Y = t6 and Z = t11, i.e.

R = k[[t4, t6, t11]]. Then W(R) = {0, 4, 6, 8, 10, 11, 12, 14 + N}, and thus R can be written as

R = k + kt4 + kt6 + kt8 + kt10 + kt11 + kt12 + k[[t]]t14

and

R1 = [I4] =
∑

k
(
t6

t4

)α2 (
t8

t4

)α3 (
t10

t4

)α4 (
t11

t4

)α5 (
t12

t4

)α6

+ k[[t]]
(
t14

t4

)
Thus, R1 = k + kt2 + kt4 + k[[t]]t6 with W(R1) = {0, 2, 4, 6 + N} implying

R2 =
∑

k
(
t4

t2

)α2

+ k[[t]]
(
t6

t2

)
= k + kt2 + k[[t]]t4

Continuing the same way, we get R3 = k[[t]]t2 and finally we reach R4 = k[[t]]. Hence,

R∗ = k + kt4 + kt4t2 + kt4t2t2 + k[[t]]t4t2t2t2 = k + kt4 + kt6 + kt8 + k[[t]]t10

Note that, in this example, W(R∗) = {0, 4, 6, 8, 10 + N} and the Arf closure of the semigroup

generated by the set {4, 6, 11} is also {0, 4, 6, 8, 10 + N}. In fact, this is not a coincidence:

Remark 5.4.4 Let a1, a2, ..., an be natural numbers. For the curve branch having parametriza-

tion

x1 = ta1 , x2 = ta2 , ..., xn = tan

61

as in Example 5.4.3, W(R∗) is equal the Arf closure of the semigroup generated by the natural

numbers {a1, a2, ..., an}.

On the other hand, Example 5.4.3 should not give us the wrong impression that finding the

Arf closure is quite easy. If the parametrization of the curve branch consists of polynomials

in t, computation of W(R∗) can involve lots of computations and may be very difficult. We

should carefully consider the effects of higher degree terms. In the next chapter, we give

an alternative method for constructing the Arf closure R∗ of a ring R that does not need the

computation of the semigroup W(R∗).

Example 5.4.5 Let us calculate the Arf closure of the ring R generated by the elements X =

t4, Y = t8 + t9 and Z = t15. Namely, R = k[[t4, t8 + t9, t15]] and as Y − X2 = t9 ∈ R,

W(R) = {4, 8, 9, 12, 13, 15 + N}.

R = k + kt4 + k(t8 + t9) + kt9 + kt12 + kt13 + k[[t]]t15

R1 =
∑

k
(
t8 + t9

t4

)α2 (
t9

t4

)α3 (
t12

t4

)α4 (
t13

t4

)α5

+ k[[t]]
t15

t4

We can write R1 as,

R1 = k + kt4 + kt5 + k[[t]]t8

Applying the same process to R1, we get R2 = k[[t]], so

R∗ = k + kt4 + k[[t]]t8

In Example 5.4.5 we have seen that we can not always form W(R) directly from the orders

of the generating elements X,Y,Z, we need to consider all the elements and their orders in

R, which is not very easy algorithmically. This difficulty can be better observed in the next

example.

Example 5.4.6 If R = k[[t4, t6 + t9, t14]] , W(R) consists of the elements like 15 and 17

because Y2 − X3 = 2t15 + t18 and X2Y − Z = t17 are the elements of the ring R. So,

W(R) = {4, 6, 8, 10, 12, 14 + N} implying that

R = k + kt4 + k(t6 + t9) + kt8 + kt10 + kt12 + k[[t]]t14

and

R1 =
∑(

t6 + t9

t4

)α2 (
t8

t4

)α3 (
t10

t4

)α4 (
t12

t4

)α5

+ k[[t]]
(
t14

t4

)

62

and as (t2 + t5)2 − t4 is in R1, W(R1) = {2, 4, 6 + N}. So, R1 can be written as

R1 = k + k(t2 + t5) + kt4 + k[[t]]t6

Then,

R2 =
∑(

t4

t2 + t5

)α2

+ k[[t]]
(

t6

t2 + t5

)
=

∑(
t2 − t5 + t8 − ...

)α2
+ k[[t]]

(
t4 − t7 + t10 − ...

)
Thus, R3 = k + k[[t]]t2 and finally R4 = k[[t]] implying that

R∗ = k + kt4 + kt4(t2 + t5) + kt4(t2 + t5)(t2 − t5 + t8 − ..) + k[[t]]t4(t2 + t5)(t2 − t5 + t8 − ..)t2

= k + kt4 + kt4(t2 + t5) + kt8 + k[[t]]t10

Example 5.4.6 shows that in the computation of the Arf closure, we need to determine the

terms of a series obtained by division, so the question arises “Up to which degree should we

consider?” This is a crucial question that will be discussed in detail in the next chapter.

Having understood the computation of the Arf closure, we can now give Cahit Arf’s important

theorem that makes it possible to compute the characters of a space branch.

Theorem 5.4.7 [1] Let C be a branch given with the parametrization x1 = ϕ1(t), x2 = ϕ2(t),

..., xn = ϕn(t) and with the corresponding local ring R = k[[ϕ1(t), ϕ2(t), ..., ϕn(t)]]. If W(R∗) =

{v1, v1 + v2, ..., v1 + v2 + ...vN−1 + N}, then the multiplicity sequence of the curve branch is

v1, v2, ..., vN−1, 1, 1, ...

Combining all the theory presented, Arf gives the following algorithm for finding the charac-

ters of a branch given with the parametrization x1 = ϕ1(t), x2 = ϕ2(t), ..., xn = ϕn(t):

1. Start with R = k[[ϕ1(t), ϕ2(t), ..., ϕn(t)]].

2. Find the Arf closure R∗.

3. Find W(R∗) from R∗.

4. Construct the characteristic sub-semigroup gχ(W(R∗)) of W(R∗).

5. Find the minimal set of generators χ1, χ2, ..., χh of gχ.

63

χ1, χ2, ..., χh are the Arf characters.

With this theory, Arf gives a complete answer to Du Val’s question about the computation of

the characters of a space branch, and generalizes the plane case. Hence, the following are

equivalent:

i) Two branches have the same multiplicty sequence.

ii) Two branches have the same Arf characters.

We can now give some examples:

Example 5.4.8 Consider the plane branch with the corresponding local ring R1 = k[[t4, t9]].

Since W(R∗1) = {4, 8+N}, the Arf characters are {4, 9}. Consider the space branch in Example

5.4.5 with the corresponding local ring R2 = k[[t4, t8 + t9, t15]]. We have shown in Example

5.4.5 that W(R∗2) = {4, 8 + N}, so the Arf characters are {4, 9}. Hence, these two branches

have the same multiplicity sequence.

Example 5.4.9 The curve branch with the corresponding local ring R = k[[t4, t6 + t9, t14]] in

Example 5.4.6 has W(R∗) = {4, 6, 8, 10 + N}, and so {4, 6, 11} are the Arf characters of the

curve.

5.5 Arf Closure and Hamburger-Noether matrices

It is also possible to construct the Arf closure of a ring by using the Hamburger-Noether

matrices. Before explaining the process with the notation of [16], we give the definition of an

Apery basis.

Definition 5.5.1 Let S be a semigroup and n ∈ S . Consider the elements of S in the congru-

ence classes of (0S , 1S , ..., (n − 1)S) in mod n. Among the elements of each congruence class,

we choose the smallest element si. The set (S , n) = {s0, ..., sn−1} is called the Apery Basis of S

with respect to n.

Example 5.5.2 Let S = {4, 6, 8 + N} and n = 4. Then

0S = {4, 8, 12, 16, ...}

64

1S = {9, 13, 17, ...}

2S = {6, 10, 14, 18, ...}

3S = {11, 15, 19, ...}

Hence, s0 = 4, s1 = 9, s2 = 6, s3 = 11 and (S , 4) = {4, 6, 9, 11}.

Let C be a branch given with parametrization ϕ1, ..., ϕn, with Hamburger-Noether expansion

Z j−1 =

h j∑
i=1

A jiz j
i + z j

h jZ j+1, j = 0, ..., r

and with Hamburger-Noether matrix H. Recall that the multiplicity sequence of C is

n0, ..., n0︸ ︷︷ ︸
h0 times

, n1, ..., n1︸ ︷︷ ︸
h1 times

, ..., ns, ..., ns︸ ︷︷ ︸
hr times

.

Let R = k[[ϕ1, ..., ϕn]] and R∗ be the Arf closure of R. Construct another matrix H∗ from H as

follows:

• Let i1, ..., id be the different marked rows of H.

• Let B j1 , ..., B jd be the boxes of H, where the marked rows i1, ..., id appear for the first

time respectively.

• Define α j1 , α j2 , ..., α jd such that αk = h0n0+h1n1+...+hk−1nk−1+nk, where k = j1, ..., jd.

• Construct the Apery basis (W(R∗), n0) of the semigroup W(R∗) with respect to n0 (Re-

call that the semigroup W(R∗) is completely determined by the multiplicity sequence of

C).

• For each element γi in (W(R∗), n0) that is not in the set {α j1 , ..., α jd }, find the natural

numbers q j such that γi = h0n0 + h1n1 + ... + h j−1n j−1 + q jn j.

• The new matrix H∗ has n0 rows, for which the first d rows are the same with the marked

rows of H. For each element γi, we add a new row with a 1 in the column (h0 + h1 +

... + h j−1 + q j) and 0’s for the rest.

Example 5.5.3 Let R be the ring k[[t4, t6, t13]]. It is not hard to show that the Hamburger-

Noether matrix H of the branch given by the parametrization (t4, t6, t13) is:

H =

1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1 0 0

1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 0

0 1

1 0

65

and the multiplicity sequence is (4, 2, 2, 2, 2, 1, 1). We have three rows and three boxes in H.

As all three rows have been marked and they all been marked just once, we use all three boxes.

Namely, from the first box, α1 = 4, α2 = 4 + 2 = 6 from the second and α3 = 4 + 4.2 + 1 = 13

from the third box. W(R∗) on the other hand, is equal to {0, 4, 4 + 2, 4 + 2 + 2, 4 + 2 + 2 + 2, 4 +

2 + 2 + 2 + 2 +N} and the Apery basis of W(R∗) with respect to 4 is (W(R∗), 4) = {4, 6, 13, 15}.

Hence, the matrix H∗ has rows as (W(R∗), 4) has four elements. The first three rows of H∗

are the same with the rows of H. We add one last row for 15 ∈ (W(R∗), 4) − {α1, α2, α3}. As

15 = 1.4 + 4.2 + 3.1, the last row has a 1 in the 1 + 4 + 3 = 8th column and 0’s for the rest.

That is,

H∗ =

1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 1 0

1 0 0

0 0 1

Indeed, it can be shown that the Arf closure R∗ of R is k[[t4, t6, t13, t15]] and H∗ is the

Hamburger-Noether matrix of R∗.

Example 5.5.4 Let R = k[[t6, t9, t11]]. It can be shown that the Hamburger-Noether matrix

of R is

H =

1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0

1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0

1 0

0 1

The multiplicity sequence is (6, 3, 2, 1, 1) so that W(R∗) = {0, 6, 9, 11 + N} and (W(R∗), 6) =

{6, 9, 11, 13, 14, 16}. There are three marked rows in H and they have been marked in box

1, box 2 and box 3 for the first time. Thus, α1 = 6 from the first box, α2 = 6 + 3 = 9

from the second box and α3 = 6 + 3 + 2 = 11 from the second box. Then, {13, 14, 16} ∈

(W(R∗), 6) − {α1, α2, α3}. The new matrix H∗ has six rows as the cardinality of (W(R∗), 6) is

6. The first three rows are the same with the rows of H as H has three marked rows. We add

a row for 13 = 1.6 + 1.3 + 1.2 + 2.1 with a 1 in the 1 + 1 + 1 + 2 = 5th column, and zeros

for the rest, another row for 14 = 1.6 + 1.3 + 1.2 + 3.1 with a 1 in the 1 + 1 + 1 + 3 = 6th

column and zeros for the rest and one last row for 16 = 1.6 + 1.3 + 1.2 + 5.1 with a 1 in the

66

1 + 1 + 1 + 5 = 8th column and zeros for the other entries. Thus,

H∗ =

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

67

CHAPTER 6

A FAST ALGORITHM FOR COMPUTING THE ARF

CLOSURE

In Chapter 5, we have seen the method given by Arf to compute the Arf closure of a given

branch. It is not easy to convert this method to an algorithm, and implement this in a computer

algebra program. In the literature, there is only one algorithm given by Arslan, implemented

in Maple [2]. The method given by Arf starts with determining the semigroup of values and

the conductor of the branch C. Arslan gives an algorithm for this for his implementation. In

fact, this problem has been studied by many mathematicians, and different algorithms have

been given [15], [28]. We should note that all of these algorithms are quite slow. This is not

unexpected, since even the special case of this problem is the famous Fobenius problem or

coin problem, still being studied by many mathematicians. The difficulty in determining the

conductor lies in the need to check so many relations between the generators.

The second difficulty in computing the Arf closure is the problem we have observed Example

5.4.6. We have seen that we need to determine the terms of a series obtained by division up

to some degree, so this degree must be chosen so that no information is lost. Arslan uses the

conductor of the local ring coresponding to the branch in his algorithm [2], but this is a quite

large bound, which makes the algorithm slower.

We should note that the computation of the Arf closure by using Hamburger-Noether matrices

given at the end of Chapter 5 is also restricted with the same problems.

In this chapter, we give an algorithm, which does not involve determining the conductor, and

computing the elements in the local ring at each step. Also, by giving a quite small bound

for doing the divisions, we obtain an algorithm, which works very fast compared to other

algorithms.

68

Let C be an algebroid curve branch with the local ring Θ = k[[ϕ1(t), ..., ϕn(t)]] and the semi-

group of values W(Θ) = {i0, i1, ..., ih−1, ih +N} where i0 = 0 and i1 = ord(ϕ1(t)). We have seen

that the ring Θ can be presented as

Θ = k + kS i1 + kS i2 + ... + kS ih−1k[[T]]S ih

where S i j’s are elements of Θ of order i j chosen such that ϕ1(t), ..., ϕn(t) are among them. (For

example, S i1 = ϕ1(t)). Recall also that

[Ii1] =
∑

k
(
S i2

ϕ1

)α2
(
S i3

ϕ1

)α3

...

(
S ih−1

ϕ1

)αh−1

+ k[[T]]
S ih

ϕ1

where the sum is over all α2, α3, ..., αh−1 satisfying

α2(i2 − i1) + α3(i3 − i1) + ... + αh−1(ih−1 − i1) < (ih − i1).

Using the given presentation of Θ and the definition of [Ii1], we give the following lemma.

Lemma 6.0.5 [Ii1] = k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]].

Proof. The inclusion k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]] ⊂ [Ii1] is clear. Hence, let us prove the other direction.

For this, it is sufficient to show that
S i j
ϕ1

is in k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]]. S i j is an element of Θ of order

i j by definition. As it is an element of Θ, it can be written as S i j =
∑

ai(ϕ
αi1
1 ...ϕ

αin
n). Hence,

S i j

ϕ1
=

∑
ai(ϕ1)αi1 +αi2 +...+αin−1

(
ϕ2

ϕ1

)αi2

...

(
ϕn

ϕ1

)αin

Then each summand in the expansion of
S i j
ϕ1

is an element of the ring k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]]. As a

consequence,
S i j
ϕ1

is an element of k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]] for any i, j. Since each
S i j
ϕ1

is an element of

k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]], then
∑

k
(

S i2
ϕ1

)α2
(

S i3
ϕ1

)α3

...
(

S ih−1
ϕ1

)αh−1

is also an element of k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]].

Thus, [Ii1] ⊂ k[[ϕ1,
ϕ2
ϕ1
, ...,

ϕn
ϕ1

]]. And this proves our claim. �

By using Lemma 6.0.5, we propose the following algorithm to compute the Arf closure:

• We choose the smallest ordered element of Θ, which is ϕ1 and assign it to F0.

• We find the blow-up ring Θ(1) = k[[ϕ(1)
1 , ..., ϕ(1)

n]] of Θ = Θ(0) by dividing all the series

by ϕ1 and then subtracting the constant terms, if necessary.

• If the blow up is smooth, the algorithm stops.

69

• If not, we find the smallest ordered element of Θ(1) and assign it to F1.

• We find the blow-up ring Θ(2) = k[[ϕ(2)
1 , ..., ϕ(2)

n]] of Θ(1). If the curve is smooth, the

algorithm stops.

• If not, we continue till we resolve the singularity.

The Algorithm is as follows:

Algorithm 3 ARF CLOSURE
Input: (ϕ1(t), ..., ϕn(t)) is a primitive parametrization with ord(ϕ1) ≤ ord(ϕi(t))

Output: F0, ..., Fs ∈ k[[t]] such that k + kF0 + kF0F1 + ... + kF0...Fs−1 + k[[t]]F0...Fs is the

Arf Closure of k[[ϕ1, ...ϕn]]

1: F0 ← ϕ1, ϕ(1)
1 ← ϕ1, ϕ(1)

i ←
ϕi
F0

f or 2 ≤ i ≤ n

2: for 2 ≤ i ≤ n do

3: Change ϕ(1)
i with ϕ(1)

i − constant term o f ϕ(1)
i .

4: end for

5: Find the smallest index j with ord(ϕ(1)
j) is minimum among the orders of ϕ(1)

1 , ..., ϕ(1)
n

6: if ord(ϕ(1)
j) = 1 then

7: Stop the algorithm and return F0

8: else

9: F1 ← ϕ(1)
j and go to step 1 by taking (ϕ(1)

1 , ..., ϕ(1)
n) instead of (ϕ1, ..., ϕn), ϕ(1)

j instead

of ϕ1, F1 instead of F0.

10: end if

The algorithm terminates because after finitely many blowing ups, we obtain a smooth curve

branch. Hence, we obtain be a power series of order 1.

One can immediately realize that the given form of the algorithm is still not implementable,

since it does not a give a bound that determines up to which degree the divisions of the power

series are done. We will also solve this problem, but we first give some examples to see how

the algorithm works.

Example 6.0.6 Let R be the ring k[[t4, t6, t11]]. We know from Example 5.4.3 that

R∗ = k + kt4 + kt4t2 + kt4t2t2 + k[[t]]t4t2t2t2 = k + kt4 + kt6 + kt8 + k[[t]]t10.

70

With the new algorithm, F0 = t4, ϕ(1)
1 = t4, ϕ(1)

2 = t6
t4 = t2 and ϕ(1)

3 = t11

t4 = t7. None of the

ϕ(1)
i ’s have order 1, so we take F1 = t2, as ϕ(1)

2 = t2 has the minimum order among the ϕ(1)
i ’s.

We continue the algorithm with the parametrization (t4, t2, t7). Then, ϕ(2)
1 = t4

t2 = t2, ϕ(2)
2 = t2

and ϕ(2)
3 = t7

t2 = t5. None of the ϕ(2)
i ’s has order one. ϕ(2)

1 = t2 has the smallest order. So we

take F2 = ϕ(2)
1 = t2 and continue dividing the series with F2. Then ϕ(3)

1 = t2 again and this

time ϕ(3)
2 = t2

t2 − 1, ϕ(3)
3 = t5

t2 = t3. As ϕ2 = 0, we continue without it, that is with (t2, t3) . None

of the series have order one, taking F3 = ϕ(2)
1 = t2, we continue the algorithm. ϕ(4)

1 = t2,

ϕ(4)
3 = t3

t2 = t. Now we have a series of order one, so the algorithm stops. Hence, the Arf

closure of R is

R∗ = k + kF0 + kF0F1 + kF0F1F2 + k[[t]]F0F1F2F3 = k + kt4 + kt6 + kt8 + k[[t]]t10

as expected.

Example 6.0.7 Let R be the ring k[[t4, t8 + t9, t15]] in Example 5.4.5. We have shown that its

Arf closure is R∗ = k + kt4 + k[[t]]t8. Now, let us show it with our new algorithm. F0 = t4,

ϕ(1)
1 = t4, ϕ(1)

2 = t8+t9
t4 = t4 + t5 and ϕ(1)

3 = t15

t4 = t11. None of the series has order one, and the

smallest ordered series is t4. Hence, we continue the algorithm by taking F1 = t4. ϕ(2)
1 = t4,

ϕ(2)
2 = t4+t5

t4 − 1 = t, ϕ(2)
3 = t7. As ord(ϕ(2)

2) = 1, the algorithm stops. So the Arf closure is:

R∗ = k + kF0 + k[[t]]F0F1 = k + kt4 + k[[t]]t8

6.1 Challenges

Even though it seems that the algorithm works very well in Example 6.0.6 and Example 6.0.7,

we must solve the problem of determining a suitable bound for the divisions, as the following

example shows..

Example 6.1.1 Let R be the ring k[[t4, t6 + t9, t14]] in Example 5.4.6. F0 = t4, ϕ(1)
1 = t4,

ϕ(1)
2 = t6+t9

t4 = t2 + t5, ϕ(1)
3 = t14

t4 = t10 after the first division. The smallest ordered series is

t2 + t5. Hence, F1 = t2 + t5, ϕ(2)
1 = t4

t2+t5 , ϕ(2)
2 = t2 + t5 and ϕ(2)

3 = t10

t2+t5 . Observe that ϕ(2)
1

and ϕ(2)
3 are not polynomials, but series. So, we should ignore some terms in these series,

but some terms play significant roles in the next divisions. Losing them may cause mistakes

in finding the Arf closure. In this example, we do the divisions by ignoring the terms with

71

powers greater than 14, and we will explain later, why we have made this choice. With our

choice, ϕ(2)
1 = t2 − t5 + t8 − t11 + t14, ϕ(2)

2 = t2 + t5, ϕ(2)
3 = t8 − t11 + t14. t2 + t5 and

t2 − t5 + t8 − t11 + t14 have both order 2 as the smallest. We can use any of them to divide

the series. Hence, without loss of generality, we choose t2 + t5. Then we have F2 = t2 + t5,

ϕ(3)
1 = t2−t5+t8−t11+t14

t2+t5 − 1 = −2t3 + 3t6 − 4t9 + 5t12 + higher degree terms, ϕ(3)
2 = t2 + t5,

ϕ(3)
3 = t8−t11+t14

t2+t5 = t6 − 2t9 + 3t12 + higher degree terms. We ignore the higher degree terms.

Again, t2 + t5 have the smallest order. Hence, F3 = t2 + t5, ϕ(4)
1 = −2t3+3t6−4t9+5t12

t2+t5 = −2t +

5t4 − 9t7 + 14t10 − 14t13 + higher degree terms. The algorithm stops, as we have obtained an

order one series. Then the Arf closure of R is

R∗ = kt4 + k(t6 + t9) + k(t8 + 2t11 + t14) + k[[t]](t10 + 3t13) = kt4 + k(t6 + t9) + kt8 + k[[t]]t10

Note that, we have used 14 as a bound for dividing the series in Example 6.1.1. Recall that we

have already shown in Example 5.4.6 that the conductor is 14. This is not a coincidence. The

conductor of the local ring corresponding to the branch can be used without losing any data.

This is a consequence of the following lemma and the fact that the conductor of the blow up

ring is always smaller.

Theorem 6.1.2 [15, Proposition 1.1] Let C be a curve branch with the parametrization

(ϕ1(t), ϕ2(t), ..., ϕn(t)). Let also c be the conductor of the semigroup of values of C. Then

any parametrization (ϕ
′

1(t), ϕ
′

2(t), ..., ϕ
′

n(t)) with ϕi(t) ≡ ϕ′i(t) (mod tc) for 1 ≤ i ≤ n gives the

same curve with C.

Proof. Let ϕi(t) be the series obtained by ϕi(t) by truncation in mod(tc) for 1 ≤ i ≤ n.

Consider the curve branch C given with the parametrization (ϕ1(t), ..., ϕn(t)). The key point

here is observing that the conductor of the semigroup of C is also c.

We are going to show that ϕi(t) ∈ k[[ϕ1, ..., ϕn]] for any 1 ≤ i ≤ n. For this, consider the series

f m
i ∈ k[[x1, ..., xn]] for any m ≥ c such that

ϕi(t) = ϕi(t) − f (c)
i (ϕ1(t), ..., ϕn(t)) − f (c+1)

i (ϕ1(t), ..., ϕn(t)) −

Such series exist since the rings k[[ϕ1, ..., ϕn]] and k[[ϕ1, ..., ϕn]] are complete. Then we can

say that ϕi ∈ k[[ϕ1, ..., ϕn]] and thus k[[ϕ1, ..., ϕn]] ⊂ k[[ϕ1, ..., ϕn]]. The other direction can be

shown similarly. �

72

Hence, to find the Arf closure of the ring R = k[[x1(t), ..., xn(t)]] with the semigroup of values

W(R) and the conductor c, we can use Algorithm 3 with the bound c, while dividing the

series. Although this seems to solve our problem, it still requires to find the conductor of the

semigroup of values W(R). But, it is not known so far how to find the conductor, without

knowing the semigroup, which is a difficult problem as we have mentioned above. So, our

aim is finding another bound, which is easier to compute, that we can use while dividing the

series.

We use the following notation, throughout the remaining part of this chapter. Let Θ =

k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]] be an algebraic curve branch, where ϕ(0)

i (t)’s, (1 ≤ i ≤ s) are

polynomials in t with increasing order. Setting S to the semigroup of Θ and c to the conduc-

tor of S , Let Θ∗ be the Arf closure of Θ, S ∗ semigroup of Θ∗, and c∗ conductor of S ∗. Assume

that k times blowing-up Θ solves its singularity. Let Θ0 be Θ, Θi be the ith blow-up of Θ for

i ≤ k, Fi be the smallest ordered element of Θi and let ai be the order of Fi. Schematically;

Column 1 Column 2 Column s

ϕ(0)
1 (t), ϕ(0)

2 (t), . . . , ϕ(0)
s (t), −→ F0 = ta0 + higher degree terms

ϕ(1)
1 (t), ϕ(1)

2 (t), . . . , ϕ(1)
s (t), −→ F1 = ta1 + higher degree terms

...
...

...
...

ϕ(k)
1 (t), ϕ(k)

2 (t), . . . , ϕ(k)
s (t), −→ Fk = t + higher degree terms

(6.1)

Here,

ϕ(i)
j (t) =

ϕ(i−1)

j (t), if Fi−1 = ϕ(i−1)
j (t)

ϕ(i−1)
j (t)
Fi−1

− ci j, if Fi−1 , ϕ
(i−1)
j (t)

(6.2)

where ci j ∈ k and ci j , 0 if and only if ord(ϕ(i−1)
j (t)) = ord(Fi−1). Note also that ord(Fk−1) ≥

2 with a0 ≥ a1 ≥ ... ≥ ak−1 ≥ 2. Then Θi = k[[ϕ(i)
1 (t), ϕ(i)

2 (t), ..., ϕ(i)
s (t)]] and the Arf closure of

Θ is:

Θ∗ = k + kF0 + kF0F1 + ... + kF0F1...Fk−2 + tc∗k[[t]]

= k + kG0 + kG0 G1 + ... + kG0 G1...Gk−2 + tc∗k[[t]]
(6.3)

73

where Gi ≡ Fi (mod tc∗), 0 < i < k. We need to determine Gi’s to construct the Arf closure

and we need to know the term that we should stop while doing the divisions
ϕ(i−1)

j (t)
Fi−1

. We

should choose such a power that we do not lose any information about the Arf closure in the

subsequent steps. To explain what we mean exactly, consider following example:

Example 6.1.3 Θ0 = k[[t6 + t11 + t32, t8 + t13 + t34]]. Let’s construct the Arf closure of Θ0 .

ϕ(0)
1 (t) = t6 + t11 + t32, ϕ(0)

2 (t) = t8 + t13 + t34 −→ F0 = ϕ(0)
1 (t) = t6 + t11 + t32

ϕ(1)
1 (t) = ϕ(0)

1 (t) = t6 + t11 + t32, ϕ(1)
2 (t) =

ϕ(0)
2 (t)
F0

= t2 −→ F1 = ϕ(1)
2 (t) = t2

ϕ(2)
1 (t) =

ϕ(1)
1 (t)
F1

= t4 + t9 + t30, ϕ(2)
2 (t) = ϕ(1)

2 (t) = t2 −→ F2 = ϕ(2)
2 (t) = t2

ϕ(3)
1 (t) =

ϕ(2)
1 (t)
F2

= t2 + t7 + t28, ϕ(3)
2 (t) = ϕ(2)

2 (t) = t2 −→ F3 = ϕ(3)
2 (t) = t2

ϕ(4)
1 (t) =

ϕ(3)
1 (t)
F3
− 1 = t5 + t26, ϕ(4)

2 (t) = ϕ(3)
2 (t) = t2 −→ F4 = ϕ(4)

2 (t) = t2

ϕ(5)
1 (t) =

ϕ(4)
1 (t)
F4

= t3 + t24, ϕ(5)
2 (t) = ϕ(4)

2 (t) = t2 −→ F5 = ϕ(5)
2 (t) = t2

ϕ(6)
1 (t) =

ϕ(5)
1 (t)
F5

= t + t22, ϕ(6)
2 (t) = ϕ(5)

2 (t) = t2 −→ F6 = ϕ(6)
1 (t) = t + t22

Arf closure is,

Θ∗ = k + k(t6 + t11 + t32) + k(t6 + t11 + t32)(t2) + k(t6 + t11 + t32)(t2)(t2)+

k(t6 + t11 + t32)(t2)(t2)(t2) + k(t6 + t11 + t32)(t2)(t2)(t2)(t2) + (t6 + t11

+t32)(t2)(t2)(t2)(t2)(t2)k[[t]]

= k + k(t6 + t11) + k(t8 + t13) + k(t10 + t15) + k(t12) + k(t14) + t16k[[t]]

If we had done our divisions till the power 9,

ϕ(0)
1 (t) = t6 + t11 + t32, ϕ(0)

2 (t) = t8 + t13 + t34 −→ F0 = ϕ(0)
1 (t) = t6 + t11 + t32

ϕ(1)
1 (t) = ϕ(0)

1 (t) = t6 + t11 + t32, ϕ(1)
2 (t) =

ϕ(0)
2 (t)
F0

= t2 −→ F1 = ϕ(1)
2 (t) = t2

ϕ(2)
1 (t) =

ϕ(1)
1 (t)
F1

(mod t9) ≡ t4, ϕ(2)
2 (t) = ϕ(1)

2 (t) = t2 −→ F2 = ϕ(2)
2 (t) = t2

ϕ(3)
1 (t) =

ϕ(2)
1 (t)
F2

= t2, ϕ(3)
2 (t) = ϕ(2)

2 (t) = t2 −→ F3 = ϕ(3)
2 (t) = t2

74

Hence, we wouldn’t be able to construct the Arf Closure correctly. We would face with this

problem, because we would lose ‘t11’, which takes part in the algorithm at step 4 as ’t5’.

Observe that step 4 is the step that the constant c14 is different than 1. We can also choose 12

instead of 9 as the bound that determines, where the divisions stop. Indeed,

ϕ(0)
1 (t) = t6 + t11 + t32, ϕ(0)

2 (t) = t8 + t13 + t34 −→ F0 = ϕ(0)
1 (t) = t6 + t11 + t32

ϕ(1)
1 (t) = ϕ(0)

1 (t) = t6 + t11 + t32, ϕ(1)
2 (t) =

ϕ(0)
2 (t)
F0

= t2 −→ F1 = ϕ(1)
2 (t) = t2

ϕ(2)
1 (t) =

ϕ(1)
1 (t)
F1

(mod t12) ≡ t4 + t9, ϕ(2)
2 (t) = ϕ(1)

2 (t) = t2 −→ F2 = ϕ(2)
2 (t) = t2

ϕ(3)
1 (t) =

ϕ(2)
1 (t)
F2

= t2 + t7, ϕ(3)
2 (t) = ϕ(2)

2 (t) = t2 −→ F3 = ϕ(3)
2 (t) = t2

ϕ(4)
1 (t) =

ϕ(3)
1 (t)
F3
− 1 = t5, ϕ(4)

2 (t) = ϕ(3)
2 (t) = t2 −→ F4 = ϕ(4)

2 (t) = t2

ϕ(5)
1 (t) =

ϕ(4)
1 (t)
F4

= t3, ϕ(5)
2 (t) = ϕ(4)

2 (t) = t2 −→ F5 = ϕ(5)
2 (t) = t2

ϕ(6)
1 (t) =

ϕ(5)
1 (t)
F5

= t, ϕ(6)
2 (t) = ϕ(5)

2 (t) = t2 −→ F6 = ϕ(6)
1 (t) = t

In this case, the Arf Closure is;

k + k(t6 + t11) + k(t8 + t13) + k(t10 + t15) + k(t12) + k(t14) + k[[t]](t16)

which is the same ring as Θ∗. In spite of the fact that the term ‘t30’ is lost, we still obtain the

same result. So, we can say that ‘t11’ is playing an important role, while ‘t30’ is not.

As we have seen from the examples, we should choose such a bound that no important terms

are lost, if the divisions are done by using this bound.

6.2 Solution

Let Θ = k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]] be a branch, where ϕ(0)

i (t)’s, (1 ≤ i ≤ s) are polynomials

in t with increasing order. Let S be the semigroup of Θ and c be the conductor of S . Let Θ∗

be the Arf closure of Θ, S ∗ semigroup of Θ∗, and c∗ conductor of S ∗. And let ϕi be the series

obtained by truncation of the series ϕi by mod(tc∗+1). We can give our main theorem and its

proof, which actually says that the bound ‘c∗ + 1’ works.

75

Theorem 6.2.1 Let Θ = k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]] be the local ring corresponding to a

branch and c∗ be the conductor of the semigroup of values of its Arf closure Θ∗. If we

have ϕ(0)
i (t) ≡ ϕ(0)

i (t) (mod tc∗+1) for 1 ≤ i ≤ s, then the k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]] and

k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]] have the same Arf Closure.

Proof. As Θ∗ = k + kF0 + kF0F1 + ... + kF0F1...Fk−2 + tc∗k[[t]], its semigroup of val-

ues is W(Θ∗) = {0, a0, a0 + a1, ..., a0 + ... + ak−2, c∗ + N} and c∗ = a0 + a1 + ... + ak−1,

where here ai = ord(Fi). We are going to show that, while finding the Arf Closure of

k[[ϕ(0)
1 (t), ϕ(0)

2 (t), ..., ϕ(0)
s (t)]], by doing divisions in mod (tc∗+1), we don’t lose any important

monomials and obtain the exact Arf Closure. We are going to prove our claim in two parts by

considering the constants ‘ci j’s. We will use the blow up schema 6.1 and the notation there.

Before starting to prove our claim, observe that, if a column in the blow up schema 6.1 does

not enter the algorithm, it means that the algorithm is the same without that column. There-

fore, losing monomials in that column has no effect on the computation of the Arf closure.

Hence, without loss of generalization, we assume that all of the columns enter the algorithm

at least once. Using the schema 6.1 again, this is equivalent to saying that for all i, ϕ(j)
i = F j

for at least one j.

We first consider the case with zero constants. In other words, recalling Equation 6.2, ci j = 0

for all i, j, so that all the important monomials are the smallest ordered terms of ϕ(0)
i ’s.

In this situation, for all i, ord(ϕ(0)
i) ≥ ord(ϕ(1)

i) ≥ ... ≥ ord(ϕ(k)
i) and,

ϕ
(j)
i (t) = ϕ(k)

i (t)
∏
l∈Ii j

Fl where Ii j =
{
l : j ≤ l < k and Fl , ϕ

(l)
i (t)

}

Then, ord(ϕ(0)
i) =

∑
l∈Ii0

al + ord(ϕ(k)
i (t)). We have observed that ϕ(j)

i (t) = F j for some j.

Therefore,
∑
l∈Ii0

al + ord(F j)︸ ︷︷ ︸
a j︸︷︷︸

ord(ϕ(j)
i)

≤ c∗. Also, since ord(ϕ(k)
i) ≤ ord(ϕ(j)

i) for all j < k, we have

ord(ϕ(0)
i) =

∑
l∈Ii0

al + ord(ϕ(k)
i) ≤ c∗ for all i. So, dividing the series till the (c∗ + 1)th power is

enough to construct the Arf closure correctly.

If ci j , 0 for some i and j, we do an induction on the number of j’s for which ci j , 0 for

some i.

76

• n = 1 (ci j , 0 for only one i and for some j)

ϕ(0)
1 (t), . . . ϕ(0)

i (t), . . . ϕ(0)
s (t), −→ F0

...
...

...
...

ϕ
(j)
1 (t), . . . ϕ

(j)
i (t) =

ϕ
(j−1)
i (t)
F j−1

− ci j, . . . ϕ
(j)
s (t), −→ F j

...
...

...
...

ϕ(k)
1 (t), . . . ϕ(k)

j (t), . . . ϕ(k)
s (t), −→ Fk = t + ...

Let

ϕ
(j)
i (t) = b1tα1 + b2tα2 + . . . =

ϕ
(j−1)
i (t)
F j−1

− ci j, (α1 < α2). (6.4)

It’s enough to show that, we don’t lose the term tα1 in the steps 0, 1, ..., j − 1 by doing the

divisions till the (c∗ + 1)th power. The reason is that after the jth step, there are no nonzero

ci j’s and from the previous part, we know that α1 < a j + a j+1 + . . . + ak < c∗. (Note that,

without loss of generalization, we can assume that the ith column enters the algorithm at least

once after the jth step.)

Hence, by Equation (6.4),

ϕ
(j−1)
i (t) = (ci j + b1tα1 + b2tα2 + . . .)F j−1

and

ϕ(0)
i (t) = (ci j + b1tα1 + b2tα2 + . . .)

∏
l∈Λi,0

Fl

where Λi,0 =
{
l : 0 ≤ l ≤ j − 1 and Fl , ϕ

(l)
i (t)

}
. As α1 ≤ a j + . . . + ak−1 and c∗ = a0 + ... +

a j−1 + a j + ...+ ak−1, we can say that ϕ(0)
i (t) mod tc∗+1 contains the term, which gives tα1 in the

j-th step. This shows that doing the divisions till the (c∗+1)th power in the steps 0, 1, ..., j−1,

guarantees that the term tα1 is obtained in the j-th step.

• Assume the claim is true for a branch having ci j , 0 for n− 1 different j’s. We take any

branch having ci j , 0 for n different j’s.

Let the first constant appears at the i0-th column, j0-th step. Then,

ϕ(0)
1 (t), . . . ϕ(0)

i (t), . . . ϕ(0)
s (t), −→ F0

...
...

...
...

ϕ
(j0)
1 (t), . . . ϕ

(j0)
i0

(t) =
ϕ

(j0−1)
i0

(t)

F j0−1
− ci0 j0 , . . . ϕ

(j0)
s (t), −→ F j0

...
...

...
...

ϕ(k)
1 (t), . . . ϕ(k)

j (t), . . . ϕ(k)
s (t), −→ Fk = t + ...

77

From the induction assumption, for the steps starting with j0th one, it is sufficient to make the

divisions till the power a j0 + a j0+1 + ...+ ak−1, since that is the conductor of the Arf closure of

the ring k[[ϕ(j0)
1 , ϕ

(j0)
2 , ..., ϕ

(j0)
s]]. In other words, all the important monomials that determine

the Arf closure have orders less than or equal to a j0 + ... + ak−1 at j0th step. Then, as in the

first part of the induction hypothesis, since

ϕ
(j0)
i0

(t) = b1tα1 + b2tα2 + . . . =
ϕ

(j0−1)
i0

(t)

F j0−1
− ci0 j0 , (α1 < α2) , (6.5)

we can write ϕ(0)
i0

as:

ϕ(0)
i0

(t) = (ci j + b1tα1 + b2tα2 + . . .)
∏

l∈Λi0 ,0

Fl,

where Λi0,0 =
{
l : 0 ≤ l ≤ j0 − 1 and Fl , ϕ

(l)
i0

(t)
}
. Then all the important monomials in the

first steps have order less than or equal to ord(
∏

l∈Λi0 ,0

Fl) = a0 + a1 + ... + a j0−1 plus a j0 +

a j0+1 + ... + ak−1, which is equal to c∗. Hence, by doing our divisions in mod tc∗+1, we keep

the important terms to construct the Arf closure correctly. �

Remark 6.2.2 We should observe that, Theorem 6.2.1 does not say that the parametrizations

(ϕ(0)
1 (t),ϕ(0)

2 (t), ..., ϕ(0)
s (t)) and (ϕ(0)

1 (t), ϕ(0)
2 (t), ..., ϕ(0)

s (t)) provide the same curve. We do not

guarantee getting the same blow up rings by doing the divisions in mod(tc∗+1). We only say

that, we obtain the same Arf closure and multiplicity sequence.

Now, we have a bound for dividing the series and determining the Arf Closure. It is definitely

much better to use c∗ + 1 than to use c, since mostly c∗ + 1 is much smaller than c. (Θ ⊂ Θ∗

and W(Θ) ⊂ W(Θ∗). Thus, c∗ ≤ c.) But, it looks like as if we are in a vicious circle: We

want to determine the Arf Closure and the multiplicity sequence, but we need the conductor

of the Arf closure for this. Hence, we ask the following question: ‘Is there a way to find the

conductor of the Arf Closure or to give a bound for it without knowing the Arf Closure?’ We

first investigate the plane branches, but before that let us state the next obvious remark for all

branches.

Remark 6.2.3 Let C be a branch given with the parametrization (ϕ1, ..., ϕn) and with the

multiplicity sequence a0, a1, ..., ak−1, 1, 1.... Then the conductor c∗ of the Arf Closure of the

ring Θ = k[[ϕ1, ..., ϕn]] is equal to the sum a0 + a1 + ... + ak−1

78

Proof. We know from Theorem 5.4.7 that W(Θ∗) = {0, a0, a0 + a1, ..., a0 + ... + ak−1 + N}.

Then, clearly c∗ = a0 + a1 + ... + ak−1. �

6.2.1 Conductor of the Arf Closure for the Plane Algebroid Branches

Let C be a plane branch with characteristic exponents β0,...,βq.

Theorem 6.2.4 Let Θ be the local ring corresponding to C, Θ∗ be Arf closure of Θ and c∗ be

conductor of W(Θ∗). Then, c∗ = β0 + βq − 1.

Proof. We know from Theorem 6.2.3 that c∗ is the sum of the multiplicities in the multiplicity

sequence of C∗ but Corollary 3.1.18 says that the sum of the multiplicities in the multiplicity

sequence is equal to β0 + βq − 1. Hence, c∗ = β0 + βq − 1. �

As a consequence, for the plane case, if we know the characteristic exponents of the branch,

we know the conductor of the Arf Closure, so we can determine the Arf closure by using our

algorithm. The next step is finding a bound for c∗ directly from the parameterization.

Let C be a plane branch given in Puiseux form x(t) = tn, y(t) =
∑

aiti with n ≤ ord(y(t)), and

let (β0, ..., βq) be the characteristic exponents of C. From the definition of the characteristic

exponents, β0 = n and βq is the degree of one of the terms appearing in y(t). If we start with

polynomials x(t) and y(t), βq is less than or equal to the highest power appearing in y(t). Then

we can obviously state the next theorem:

Theorem 6.2.5 Let C be a plane curve branch given with parametrization x(t) = tn, y(t) =

a1tm1 + a2tm2 + + artmr . Then the conductor of the Arf closure of k[[x(t), y(t)]] is less than

or equal to n + mr − 1

As a consequence, for the branches given with the parametrization x(t) = tn, y(t) = a1tm1 +

a2tm2 + + artmr , while constructing the Arf Closure, we can do our divisions till the power

n + mr.

Now, if we have a plane branch given in Puiseux form, we can obtain our bound by just

considering the powers appearing in the series. For the parameterizations in standard form,

79

x(t) = a0tp + a1tp+1 + a2tp+2 + ...

y(t) = b0tq + b1tq+1 + b2tq+2 + ...

we need a method for converting it to the Puiseux form:

x(t) = tp

y(t) = cqtq + cq+1tq+1 +

In general, this process involves finding a formula for t in terms of x, but this requires a lot of

computation. Hence, we present here an algorithm given by Borodzik in [6]. The Algorithm

works for k = C.

Theorem 6.2.6 [6] Let C be a plane branch with parametrization

x(t) = a0tp + a1tp+1 + a2tp+2 + ...

y(t) = b0tq + b1tq+1 + b2tq+2 + ...

in C[[t]]. Define

P0(t) = y, r0 = ord(P0(t)) = q

and ẏ denoting dy
dt , ẋ denoting dx

dt ,

P1(t) = ẏx −
q
p

ẋy, r1 = ord(P1(t)) − (p − 1)

and for k ≥ 1,

Pk+1(t) = xẋ
d
dt

Pk −

(
rk

p
ẋ2 + (2k − 1)ẍx

)
Pk, rk+1 = ord(Pk+1) − (2k + 1)(p − 1).

The next algorithm gives the positive integers (r0, r1, ..., rn) such that

x(t) = tp

y(t) = cr0 tr0 + cr1 tr1 + ... + crn trn

is a Puiseux Expansion of C.

80

Algorithm 4 BORODZIK
Input: (x(t), y(t)) ∈ C[[t]] primitive parametrization for the branch C.

Output: The positive integers (r0, r1, ..., rn) such that

x(t) = tp

y(t) = cr0 tr0 + cr1 tr1 + ... + crn trn

is a Puiseux Expansion of C.

1: p0 ← p and r0 ← q. Let p1 = gcd(p0, q0)

2: if p1 = 0 then

3: we stop and end the algorithm

4: end if

5: Compute P1(t) = ẏx − q
p ẋy and r1 = ord(P1(t)) − (p − 1). Let p2 = gcd(p1, r1).

6: if p2 = 1 then

7: we stop and end the algorithm

8: else

9: We put k = 1

10: Compute Pk+1(t) = xẋ d
dt Pk−

(
rk
p ẋ2 + (2k − 1)ẍx

)
Pk and rk+1 = ord(Pk+1)−(2k+1)(p−

1).

11: Let pk+1 = gcd(pk, rk)

12: if pk+1 = 1 then

13: we stop and end the algorithm

14: else

15: we increase k and go to step 10

16: end if

17: end if

Hence, when we start with a plane branch in parametric form with coefficient field C, we can

determine the Puiseux expansion with the Algorithm 4. Then by taking the smallest power

appearing in the series plus highest power appearing in the series as a bound for dividing the

series, we can construct the Arf Closure of the branch C.

Note that, you can find the SINGULAR procedure, we have written to find the Puiseux ex-

pansion by using the Algorithm 4 in Appendix B.

81

6.2.2 A Bound for the Conductor of the Arf Closure for Space Branches

For the plane branches, we have determined a bound for c∗. This bound is equal to smallest

characteristic exponent plus highest characteristic exponent minus one. But characteristic

exponents are not defined for the space branches. Hence, this idea can not be used in higher

dimensions. Instead, our idea is finding a bound for c∗ by using our result for plane branches.

Let C be a space branch, for which the corresponding local ring is Θ. If we can find a plane

branch C̃ with Θ̃ corresponding local ring such that Θ̃ ⊂ Θ, then we will have

Θ̃ ⊂ Θ ⇒ Θ̃∗ ⊂ Θ∗

⇒ S̃ ∗ ⊂ S ∗

⇒ c̃∗ ≥ c∗.

As a consequence, while constructing the Arf Closure of Θ, instead of using the bound c∗ + 1

to divide the series, we can use c̃∗ + 1 which is greater than or equal to c∗ + 1 and we don’t

lose any information. Therefore, the next thing to do is, finding a method to construct C̃ and

Θ̃.

Let Θ = k[[ϕ1(t), ϕ2(t), ..., ϕs(t)]] be a branch, where

ϕ1(t) = tm11

ϕ2(t) = a21tm21 + a22tm22 + ... + a2r2 tm2r2

...

ϕs(t) = as1tms1 + as2tms2 + ... + asrs t
msrs

m11 ≤ m21 ≤ ≤ ms1 and gcd(m11,m21,m22, ...,m2r2 , ...,ms1,ms2, ...,msrs) = 1. The first and

naive idea that comes to mind is to take Θ̃ = k[[ϕ1(t), ϕi0(t)]], where ϕi0(t) ∈ {ϕ2(t), ..., ϕs(t)}

and mi j’s are as above. Unfortunately, finding such ϕi0(t) is not always possible, because

gcd(m11,m21, ...,m2r2 , ...,ms1, ...,msrs) = 1 ; gcd(m11,mi01, ...,mi0ri0
) = 1.

That is, the parametrization obtained in this way may not be primitive. We should choose Θ̃

in such a way that the powers of the terms in its parametrization must be relatively prime.

For ϕ(t) = ϕ2(t) + ... + ϕs(t), the second idea is to take Θ̃ = k[[ϕ1(t), ϕ(t)]], but still we can

not guarantee that the greatest common divisor of m11 and the powers of the terms of ϕ(t) is

one, because some of the mi j’s may vanish while summing ϕ2(t), ..., ϕs(t). But we can always

82

determine constants b2, ..., bs such that after the addition ϕ(t) = b2ϕ2(t)+b3ϕ3(t)+ ...+bsϕs(t),

none of the mi j’s vanish and the greatest common divisor of the powers of the terms of ϕ(t)

and ϕs(t) is equal to gcd(m11, ...,ms1,ms2, ...,msrs) which is equal to 1. Then we can give our

next main theorem.

Theorem 6.2.7 Let Θ = k[[ϕ1(t), ϕ2(t), ..., ϕs(t)]] be a branch, where

ϕ1(t) = tm11

ϕ2(t) = a21tm21 + a22tm22 + ... + a2r2 tm2r2

...

ϕs(t) = as1tms1 + as2tms2 + ... + asrs t
msrs

m11 ≤ m21 ≤ ≤ ms1 and gcd(m11,m21,m22, ...,m2r2 , ...,ms1,ms2, ...,msrs) = 1. Using

the bound m11 + msrs in algorithm 3 while dividing the series, we constuct the Arf Closure

correctly.

Proof. We have seen that, we can use c̃∗ instead of c∗. But we already know, c̃∗ ≤ m11+msrs−1

from Theorem 6.2.5. Then from Theorem 6.2.1, we can use m11 + msrs while dividing the

series. �

If we want to work with a general space branch, given with the parametrization (ϕ1(t),ϕ2(t),

..., ϕs(t)) with the coefficient field C, where

ϕ1(t) = a11tm11 + a12tm12 + ... + a1r1 tm1r1

...

ϕs(t) = as1tms1 + as2tms2 + ... + asrs t
msrs

with m11 ≤ m21 ≤ ≤ ms1 and gcd(m11,m12, ...,m1r1 , ...,ms1,ms2, ...,msrs) = 1, again, we

form the ring Θ̃ = C[[ϕ1(t), ϕ(t)]], where ϕ(t) = b2ϕ2(t) + b3ϕ3(t) + ... + bsϕs(t) (bi’s have

been chosen in such a way that none of the mi j’s vanish). Then we convert its parametrization

to the Puiseux Form by using Algorithm 4 and use the bound smallest power appearing in the

converted series plus the highest power appearing in the converted series.

83

CHAPTER 7

HILBERT FUNCTIONS OF ARF RINGS

In this section, we present a conjecture of Arslan and Sertoz and give many examples sup-

porting this conjecture obtained by using the algorithm given by us. First, we describe the

Hilbert function of an Arf ring.

Let R be a local ring with the maximal ideal m. The associated graded ring of R is defined to

be the ring

grm(R) =

∞⊕
i=0

mi/mi+1.

Geometrically, if R is a local ring of a variety V , then the associated graded ring of R is the

coordinate ring of the tangent cone of V .

Theorem 7.0.8 [36] Let R be a local Cohen-Macaulay ring of dimension d with the multi-

plicity e. Let embdim(R) denote the embedding dimension of R (the number of generators in

the minimal basis of the maximal ideal of R). If

embdim(R) = e − d + 1,

then the associated graded ring of R is also Cohen-Macaulay.

Theorem 7.0.9 [33] Let R be a local ring and R∗ its Arf closure. Then the multiplicity of R∗

is equal to the embedding dimension of R∗

Corollary 7.0.10 The associated graded rings of Arf rings are Cohen Macaulay.

Proof. This is a direct consequence of Theorem 7.0.8 and 7.0.9, as d = 1 for Arf rings. �

84

The Hilbert function HR(n) of the local ring R is defined to be the Hilbert function of the

associated graded ring grm(R).

HR(n) = Hgrm(R)(n) = dimR/m(mn/mn+1) n ≥ 0

The Hilbert series of R is defined to be

PR(t) =
∑
n∈N

HR(n)tn.

It has been proved by Hilbert and Serre that, PR(t) =
h(t)

(1−t)d , where h(t) is a polynomial with

the coefficients from Z and d is the Krull dimension of R. Hence, in our case, we have

PR(t) =
h(t)
1−t . The multiplicity e is equal to h(1) and also h(t) = 1 + (e − 1)t + a2t + ... + asts.

Theorem 7.0.11 [25, Theorem 1.5] If R is a graded Cohen-Macaulay ring, coefficients of

h(t) are positive.

As a consequence, we can state the next theorem.

Theorem 7.0.12 Let R be a local ring and R∗ its Arf Closure. Then the Hilbert series of R∗

is:

PR∗(t) =
1 + (e − 1)t

1 − t

Proof. As the associated graded ring of R∗ is Cohen-Macaulay from Corollary 7.0.10, the

coefficients of h(t) are positive from Theorem 7.0.11 and from the remarks preceding Theorem

7.0.11, we have a2 + ... + as = 0. This is only possible if we have a2 = a3 = ... = as = 0.

Thus, h(t) = 1 + (e − 1)t and

PR∗(t) =
1 + (e − 1)t

1 − t
.

�

7.1 Conjecture

Knowing the basic definitions and theorems, now we can state the conjecture due to Arslan

and Sertoz:

85

If R1 and R2 are two local rings having the same Arf closure with R1 ⊂ R2 and PR1(t) =
h1(t)
1−t ,

PR2(t) =
h2(t)
1−t , then we have

degree(h1) ≥ degree(h2).

Note that, this is not true in general for the local rings containing each other.

Example 7.1.1 Consider the rings R1 = k[[t10, t15, t17, t18]] and R2 = k[[t10, t11, t15, t17, t18]].

R1 ⊂ R2, but PR1(t) = 1+3t+4t2+2t3
1−t and PR2(t) = 1+4t+4t2+t4

1−t .

Example 7.1.2 Consider the rings R3 = k[[t9, t10, t15, t17, t18]] and R4 = k[[t7, t10, t15, t17, t18]]

with PR3 = 1+3t+3t2+t3+t5
1−t and PR4 = 1+3t+2t2+t4

1−t . Comparing with R1 in the previous example,

we see that R1 ⊂ R3 but deg(h1) < deg(h3). In the same way, R1 ⊂ R4 but deg(h1) < deg(h4).

The next tables give examples of rings having the same Arf closure and their Hilbert series.
The Arf closure computations are done via our library ”ArfClosure.lib”, which you can find
in Appendix B.

Table 7.1: Rings having the Arf Closure k[[t4 + t6, t9, t10, t11]]

Rings with Arf Closure k[[t4 + t6, t9, t10, t11]] Hilbert Series
k[[t4 + t6 + t12, t9]] 1 + t + t2 + t3

k[[t4 + t6 + t12, t9, t10]] 1 + 2t + t2

k[[t4 + t6 + t12, t9, t10, t11]] 1 + 3t

Table 7.2: Rings having the Arf Closure k[[t6, t8, t10, t11, t13, t15]]

Rings with Arf Closure k[[t6, t8, t10, t11, t13, t15]] Hilbert Series
k[[t6 + t8, t10 + t11]] 1 + 2t + 3t2

k[[t6, t8, t10, t11]] 1 + 3t + 2t2

k[[t6, t8, t10, t11, t13]] 1 + 4t + t2

k[[t6, t8, t10, t11, t13]] 1 + 5t

86

Table 7.3: Rings having the Arf Closure k[[t7, t23, t25, t27, t29, t31, t33]]

Rings with Arf Closure k[[t7, t23, t25, t27, t29, t31, t33]] Hilbert Series
k[[t7, t23]] 1 + t + t2 + t3 + t4 + t5 + t6

k[[t7, t23, t25]] 1 + 2t + 2t2 + 2t3

k[[t7, t23, t25, t27]] 1 + 3t + 3t2

k[[t7, t23, t25, t27, t29]] 1 + 4t + 2t2

k[[t7, t23, t25, t27, t29, t31]] 1 + 5t + t2

k[[t7, t23, t25, t27, t29, t31, t33]] 1 + 6t

Table 7.4: Rings with Arf Closure k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35]]

Rings with Arf Closure k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35]] Hilbert Series
k[[t12, t18, t25, t26]] 1 + 3t + 4t2 + 3t3 + t4

k[[t12, t18, t25, t26, t27]] 1 + 4t + 5t2 + 2t3

k[[t12, t18, t25, t26, t27, t28]] 1 + 5t + 5t2 + t3

k[[t12, t18, t25, t26, t27, t28, t29]] 1 + 6t + 5t2

k[[t12, t18, t25, t26, t27, t28, t29, t31]] 1 + 7t + 4t2

k[[t12, t18, t25, t26, t27, t28, t29, t31, t32]] 1 + 8t + 3t2

k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33]] 1 + 9t + 2t2

k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34]] 1 + 10t + t2

k[[t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35]] 1 + 11t

Table 7.5: Rings having the Arf Closure k[[t6, t15, t19, t20, t22, t23]]

Rings with Arf Closure k[[t6, t15, t19, t20, t22, t23]] Hilbert Series
k[[t6, t15, t19]] 1 + 2t + 2t2 + t3

k[[t6, t15, t19, t20]] 1 + 3t + 2t2

k[[t6, t15, t19, t20, t22]] 1 + 4t + t2

k[[t6, t15, t19, t20, t22, t23]] 1 + 5t

Table 7.6: Rings with Arf Cl. k[[t14, t21, t30, t32, t34, t36, t37, t38, t39, t40, t41, t43, t45, t47]]

Rings Hilbert Series
k[[t14, t21, t30]] 1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + 2t6 + t7

k[[t14, t21, t30, t32]] 1 + 3t + 4t2 + 4t3 + 2t4

k[[t14, t21, t30, t32, t34]] 1 + 4t + 6t2 + 3t3

87

Table 7.7: Rings with Arf Closure k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32, t34, t35]]

Rings with Arf Closure k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32, t34, t35]] Hilbert Series
k[[t12, t18, t21, t25]] 1 + 3t + 4t2 + 3t3 + t4

k[[t12, t18, t21, t25, t26]] 1 + 4t + 6t2 + t3

k[[t12, t18, t21, t25, t26, t27]] 1 + 5t + 6t2

k[[t12, t18, t21, t25, t26, t27, t28]] 1 + 6t + 5t2

k[[t12, t18, t21, t25, t26, t27, t28, t29]] 1 + 7t + 4t2

k[[t12, t18, t21, t25, t26, t27, t28, t29, t31]] 1 + 8t + 3t2

k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32]] 1 + 9t + 2t2

k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32, t34]] 1 + 10t + t2

k[[t12, t18, t21, t25, t26, t27, t28, t29, t31, t32, t34, t35]] 1 + 11t

Table 7.8: Rings having the Arf Closure k[[t10, t15, t28, t31, t32, t33, t34, t36, t37, t39]]

Rings with Arf Closure k[[t10, t15, t28, t31, t32, t33, t34, t36, t37, t39]] Hilbert Series
k[[t10, t15, t28]] 1 + 2t + 2t2 + 2t3 + 2t4 + t5

k[[t10, t15, t28, t31]] 1 + 3t + 4t2 + 2t3

k[[t10, t15, t28, t31, t32]] 1 + 4t + 5t2

k[[t10, t15, t28, t31, t32, t33]] 1 + 5t + 4t2

k[[t10, t15, t28, t31, t32, t33, t34, t36, t37, t39]] 1 + 9t

Table 7.9: Rings with Arf Cl. k[[t12, t16 + t30, t20, t31, t33, t34, t35, t37, t38, t39, t41, t42]]

Rings Hilbert Series
k[[t12, t16 + t30, t31]] 1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + t6

k[[t12, t16 + t30, t20, t31]] 1 + 3t + 5t2 + 3t3

k[[t12, t16 + t30, t20, t31, t33]] 1 + 4t + 7t2

k[[t12, t16 + t30, t20, t31, t33, t34, t35]] 1 + 6t + 5t2

k[[t12, t16 + t30, t20, t31, t33, t34, t35, t37, t38, t39, t41, t42]] 1 + 11t

Observe that in each table, a ring in an arbitrary row is contained in the rings appearing in the

rows following that row. However, degrees of the corresponding Hilbert series is nondecreas-

ing as the rings are getting closer to the Arf Closure. Hence, all these examples support the

conjecture due to Arslan an Sertoz.

88

CHAPTER 8

RESOLUTION AND PARAMETRIZATION OF REDUCIBLE

CURVES GIVEN IN CLOSED FORM

Most of the computer algebra systems are working with the reducible curves given in closed

form, so does the computer algebra system SINGULAR [37]. The SINGULAR library

hnoether.lib [34] computes the Hamburger Noether expansion of a reduced curve singular-

ity according to the theory in [10] by Campillo, but starting from the defining polynomial

f ∈ k[x, y]. The library also contains procedures for computing the invariants of the plane

curve singularities from its Hamburger Noether Expansion. Unfortunately, there wasn’t any

released library or procedure that computes the invariants of a curve branch given in para-

metric form. The existing libraries work with only plane branches not with the space ones.

Finding the semigroup of values of a branch and its conductor from the parametrization may

also be useful for Arf Closure computations but the library hnoether.lib only works with plane

algebroid curves. Moreover, its input is defining ideal, not the parametrization. We have

been informed by Professor Gerhard Pfister that there has been another library called ”space-

curve.lib”, which has been written by Maryna Viazovska with the guidance of Professor Ger-

hard Pfister as a master project [39] but has never been released as a SINGULAR library. The

library was not totally completed and it contained the following procedures:

Blowingup(f,I,l); Blowing up of V(I) at the point 0;

CurveRes(I); Resolution of V(I);

Curveparam(I); Parametrization of algebraic branches of V(I);

WSemigroup(X,b); Weirstrass semigroup of the curve

The procedures in the library work in all dimensions. Moreover, the procedure curveparam(I)

gives a bound for the conductors of the branches using the multiplicity sequences.

89

Professor Pfister offered me to check the library and complete it by adding some new pro-

cedures that compute the invariants of the branches in the plane case. The first problem

in the library that should be solved was that the existing procedure CurveRes(I) in library

”spacecurve.lib” starts with the defining ideal and it gives the sum of the multiplicities of the

branches, not the multiplicities corresponding to each branch. This causes a big problem,

because it is not possible to obtain the invariants of the algebroid curve and also the bound

obtained for the conductor is very large, as it uses the sum of the multiplicities. That bound

is not practical for dividing the series. What we need was to find the multiplicities of each

branch to get a good bound for the conductor. We have decided to solve this problem by using

Hamburger-Noether matrices. The library ”spacecurve.lib” has already contained the pro-

cedure curveparam(I) that computes the parameterizations of the branches of the algebroid

curve from the defining ideal. Our idea was to compute the parameterizations by using this

procedure and then computing the Hamburger-Noether matrices by using those parameteriza-

tions applying the algorithm 1 in chapter 4. There was not a procedure doing this in the liter-

ature, so I have written a procedure doing all these. Once we obtain the Hamburger-Noether

matrix all the invariants can be computed by using the library ”alexpoly.lib” in SINGULAR

[30].

After writing well working procedures to compute the invariants, the next step was to make

the library faster from the other libraries. Checking some examples, we have noticed that,

both ”hnoether.lib” and ”spacecurve.lib” work faster with the irreducible curves and slower

with the reducible ones. If we had a chance to factorize the defining polynomial of the re-

ducible curve in the power series ring, the both libraries could work faster. Unfortunately,

there is no way of doing this without expensive computations yet. Professor Pfister had the

idea that if we could factorize the defining polynomial in polynomial ring, we would have a

faster algorithm. Binyamin had given examples which show that factorizing makes the algo-

rithm faster in the library ”hnoether.lib” [5]. In [5], Binyamin also gives an algorithm that

computes the contact numbers from the multiplicity sequence and the intersection matrix. We

also use this algorithm while computing contact numbers in our procedures.

We now give a brief summary of the theory behind the ”spacecurve.lib” and our contributions

to this library. You can find the whole library and the procedures in Appendix A.

90

8.1 Algorithms for the library ”spacecurve.lib”

Before starting to explain the algorithms that are used for the procedures in ”spacecurve.lib”,

let us give the notations first.

For any polynomial f ∈ k[x1, ..., xn], f (in) denotes the ’initial polynomial’ of f . That is, ho-

mogeneous part of f of smallest degree. I(in) denotes the homogeneous ideal generated by

f (in)’s for all f ∈ I.

The next Lemma constitutes the main idea of the algorithm ExceptHypersurface that com-

putes the homogeneous ideal of the exceptional hypersurface.

Lemma 8.1.1 [39, Lemma 2.2.2] The exceptional hypersurface of the blow-up of an affine

variety X ⊂ An in the origin is Vp(I(X)(in)).

Let C be a curve branch, C̃ its blow-up and E exceptional divisor.

Theorem 8.1.2 [39, Theorem 2.3.1] There is one to one correspondence between the points

of exceptional divisor C̃ ∩ E and the first rows of Hamburger-Noether expansion of C.

Algorithm 5 ExceptHypersurface(I)
Input: Defining ideal I of the curve.

Output: Homogeneous ideal J of the exceptional hypersurface

1. Compute a standard basis f1, f2,..., fk for I.

2. Compute the ideal J =< f (in)
1 , ..., f (in)

k >.

3. Return(J)

To compute the equations of the strict transform in each chart, we set C̃i = C̃ ∩ Ui. Let ψ be

the ring homomorphism with ψ(xi) = xi and ψ(x j) = xix j for j , i. Then V(Ii) = C̃i ∪ Ei.

Setting S to the set of all positive powers of xi, we define the ideal Ĩi = S −1Ii ∪ k[x1, ..., xn].

Then it can be shown that V(Ĩi) = C̃i implying I(C̃i) = Ĩi. You can check [39] for all of the

proofs. The next algorithm computes the full vanishing ideal of the strict transform in the ith

affine chart.

91

Algorithm 6 STRICTTransform(I,i)
Input: Defining ideal I of the curve

Output: Ideal Ĩi of the strict transform in the i-th affine chart.

1. Compute a standard basis f1, f2, ..., fk of I.

2. Define a map ψ which maps xi to x j and x j to xix j for all j , i.

3. for s = 1 to k, do

4. poly gs := ψ(fs)/xns
i where ns = ordxi(fs).

5. Ĩi :=< g1, ..., gk >

6. return(Ĩi)

In practice, it not possible to work with an algebraically closed field. Hence it is assumed that

the field is a finite extension k[a], where a is a root of an irreducible polynomial with coeffi-

cients from k. During the algorithm we may need to enlarge our field with a new parameter b

with the new minimal polynomial g such that k[a] ⊂ k[b].

Remark 8.1.3 [39, Remark 3.1.1] A point on exceptional divisor may exist in more than one

affine chart. To consider the points of E ∩ Uis that do not lie in E ∩ Ui1 ,...,E ∩ Uis−1 , we add

equations < xi1 , ..., xis−1 > to the ideal Jis = J+ < xis − 1 > of exceptional divisor in is-th

chart. In this way, each point of E is counted once.

Remark 8.1.4 [39, Remark 3.1.2] Let P be a prime zero dimensional ideal. Then P is an

intersection of maximal ideals P =
⋂

mi. Then for each i, mi = I(ai) where ai = (ai1, ..., ain).

There is a finite field extension L such that k ⊂ L ⊂ k which contains coordinates of all

points ai. If k is a perfect field, there is a primitive element α ∈ L, such that L = k(α).

As L contains all ai j, ai j = fi j(α) for some fi j ∈ k[x]. Thus, we can write P as < x1 −

f1(α), ..., xn − fn(α), f (α) >. It is possible to do this for a perfect field of any characteristic

but the procedures in ”spacecurve.lib” does this for the case of characteristic zero.

Algorithm 7 BLOWINGUp(f , I, l)
Input: Irreducible polynomial f , defining ideal I of the curve, list l of previous charts.

Output: List BlowUp. Each element BlowUp[i] of this list contains the the following infor-

mation: new irreducible poly fi, ideal of a new curve Ĩi and a map φi from the new curve

to the old one.

92

Algorithm 7 BLOWINGUp(f , I, l) (cont.)
1. List BlowUp:=∅

2. Compute J :=EXCEPTHypersurface(I)

3. Compute the list i1,...,in where i j is the index of the smallest ordered element when doing

the blowing up.

4.for s = 1 to n do

5. Jis := J+ < xi1 , ..., xis−1 , xis − 1 >

if dim(Jis) , 0 then break.

6. ideal Ĩis=StrictTransform(I, is)

7. τ :=identity map

8. Compute primary decomposition for RADICAL(Jis) =

k⋂
j=1

Ps j

9. for j = 1 to k, do

10. Present Ps j at the form Ps j =< x1 − g1(b), ..., xn − gn(b), g(b) >

11. Define map θ to be a shift xi → xi + gi(b)

12. Define map φ := τoθ and ideal Ĩ := θ(Ĩis)

13. τ = τoθ

14. BlowU p:=ADD(BlowU p,list(g, Ĩ, φ))

15. return(BlowU p)

As BLOWINGUp(f,I,l) makes one blowing up, we need another algorithm to do the blowing

up successively.

Algorithm 8 CURVERes(I)
Input: Defining ideal I of the curve C

Output: List of resolutions Resolve. Each element Resolve[i] consists of irreducible poly fi,

ideal of a smooth curve I′i , map πi from the new curve to the old one.

1. if C is smooth then

2. return(f , I, id)

3. else

4. compute list BlowU p =BLOWINGUp(f , I, l)

5. For each element of BlowU p, compute CURVERes.

93

The next two algorithms are for finding the parametrization of the curve. The first one is for

the smooth curves, and the second one is for singular curves.

Algorithm 9 SMOOTHParam(I,N)
Input: ideal I of a smooth curve and an integer N

Output: parametrization x1(t),...xn(t) till the order N

1. Compute M =JACOB(I) at point 0.

2. Find n − 1 linearly independent rows and columns of the jacobian matrix M and define a

submatrix A.

3. define Xs := t and X j := 0 for j , s

4. Compute A−1

5. for p = 1 to N do

6. vector ~c := (
∂ fi1
∂xs
, ...,

∂ fin−1
∂xs

)T

7. vector ~b := −A−1~c

8. Define map τ which sends xs → xs and x j → xs(x j + b j) for j , s

9. ideal I = τ(I)/xs

10. X j := X j + b j.tp for j , s

11.return(X1(t), ..., Xn(t))

By using the algorithm 9, we define the next algorithm for the singular curves. The algorithm

first desingularizes the curve by the algorithm 8, then uses the parametrization of the smooth

curve we got from CURVERes.

Algorithm 10 CURVEParam(I,N)
Input: ideal I of the curve and an integer N

Output: list of parameterizations till the order N for all algebraic branches of the curve.

1. list Resolve := CURVERes(I)

2. for i = 1 to SIZE(Resolve), do

3. P :=SMOOTHParam(I′i ,N)

4. P′i := πi(P)

5. return(P′1, ...,P
′
k), where k is a size of Resolve

The next and the last algorithm in [39] computes the Weierstrass semigroup of a curve.

94

Algorithm 11 WSemigroup(X,b)
Input: an integer b and polynomials x1, ..., xn ∈ k[t] of degree less than or equal to b.

Output: Weierstrass semigroup of the curve C given by parametrization x1(t),...,xn(t)

Denote mi = ordt(xi) the order of xi with respect to a local ordering and assume that m1 ≤

m2 ≤ ... ≤ mn.

1. Compute the semigroup Γ =< m1, ...,mn > till the bound b and the list L of length b,

where L[i] is a list of all nonnegative integer vectors (α1, ..., αn) such that

α1m1 + ... + αnmn = i

Integer i is an element of S iff the list L[i] is not empty. If semigroup S has a conductor

c ≤ b, then set b := min(b, c + m1)

2. Compute a list N of length b, for which N[i] is a list consisting of polynomials xα1
1 ...xαn

n

for all (α1, ..., αn) ∈ L[i].

3. For each pair pl, pk ∈ L[i], compute a polynomial f := lc(pl)pk − lc(pk)pl, where lc(p)

is a leading coefficient with respect to local ordering. Denote m := ordt(f), then m > i.

Then m is either an element of S or not.

• If m ∈ Γ check if f is a linear combination of elements of N[m]. If it is not, add f

to N[i].

• If m < Γ

This process continues till all the pairs pk, pl ∈ N[i] for all i ≤ b are considered.

To check the correctness of the algorithms, you can see [39].

8.2 The new library ”curvepar.lib”

We can now give the brief summary of the new library ”curvepar.lib” obtained by using the

library ”spacecurve.lib” and by our procedures:

We start with the defining polynomial f of the curve ”C”.

1. We factorize f over Q[x, y] for faster computations. Let f1,..., fk be the irreducible

95

factors of f in Q[x, y].

2. For each fi, compute CURVEParam(< fi >) which gives the parametrization for the

branch corresponding to fi.

3. Compute the Hamburger-Noether matrix of each branch by using the algorithm 1.

4. Use the procedures from ”hnoether.lib” to compute the matrix of the intersection mul-

tiplicities of the branches.

5. Use the procedures from ”hnoether.lib” to compute the characteristic exponents and the

multiplicity sequences of the branches.

6. Compute the contact numbers using the multiplicity sequences and intersection multi-

plicities from Theorem 3.2.11 (The algorithm can be found in [5]).

7. Compute the matrix of the resolution graph of f using the contact numbers and charac-

teristic exponents with the procedures in ”alexpoly.lib”.

We have written SINGULAR procedures doing all these. It is now in use under the name

”curvepar.lib” in SINGULAR [18].

8.3 Timings

In this section, we give timing comparison of the already existing library ”hnoether.lib” and

our new library ”curvepar.lib” in SINGULAR. The computations are done by using Singular

3-1-3. We have obtained timings for the ideals < fi >, where

f1 = ((x7 − y6)4 − x20y10 + x35)((x7 − y6)3 − x24 + y25)((x7 − y5)3 − x24 − y25)

f2 = (x14 + x5y5 + y10 + y15)(x16 + x18 + y20 + y23)

f3 = (x14 − y12 + x10y4 + y19)(x12 − y14 + x15 + y15)((x6 − y5)4 − x26y12 + x28 + y30)(x14 + y18 + y21)

f4 = (x8 + 2y14)(x10 + 5y10)(y2 − x3)(x2 − y3)

f5 = (x18 + y24 + x29)(x14 + y18 + y21)(x9 − x3y3 + y11)(x15 − y10 − y19)

f6 = (x16 + 3y18)(x5 + 7y5)

f7 = ((x7 − y6)4 − x20y10 + x35)((x7 − y6)3 − x24 + y25)

f8 = (x18 + y24 + x29)(x14 + y18 + y21)(x9 − x3y3 + y11)

96

As we can observe from the next table, the computation of the invariants of these examples

have shown that, the library ”curvepar.lib” is faster in half of the examples, while the library

”hnoether.lib” is faster in the other half.

Table 8.1: Time Comparison

poly hnoether curveparam
f1 3 sec > 1 hour
f2 245 sec 124 sec
f3 1 sec > 1 hour
f4 > 1 hour 11 sec
f5 2788 sec 546 sec
f6 > 1 hour 1 sec
f7 0 secs > 1 hour
f8 0 secs 72 sec

Checking the examples for which the ”curvepar.lib” is slower, we have noticed that while

the procedures ”CurveRes(I)” and ”CurveParam(I)” in ”curveparam.lib” work faster than the

procedures ”develop(f)” and ”param(f)” in the library ”hnoether.lib”, we still get slower re-

sults. What makes ”curvepar.lib” slower in these four examples is that the successive division

of the series. Although we have better timings in half of the examples when compared to

”hnoether.lib”, we should avoid successive divisions to find the multiplicity sequence and the

contact numbers for our library to work faster in all of the computations. We still search for

the ways of reading the multiplicity sequence of each branch and the contact numbers from

the output of ”CurveRes(I)”.

For future research, our purpose is to find a way to read the contact numbers from the output

of ”CurveRes(I)”. In this way, it will be possible to construct the resolution graph from the

resolution process. Then finding the multiplicity sequence of each branch from the resolution

graph without using successive division will be possible. This will save a lot of time in the

computations and we will get a faster library.

97

CHAPTER 9

CONCLUSION

In this thesis, we have studied the space curve singularities. We have focused on Arf rings,

which makes it possible generalize the concepts like the chracaters in the plane case to space

case. Our main contribution has been to give a new and efficient algorithm to compute the Arf

closure of a local ring. This depends on determining a bound for doing the successive division

of series. We have shown that, to construct the Arf closure correctly, it is sufficient to consider

the terms up to degree c∗ + 1 while dividing the series. We have also obtained a bound for the

conductor c∗ of the semigroup of the Arf closure R∗ of R ⊂ k[[t]], without computing R∗. We

have shown that it is possible to read this bound by just considering the degrees of the series

appearing in the parametrization corresponding to R, when the parametrization is of Puiseux

form, in other words. R = k[[ϕ1(t) = tm, ϕ2(t), ..., ϕn(t)]] for some m ∈ N

Our algorithm works much faster than the algorithm given in [2], which was the only imple-

mented algorithm for constructing the Arf closure in the literature. The speed of our algorithm

is a a result of two facts: first, our algorithm avoids the computation of the semigroup of the

given branch. Second, it uses a much smaller bound in doing the series divisions. Also, this

bound, which gives the opportunity to determine the multiplicity sequence with a fast algo-

rithm can be used for writing a fast algorithm to determine the numerical semigroup of a

branch, which is a difficult problem.

With our new library, we have computed examples to check a conjecture given by Arslan and

Sertoz. All of our examples supported the conjecture proposing that among the local rings

having the same Arf closure, the one with the smallest embedding dimension has the largest

regularity index. As a future goal, we want to attack this conjecture, which supports the idea

that taking the Arf closure is in fact “taming the singularity” by filling some gaps, so between

98

two rings having the same Arf closure, the one closer to the Arf closure can not have a “worse“

singularity.

In this thesis, we have also dealt the singularity theory of plane algebroid curves. We have

written a SINGULAR library ”curvepar.lib” that computes the invariants of plane algebroid

curves. Comparing to the library ”hnoether.lib”, which also computes the invariants of plane

algebroid curves, we have observed that our library is faster in almost half of the examples,

while the ”hnoether.lib” is faster in the other half. For algorithmic purposes, this is quite

important, since both libraries can be combined to obtain a more efficient one by correctly

deciding to use the fast one for a given plane algebroid curve.

Another goal for future research is to add new procedures that computes the multiplicity

sequence of the branches of a reducible algebroid curve given with the defining ideal I ⊂

k[[x1, .., xn]] where n is greater than 2 to our SINGULAR library ”curvepar.lib”.

To conclude, it wouldn’t be possible to obtain most of the results in this thesis without the use

of computational methods. This thesis is an example showing that the geometric problems

can be attacked by computational methods.

99

REFERENCES

[1] Cahit Arf. Une interprétation algébrique de la suite des ordres de multiplicité d’une
branche algébrique. Proc. London Math. Soc. (2), 50:256–287, 1948.

[2] Sefa Feza Arslan. On arf rings, 1994.

[3] V. Barucci, M. D’Anna, and R. Fröberg. ARF characters of an algebroid curve. JP J.
Algebra Number Theory Appl., 3(2):219–243, 2003.

[4] V. Barucci, M. D’Anna, and R. Fröberg. On plane algebroid curves. In Commutative
ring theory and applications (Fez, 2001), volume 231 of Lecture Notes in Pure and
Appl. Math., pages 37–50. Dekker, New York, 2003.

[5] M. A. Binyamin. Improving the computation of invariants of plane curve singularities.
Analele Stiintifice Ale Universitatii ”Ovidius” Constanta.

[6] Maciej Borodzik. An efficient method of finding a puiseux expansion of a parametric
singularity.

[7] Maria Bras-Amorós. Improvements to evaluation codes and new characterizations of
Arf semigroups. In Applied algebra, algebraic algorithms and error-correcting codes
(Toulouse, 2003), volume 2643 of Lecture Notes in Comput. Sci., pages 204–215.
Springer, Berlin, 2003.

[8] Egbert Brieskorn and Horst Knörrer. Plane algebraic curves. Birkhäuser Verlag, Basel,
1986. Translated from the German by John Stillwell.

[9] A. Campillo, F. Delgado, and C. A. Núñez. The arithmetic of Arf and saturated semi-
groups. Applications. Rev. Real Acad. Cienc. Exact. Fı́s. Natur. Madrid, 82(1):161–163,
1988.

[10] Antonio Campillo. Algebroid curves in positive characteristic, volume 813 of Lecture
Notes in Mathematics. Springer, Berlin, 1980.

[11] Antonio Campillo and Julio Castellanos. Arf closure relative to a divisorial valuation
and transversal curves. Amer. J. Math., 116(2):377–395, 1994.

[12] Antonio Campillo and Julio Castellanos. Valuative Arf characteristic of singularities.
Michigan Math. J., 49(3):435–450, 2001.

[13] Antonio Campillo and Julio Castellanos. Curve Singularities: An Algebraic and Geo-
metric Approach. Actualités Mathématiques. Hermann, 2005.

[14] Antonio Campillo, José Ignacio Farrán, and Carlos Munuera. On the parameters of
algebraic-geometry codes related to Arf semigroups. IEEE Trans. Inform. Theory,
46(7):2634–2638, 2000.

100

[15] Angel Castellanos and Julio Castellanos. Algorithm for the semigroup of a space curve
singularity. Semigroup Forum, 70(1):44–60, 2005.

[16] Julio Castellanos. A relation between the sequence of multiplicities and the semigroup
of values of an algebroid curve. J. Pure Appl. Algebra, 43(2):119–127, 1986.

[17] I. S. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer.
Math. Soc., 59:54–106, 1946.

[18] Gerhard Pfister; Nil Şahin; Maryna Viazonska. curvepar.lib singular 3-1-4 a library for
computing the resolution of space curve singularities and the numerical invariants of
plane curve singularities. 2012. http://www.singular.uni-kl.de.

[19] Steven Dale Cutkosky. Resolution of singularities, volume 63 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2004.

[20] Marco D’Anna. Canonical module and one-dimensional analytically irreducible Arf
domains. In Commutative ring theory (Fès, 1995), volume 185 of Lecture Notes in Pure
and Appl. Math., pages 215–225. Dekker, New York, 1997.

[21] Theo de Jong and Gerhard Pfister. Local analytic geometry. Advanced Lectures in
Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2000. Basic theory and applica-
tions.

[22] David E. Dobbs and Gretchen L. Matthews. On comparing two chains of numerical
semigroups and detecting Arf semigroups. Semigroup Forum, 63(2):237–246, 2001.

[23] Patrick Du Val. The Jacobian algorithm and the multiplicity sequence of an algebraic
branch. Rev. Fac. Sci. Univ. Istanbul. Ser. A., 7:107–112, 1942.

[24] Patrick Du Val. Note on Cahit Arf’s “Une interprétation algébrique de la suite des ordres
de multiplicité d’une branche algébrique.”. Proc. London Math. Soc. (2), 50:288–294,
1948.

[25] J. Elias, J. M. Giral, R. M. Miró-Roig, and S. Zarzuela, editors. Six lectures on com-
mutative algebra. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. Papers
from the Summer School on Commutative Algebra held in Bellaterra, July 16–26, 1996,
Reprint of the 1998 edition.

[26] Federigo Enriques and Oscar Chisini. Lezioni sulla teoria geometrica delle equazioni
e delle funzioni algebriche. 2. Vol. III, IV, volume 5 of Collana di Matematica [Math-
ematics Collection]. Nicola Zanichelli Editore S.p.A., Bologna, 1985. Reprint of the
1924 and 1934 editions.

[27] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

[28] Abramo Hefez and Marcelo Escudeiro Hernandes. Computational methods in the local
theory of curves. Publicações Matemáticas do IMPA. [IMPA Mathematical Publica-
tions]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2001. 23o
Colóquio Brasileiro de Matemática. [23rd Brazilian Mathematics Colloquium].

[29] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of
characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326,
1964.

101

[30] Fernando Hernando Carrillo; Thomas Keilen. alexpoly.lib singular 3-1-3 a library for
computing the hamburger-noether expansion of a reduced plane curve singularity and
the numerical invariants of plane curve singularities. 2011. http://www.singular.uni-
kl.de.

[31] János Kollár. Lectures on resolution of singularities, volume 166 of Annals of Mathe-
matics Studies. Princeton University Press, Princeton, NJ, 2007.

[32] Martin Lamm. Hamburger-noether-entwicklung von kurvensingularitaten, 1999.

[33] Joseph Lipman. Stable ideals and Arf rings. Amer. J. Math., 93:649–685, 1971.

[34] Martin Lamm; Christoph Lossen. hnoether.lib singular 3-1-3 a library for computing
the hamburger-noether expansion of a reduced plane curve singularity and the numerical
invariants of plane curve singularities. 2011. http://www.singular.uni-kl.de.

[35] J. C. Rosales, P. A. Garcı́a-Sánchez, J. I. Garcı́a-Garcı́a, and M. B. Branco. Arf numeri-
cal semigroups. J. Algebra, 276(1):3–12, 2004.

[36] Judith D. Sally. On the associated graded ring of a local Cohen-Macaulay ring. J. Math.
Kyoto Univ., 17(1):19–21, 1977.

[37] Wolfram Decker; Gert-Martin Greuel; Gerhard Pfister; Hans Schönemann. Sin-
gular 3-1-3 — A computer algebra system for polynomial computations. 2011.
http://www.singular.uni-kl.de.

[38] Sinan Sertöz. Arf rings and characters. Note Mat., 14(2):251–261 (1997), 1994.

[39] Maryna Viazovska. Computation of weierstrass semigroup for space curve singularities.
Master’s thesis, University of Kaiserslautern, March 2007.

[40] C. T. C. Wall. Singular points of plane curves, volume 63 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 2004.

102

APPENDIX A

The Singular Library ”curvepar.lib”

///

version="$Id: curvepar.lib 15103 2012-07-11 10:00:13Z motsak $";

category="Singularity Theory";

info="

LIBRARY: curvepar.lib Resolution of space curve singularities, semi-group5

AUTHOR: Gerhard Pfister email: pfister@mathematik.uni-kl.de

Nil Sahin email: e150916@metu.edu.tr

Maryna Viazovska email: viazovsk@mathematik.uni-kl.de

10
SEE ALSO: spcurve_lib

PROCEDURES:

BlowingUp(f,I,l); BlowingUp of V(I) at the point 0;

CurveRes(I); Resolution of V(I)15
CurveParam(I); Parametrization of algebraic branches of V(I)

WSemigroup(X,b); Weierstrass semigroup of the curve

primparam(x,y,c); HN matrix of parametrization(x(t),y(t))

MultiplicitySequence(I); Multiplicity sequences of the branches of plane curve V(I)

CharacteristicExponents(I); Characteristic exponents of the branches of plane curve V(I)20
IntersectionMatrix(I); Intersection Matrix of the branches of plane curve V(I)

ContactMatrix(I); Contact Matrix of the branches of plane curve V(I)

plainInvariants(I); Invariants of the branches of plane curve V(I)

";

25
LIB "sing.lib";

LIB "primdec.lib";

LIB "linalg.lib";

LIB "ring.lib";

LIB "alexpoly.lib";30
LIB "matrix.lib";

//

//----------Resolution of singular curve--------------------//

//35

proc BlowingUp(poly f,ideal I,list l,list #)

"USAGE: BlowingUp(f,I,l);

f=poly

b=ideal40
l=list

ASSUME: The basering is r=0,(x(1..n),a),dp

f is an irrreducible polynomial in k[a],

I is an ideal of a curve(if we consider a as a parameter)45

COMPUTE: Blowing-up of the curve at point 0.

RETURN: list C of charts.

Each chart C[i] is a list of size 5 (reps. 6 in case of plane curves)50
C[i][1] is an integer j. It shows, which standard chart do we consider.

C[i][2] is an irreducible poly g in k[a]. It is a minimal polynomial

for the new parameter.

C[i][3] is an ideal H in k[a].

c_i=F_i(a_new) for i=1..n,55
a_old=H[n+1](a_new).

C[i][4] is a map teta:k[x(1)..x(n),a]-->k[x(1)..x(n),a] from the new

curve to the old one.

x(1)-->x(j)*x(1)

. . .60
x(j)-->x(j)

. . .

x(n)-->x(j)*(c_n+x(n))

C[i][5] is an ideal J of a new curve. J=teta(I).

C[i][6] is the list of exceptional divisors in the chart65

103

EXAMPLE: example BlowingUp; shows an example"

{

def r=basering;

int n=nvars(r)-1;70
ring r1=(0,a),(x(1..n)),ds;

number f=leadcoef(imap(r,f));

minpoly=f;

ideal I=imap(r,I);

ideal locI=std(I);75
ideal J=tangentcone(I);

setring r;

ideal J=imap(r1,J);

ideal locI=imap(r1,locI);

int j;80
int i;

list C,E;

list C1;

ideal B;

poly g;85
ideal F;

poly b,p;

list Z;

list Z1;

ideal D;90
map teta;

ideal D1;

map teta1;

int k,e;

ideal I1;95
ideal I2;

int ind;

list w=mlist(l,n);

for(j=1;j<=n;j++)

{100
B=J;

for(i=1;i<j;i++) {B=B+x(w[i]);}

B=B+(x(w[j])-1);

B=B+f;

Z=Z1;105
if(dim(std(B))==0)

{

Z=ZeroIdeal(B);

for(i=1;i<j;i++)

{110
D[w[i]]=x(w[j])*x(w[i]);

}

D[w[j]]=x(w[j]);

for(i=j+1;i<=n;i++)

{115
D[w[i]]=x(w[j])*x(w[i]);

}

D[n+1]=a;

teta=r,D;

I1=teta(locI);120
I1=reduce(I1,std(f));

ind=1;

for(i=1;i<=size(I1);i++)

{

ind=1;125
while(ind==1)

{

if(gcd(x(w[j]),I1[i])==x(w[j])){I1[i]=I1[i]/x(w[j]);}

else{ind=0;}

}130
}

}

for(k=1;k<=size(Z);k++)

{

g=Z[k][1];135
for(i=1;i<=n;i++){F[i]=Z[k][2][i];}

b=Z[k][3];

C1[1]=w[j];

C1[2]=g;

C1[3]=F;140
for(i=1;i<j;i++)

{D[w[i]]=x(w[j])*x(w[i]);}

D[w[j]]=x(w[j]);

for(i=j+1;i<=n;i++)

{D[w[i]]=x(w[j])*(F[w[i]]+x(w[i]));}145
D[n+1]=Z[k][2][n+1];

teta=r,D;

C1[4]=D;

for(i=1;i<=j;i++)

{D1[w[i]]=x(w[i]);}150
for(i=j+1;i<=n;i++)

{D1[w[i]]=F[w[i]]+x(w[i]);}

D1[n+1]=a;

104

teta1=r,D1;

if(nvars(basering)==3)155
{

I2=quickSubst(I1[1],teta1[1],teta1[2],std(g));

}

else

{160
I2=teta1(I1);

I2=reduce(I2,std(g));

}

C1[5]=I2;

if(nvars(basering)==3)165
{

if(size(#)>0)

{

E=#;

E=teta(E);170
for(e=1;e<=size(E);e++)

{

p=E[e];

while(subst(p,x(w[j]),0)==0)

{175
p=p/x(w[j]);

}

if((deg(E[e])>0)&&(deg(p)==0))

{

E[e]=size(E);180
}

else

{

E[e]=p;

}185
}

E[size(E)+1]=x(w[j]);

C1[6]=E;

}

else190
{

C1[6]=list(x(w[j]));

}

}

C=insert(C,C1);195
}

}

return(C);

}

example200
{

"EXAMPLE:";echo = 2;

ring r=0,(x(1..3),a),dp;

poly f=a2+1;

ideal i=x(1)ˆ2+a*x(2)ˆ3,x(3)ˆ2-x(2);205
list l=1,3,2;

list B=BlowingUp(f,i,l);

B;

}

//============= ACHTUNG ZeroIdeal ueberarbeiten / minAssGTZ rein ========================210
//

static proc ZeroIdeal(ideal J)

"USAGE: ZeroIdeal(J);

J=ideal215

ASSUME: J is a zero-dimensional ideal in k[x(1),...,x(n)].

COMPUTE: Primary decomposition of radical(J). Each prime ideal J[i] has the form:

x(1)-f[1](b),...,x(n)-f[n](b),220
f(b)=0, f irreducible

for some b=x(1)*a(1)+...+x(n)*a(n), a(i) in k.

RETURN: list Z of lists.

Each list Z[k] is a list of size 3225
Z[k][1] is a poly f(b)

Z[k][2] is an ideal H, H[n]=f[n],

Z[k][3] is a poly x(1)*a(1)+...+x(n)*a(n)

EXAMPLE:"230
{

intvec opt = option(get);

def r=basering;

int n=nvars(r);

if(dim(std(J))!=0){return(0);}235
ring s=0,(x(1..n)),lp;

ideal A; ideal S; int i; int j;

for(i=1;i<=n;i++) {A[i]=x(i);}

map phi=r,A;

ideal J=phi(J);240
ideal I=radical(J);

105

list D=zerodec(I);

list Z; ideal H; intvec w; intvec v; int ind; ideal T; map tau; int q; list u;

ideal Di; poly h;

for(i=1;i<=size(D);i++)245
{

option(redSB);

ind=0;q=n;

while(ind==0 and q>0)

{250
for(j=1;j<=n;j++){T[j]=x(j);}

T[q]=x(n);

T[n]=x(q);

tau=s,T;

Di=D[i];255
S=std(tau(Di));

ind=1;

v=leadexp(S[1]);

if(leadmonom(S[1])!=x(n)ˆv[n]){ind=0;}

for(j=2;j<=n;j++)260
{

if(leadmonom(S[j])!=x(n-j+1)){ind=0;}

H[n-j+1]= -S[j]/leadcoef(S[j])+x(n-j+1);

v=leadexp(H[n-j+1]);

if(leadcoef(H[n-j+1])*leadmonom(H[n-j+1])!=leadcoef(H[n-j+1])*x(n)ˆv[n])265
{ind=0;}

}

if(ind==1)

{

u[1]=S[1];270
H[n]=x(n);

H[n]=H[q];

H[q]=x(n);

u[2]=H;

u[3]=x(q);275
Z[i]=u;

}

q--;

}

if(ind==0)280
{

vector a;

while(ind==0)

{

h=x(n);285
for(j=1;j<=n-1;j++){a=a+random(-10,10)*gen(j);h=h+a[j]*x(j);}

T=subst(S,x(n),h);

option(redSB);

T=std(T);

ind=1;290
w=leadexp(T[1]);

if(leadmonom(T[1])!=x(n)ˆw[n]){ind=0;}

for(j=2;j<=n;j++)

{

if(leadmonom(T[j])!=x(n-j+1)){ind=0;}295
H[n-j+1]= -T[j]/leadcoef(T[j])+x(n-j+1);

w=leadexp(H[n-j+1]);

if(leadmonom(H[n-j+1])*leadcoef(H[n-j+1])!=leadcoef(H[n-j+1])*x(n)ˆw[n])

{ind=0;}

}300
if(ind==1)

{

list l;

l[1]=T[1];

H[n]=x(n);h=x(n);305
for(j=1;j<=n-1;j++){H[n]=H[n]+a[j]*H[j];h=h-a[j]*x(j);}

l[2]=H;

l[3]=h;

Z[i]=l;

}310
}

}

}

setring r;

ideal A;315
list Z;

for(i=1;i<=n;i++)

{A[i]=var(i);}

map psi=s,A;

Z=psi(Z);320
option(set, opt);

return(Z);

}

///

//assume that the basering is k[x(1),...,x(n),a]325

static proc main(ideal I,ideal Psi,poly f,list m,list l,list HN,intvec v,list HI,list #)

{

def s=basering;

106

int i,z;330
int j;

list C,E,resTree;

list C1;

list C2;

list C3;335
list l1;

C2[8]=HI;

list m1;

list HN1;

ideal J;340
map psi;

intvec w;

z=(SmoothTest(I,f)==1);

if((nvars(basering)==3)&&z&&(size(#)>0))

{345
z=transversalTest(I,f,#);

}

if(z)

{

C2[1]=I;350
C2[2]=Psi;

C2[3]=f;

C2[4]=m;

C2[5]=l;

C2[6]=HN;355
if(nvars(basering)==3)

{

if(size(#)>0)

{

C2[9]=#;360
}

C2[7]=v;

}

//C2[8][size(C2[8])+1]=list(C2[7],C2[9]);

C[1]=C2;365
}

if(!z)

{

int mm=mmult(I,f);

m1=insert(m,mm,size(m));370
if(nvars(basering)==3)

{

if(size(#)>0)

{

E=#;375
C1=BlowingUp(f,I,l,E);

}

else

{

C1=BlowingUp(f,I,l);380
}

}

else

{

C1=BlowingUp(f,I,l);385
}

for(j=1;j<=size(C1);j++)

{

C2[1]=C1[j][5];

J=C1[j][4];390
psi=s,J;

C2[2]=psi(Psi);

C2[3]=C1[j][2];

C2[4]=m1;

l1=insert(l,C1[j][1],size(l));395
C2[5]=l1;

HN1=psi(HN);

HN1=insert(HN1,C1[j][3],size(HN1)-1);

C2[6]=HN1;

if(deg(C2[3])>1)400
{

w=v,-j;

}

else

{405
w=v,j;

}

C2[7]=w;

if(nvars(basering)==3)

{410
C2[9]=C1[j][6];

C2[8][size(C2[8])+1]=list(C2[7],C2[9]);

C3=main(C2[1],C2[2],C2[3],C2[4],C2[5],C2[6],C2[7],C2[8],C2[9]);

C=C+C3;

}415
else

{

107

C3=main(C2[1],C2[2],C2[3],C2[4],C2[5],C2[6],C2[7],C2[8]);

C=C+C3;

}420
}

}

return(C);

}

//425

static proc transversalTest(ideal I,poly f,list L)

{

def r=basering;

int n=nvars(r)-1;430
int i;

ring r1=(0,a),(x(1..n)),ds;

number f=leadcoef(imap(r,f));

minpoly=f;

ideal I=imap(r,I);435
list L=imap(r,L);

ideal K=jet(L[size(L)],deg(lead(L[size(L)])));

ideal T=1;

if(size(L)>1)

{440
for(i=1;i<=size(L)-1;i++)

{

if(subst(L[i],x(1),0,x(2),0)==0) break;

}

if(i<=size(L)-1)445
{

T=jet(L[i],deg(lead(L[i])));

}

}

ideal J=jet(I[1],deg(lead(I[1])));450
setring r;

ideal J=imap(r1,J);

ideal K=imap(r1,K);

ideal T=imap(r1,T);

int m=size(reduce(J,std(K)))+size(reduce(K,std(J)));455
if(m)

{

m=size(reduce(J+K+T,std(ideal(x(1),x(2)))));

}

return(m);460
}

//

static proc SmoothTest(ideal I,poly f)

//Assume I is a radical ideal of dimension 1 in a ring k[x(1..n),a]

//Returns 1 if a curve V(I) is smooth at point 0 and returns 0 otherwise465
{

int ind;

int l;

def t=basering;

int n=nvars(t)-1;470
ring r1=(0,a),(x(1..n)),dp;

number f=leadcoef(imap(t,f));

minpoly=f;

ideal I=imap(t,I);

matrix M=jacob(I);475
for(l=1;l<=n;l++){M=subst(M,x(l),0);}

if(mat_rk(M)==(n-1)){ind=1;}

return(ind);

}

//480
proc CurveRes(ideal I)

"USAGE: CurveRes(I);

I ideal

ASSUME: The basering is r=0,(x(1..n))

V(I) is a curve with a singular point 0.485
COMPUTE: Resolution of the curve V(I).

RETURN: a ring R=basering+k[a]

Ring R contains a list Resolve

Resolve is a list of charts

Each Resolve[i] is a list of size 6490
Resolve[i][1] is an ideal J of a new curve. J=teta(I).

Resolve[i][2] ideal which represents the map

teta:k[x(1)..x(n),a]-->k[x(1)..x(n),a] from the

new curve to the old one.

Resolve[i][3] is an irreducible poly g in k[a]. It is a minimal polynomial for the495
new parameter a. deg(g) gives the number of branches in Resolve[i]

Resolve[i][4] sequence of multiplicities (sum over all branches in Resolve as long as

they intersect each other !)

Resolve[i][5] is a list of integers l. It shows, which standard charts we considered.

Resolve[i][6] HN matrix500
Resolve[i][7] (only for plane curves) the development of exceptional divisors

the entries correspond to the i-th blowing up. The first entry is an

intvec. The first negative entry gives the splitting of the (over Q

irreducible) branches. The second entry is a list of the exceptional

divisors. If the entry is an integer i, it says that the divisor is not505

108

visible in this chart after the i-th blowing up.

EXAMPLE: example CurveRes; shows an example"

{

def r=basering;510
int n=nvars(r);

ring s=0,(x(1..n),a),dp;

ideal A;

int i;

int j;515
for(i=1;i<=n;i++){A[i]=x(i);}

map phi=r,A;

ideal I=phi(I);

poly f=a;

list l;520
list m;

list HN=x(1);

ideal psi;

for(i=1;i<=n;i++){psi[i]=x(i);}

psi[n+1]=a;525
intvec v;

list L,Resolve;

if(n==2)

{

ideal J=factorize(I[1],1);530
list resolve;

for(int k=1;k<=size(J);k++)

{

I=J[k];

resolve=main(I,psi,f,m,l,HN,v,L);535
for(i=1;i<=size(resolve);i++)

{

resolve[i][6]=delete(resolve[i][6],size(resolve[i][6]));

if(size(resolve[i])>=9){resolve[i]=delete(resolve[i],9);}

resolve[i]=delete(resolve[i],7);540
}

if(k==1){Resolve=resolve;}

else{Resolve=Resolve+resolve;}

}

}545
else

{

Resolve=main(I,psi,f,m,l,HN,v,L);

for(i=1;i<=size(Resolve);i++)

{550
Resolve[i][6]=delete(Resolve[i][6],size(Resolve[i][6]));

Resolve[i]=delete(Resolve[i],8);

}

}

export(Resolve);555
return(s);

}

example

{

"EXAMPLE:"; echo=2;560
ring r=0,(x,y,z),dp;

ideal i=x2-y3,z2-y5;

def s=CurveRes(i);

setring s;

Resolve;565
}

//

static proc mlist(list l,int n)

{

list N;570
list M;

int i;

int j;

for(i=1;i<=n;i++) {M[i]=i;}

N=l+M;575
for(i=1;i<=size(N)-1;i++)

{

j=i+1;

while(j<=size(N))

{580
if(N[i]==N[j]){N=delete(N,j);}

else

{j++;}

}

}585
return(N);

}

///

//Assume that the basering is k[x(1..n),a]

590
static proc mmult(ideal I,poly f)

{

def r=basering;

109

int n=nvars(r)-1;

ring r1=(0,a),(x(1..n)),ds;595
number f=leadcoef(imap(r,f));

minpoly=f;

ideal I=imap(r,I);

int m=mult(std(I));

return(m);600
}

//

//--------Parametrization of smooth curve-------------------//

//

605
//

//computes jacobian matrix, considering x(1..n) as variables and a(1..m) as parameters

static proc mjacob(ideal I)

{610
def r=basering;

int n=nvars(r);

int k=size(I);

matrix M[k][n];

int i;615
int j;

int l;

for(i=1;i<=k;i++)

{

for(j=1;j<=n;j++)620
{

M[i,j]=diff(I[i],x(j));

for(l=1;l<=n;l++){M[i,j]=subst(M[i,j],x(l),0);}

}

}625
return(M);

}

//

static proc mmi(matrix M,int n)

{630
ideal l;

int k=nrows(M);

int i;

int j;

for(i=1;i<=k;i++)635
{

l[i]=0;

for(j=1;j<=n;j++)

{

l[i]=l[i]+x(j)*M[i,j];640
}

}

l=std(l);

int t=size(l);

i=1;645
int mi=0;

while(mi==0 and i<=n-1)

{

if(diff(l[i],x(n-i))!=0){mi=n-i+1;}

else{i++;}650
}

if(mi==0){mi=1;}

matrix Mi[k][n-1];

for(i=1;i<=k;i++)

{655
for(j=1;j<=mi-1;j++)

{

Mi[i,j]=M[i,j];

}

for(j=mi;j<=n-1;j++)660
{

Mi[i,j]=M[i,j+1];

}

}

list lmi=mi,Mi;665
return(lmi);

}

//

static proc mC(matrix Mi,int n)

{670
int k=nrows(Mi);

ideal c;

int i,j;

for(i=1;i<=n-1;i++)

{675
c[i]=0;

for(j=1;j<=k;j++)

{

c[i]=c[i]+y(j)*Mi[j,i];

}680
}

110

c=std(c);

return(c);

}

//685
static proc mmF(ideal C, matrix Mi,int n,int k)

{

int s=size(C);

intvec mf;

int p=0;690
int t=0;

int i;

int j;

int v=0;

for(i=s;i>0;i--)695
{

p=t;

j=1;

while(t==p and p+j<=k)

{700
if(diff(C[i],y(p+j))==0){j++;}

if(diff(C[i],y(p+j))!=0){t=p+j;v++;mf[v]=t;}

}

}

matrix B[n-1][n-1];705
for(i=1;i<=n-1;i++)

{

for(j=1;j<=n-1;j++)

{

B[i,j]=Mi[mf[i],j];710
}

}

list mmf=mf,B;

return(mmf);

}715
///

static proc cparam(ideal I,poly f,int n,int m,int N)

{

def r=basering;

ring s=(0,a),(x(1..n)),lp;720
number f=leadcoef(imap(r,f));

minpoly=f;

ideal I=imap(r,I);

matrix M=mjacob(I);

list l0=mmi(M,n);725
int mi=l0[1];

matrix Mi=l0[2];

int k=nrows(Mi);

ring q=(0,a),(y(1..k)),lp;

number f=leadcoef(imap(r,f));730
minpoly=f;

matrix Mi=imap(s,Mi);

ideal D=mC(Mi,n);

list l1=mmF(D,Mi,n,k);

intvec mf=l1[1];735
matrix B=l1[2];

setring s;

matrix B=imap(q,B);

matrix C=inverse(B);

int i;740
int j;

ideal P;

for(i=1;i<mi;i++){P[i]=x(i);}

P[mi]=x(n);

for(i=1;i<=n-mi;i++){P[mi+i]=x(mi+i-1);}745
map phi=s,P;

ideal I1=phi(I);

if(nvars(basering)==2)

{

setring r;750
ideal I1=imap(s,I1);

matrix C=imap(s,C);

list X;

matrix d[n-1][1];

matrix b[n-1][1];755
ideal Q;

map psi;

int l;

for(i=1;i<=N;i++)

{760
for(j=1;j<=n-1;j++)

{

d[j,1]=diff(I1[mf[j]],x(n));

for(l=1;l<=n;l++)

{765
d[j,1]=subst(d[j,1],x(l),0);

}

}

b=-C*d;

111

I1=jet(I1,N-i+2);770
X[i]=b;

for(j=1;j<=n-1;j++){Q[j]=x(n)*(b[j,1]+x(j));}

Q[n]=x(n);

I1[1]=quickSubst(I1[1],Q[1],Q[2],std(f));

I1=I1/x(n);775
}

list Y=X,mi;

return(Y);

}

list X;780
matrix d[n-1][1];

matrix b[n-1][1];

ideal Q;

map psi;

int l;785
for(i=1;i<=N;i++)

{

for(j=1;j<=n-1;j++)

{

d[j,1]=diff(I1[mf[j]],x(n));790
for(l=1;l<=n;l++){d[j,1]=subst(d[j,1],x(l),0);}

}

b=-C*d;

I1=jet(I1,N-i+2);

X[i]=b;795
for(j=1;j<=n-1;j++){Q[j]=x(n)*(b[j,1]+x(j));}

Q[n]=x(n);

psi=s,Q;

I1=psi(I1);

I1=I1/x(n);800
}

list Y=X,mi;

setring r;

list Y=imap(s,Y);

return(Y);805
}

//

//--------Parametrization of singular curve-----------------//

//

proc CurveParam (list #)810
"USAGE: CurveParam(I);

I ideal

ASSUME: I is an ideal of a curve C with a singular point 0.

COMPUTE: Parametrization for algebraic branches of the curve C.

RETURN: list L of size 1.815
L[1] is a ring ring rt=0,(t,a),ds;

Ring R contains a list Param

Param is a list of algebraic branches

Each Param[i] is a list of size 3

Param[i][1] is a list of polynomials820
Param[i][2] is an irredusible polynomial f\in k[a].It is a minimal polynomial for

the parameter a.

Param[i][3] is an integer b--upper bound for the conductor of Weierstrass semigroup

EXAMPLE: example curveparam; shows an example"825
{

int i;

int j;

if(typeof(#[1])=="ideal")

{830
int d=deg(#[1][1]);

def s=CurveRes(#[1]);

}

else

{835
def s=#[1];

}

setring s;

int n=nvars(s)-1;

list Param;840
list l;

ideal D,P,Q,T;

poly f;

map tau;

list Z;845
list Y;

list X;

int mi;

int b;

int k;850
int dd;

for(j=1;j<=size(Resolve);j++)

{

b=0;

for(k=1;k<=size(Resolve[j][4]);k++)855
{

b=b+Resolve[j][4][k]*(Resolve[j][4][k]+1);

112

}

if((n==2)&&(size(Resolve[j][4])==0))

{b=d;}860
Y=cparam(Resolve[j][1],Resolve[j][3],n,1,b);

X=Y[1];

mi=Y[2];

f=Resolve[j][3];

for(i=1;i<mi;i++)865
{

P[i]=0;

for(k=1;k<=b;k++){P[i]=P[i]+X[k][i,1]*(x(1)ˆk);}

}

P[mi]=x(1);870
for(i=mi+1;i<=n;i++)

{

P[i]=0;

for(k=1;k<=b;k++){P[i]=P[i]+X[k][i-1,1]*(x(1)ˆk);}

}875
P[n+1]=a;

tau=s,P;

T=Resolve[j][2];

//HERE A TEST FOR dd

if(nvars(basering)==3)880
{

dd=boundparam(P[2]);

if(dd==1){dd=boundparam(P[1]);}

P[1]=jet(P[1],dd);

P[2]=jet(P[2],dd);885
Q[1]=quickSubst(T[1],P[1],P[2],std(f));

Q[2]=quickSubst(T[2],P[1],P[2],std(f));

Q[3]=a;

}

else890
{

Q=tau(T);

}

for(i=1;i<=n;i++){Z[i]=jet(reduce(Q[i],std(f)),b+1);}

l[1]=Z;895
l[2]=f;

l[3]=b;

Param[j]=l;

}

ring rt=0,(t,a),ds;900
ideal D;

D[1]=t;

D[n+1]=a;

map delta=s,D;

list Param=delta(Param);905
export(Param);

return(rt);

}

example

{910
"EXAMPLE:";echo=2;

ring r=0,(x,y,z),dp;

ideal i=x2-y3,z2-y5;

def s=CurveParam(i);

setring s;915
Param;

}

///

//----------Computation of Weierstrass Semigroup from parametrization--------------------//

///920
static proc Semi(intvec G,int b)

"USAGE: Semi(G,b);

G=intvec

b=int

ASSUME: G[1]<=G[2]<=...<=G[k],925
COMPUTE: elements of semigroup S generated by the enteries of G till the bound b.

For each element i of S computes the list of integer vectors v of dimension

k=size(G), such that g[1]*v[1]+g[2]*v[2]+...+g[k]*v[k]=i. If there exists

conductor of semigroup S c<b-n, where n is minimal element of G, then

computes also c+n.930
RETURN: list M of size 2.

L=M[1] is a list of size min(b,c+n).

L[i] is a list of integer vectors.

If i is not in a semigroup S than L[i] is empty.

M[2] is an integer =min(b,c+n)935
M[3] minimal generators of S

EXAMPLE:"

{

list L;

list l;940
int i;

for(i=1;i<=b;i++){L[i]=l;}

int k=size(G);

int n=G[1];

int j;945

113

int t;

int q;

int c=0;

intvec w;

intvec v;950
for(i=1;i<=k;i++)

{

for(j=1;j<=k;j++)

{

if(j==i){w[j]=1;}955
else{w[j]=0;}

}

L[G[i]]=insert(L[G[i]],w);

}

list L1=L;960
int s=0;

int s1=0;

i=1;

int p;

while(i<=b and s<n)965
{

for(j=1;j<=k;j++)

{

if(i-G[j]>0)

{970
if(size(L[i-G[j]])>0)

{

for(t=1;t<=size(L[i-G[j]]);t++)

{

v=L[i-G[j]][t];975
p=1;

for(q=1;q<j;q++)

{

if(v[q]>0){p=0;}

}980
if(p==1){v[j]=v[j]+1;L[i]=insert(L[i],v);}

}

}

}

}985
if(size(L[i])>0){s1=1;}

s=s1*(s+1);

s1=0;

i++;

}990
intvec Gmin;

int jmin=1;

for(j=1;j<=k;j++)

{

if(size(L[G[j]])==size(L1[G[j]]) && G[j]<i)995
{

Gmin[jmin]=G[j];

L1[G[j]]=insert(L1[G[j]],0);

jmin++;

}1000
}

list M=L,i-1,Gmin;

return(M);

}

///1005
static proc AddElem(list L,int b,int k,int g,int n)

"ASSUME: L list of size b. L[i] list of integer vectors of dimension k.

b=int

k=int as above

g=int new generator1010
n=int. minimal generator

RETURN: list M

M[1]=new L;

M[2]=new b;"

{1015
int i,j;

intvec v;

for(i=1;i<=b;i++)

{

if(size(L[i])>0)1020
{

for(j=1;j<=size(L[i]);j++)

{

v=L[i][j];

v[k+1]=0;1025
L[i][j]=v;

}

}

}

intvec w;1030
w[k+1]=1;

L[g]=insert(L[g],w);

int s=0;

114

int s1=0;

i=1;1035
while(i<=b and s<n)

{

if(i-g>0)

{

if(size(L[i-g])>0)1040
{

for(j=1;j<=size(L[i-g]);j++)

{

v=L[i-g][j];

v[k+1]=v[k+1]+1;1045
L[i]=insert(L[i],v);

}

}

}

if(size(L[i])>0){s1=1;}1050
s=s1*(s+1);

s1=0;

i++;

}

int b1=i-1;1055
list M=L,b1;

return(M);

}

///

proc WSemigroup(list X,int b0)1060
"USAGE: WSemigroup(X,b0);

X a list of polinomials in one vaiable, say t.

b0 an integer

COMPUTE: Weierstrass semigroup of space curve C,which is given by a parametrization

X[1](t),...,X[k](t), till the bound b0.1065

ASSUME: b0 is greater then conductor

RETURN: list M of size 5.

M[1]= list of integers, which are minimal generators set of the Weierstrass semigroup.

M[2]=integer, conductor of the Weierstrass semigroup.1070
M[3]=intvec, all elements of the Weierstrass semigroup till some bound b,

which is greather than conductor.

WARNING: works only over the ring with one variable with ordering ds

EXAMPLE: example WSemigroup; shows an example"

1075
{

int k=size(X);

intvec G;

int i,i2;

poly t=var(1);1080
poly h;

int g;

for(i=1;i<=k;i++)

{G[i]=ord(X[i]);}

for(i=1;i<k;i++)1085
{

for(i2=i;i2<=k;i2++)

{

if(G[i]>G[i2])

{1090
g=G[i];G[i]=G[i2];G[i2]=g;

h=X[i];X[i]=X[i2];X[i2]=h;

}

}

}1095
list U=Semi(G,b0);

list L=U[1];

int b=U[2];

G=U[3];

int k1=size(G);1100
list N;

list l;

for(i=1;i<=b;i++){N[i]=l;}

int j;

for(j=b0;j>b;j--){L=delete(L,j);}1105
poly p;

int s;

int e;

for(i=1;i<=b;i++)

{1110
for(j=1;j<=size(L[i]);j++)

{

p=1;

for(s=1;s<=k;s++)

{1115
for(e=1;e<=L[i][j][s];e++)

{

p=p*X[s];

p=jet(p,b);

}1120
}

115

N[i]=insert(N[i],p);

}

}

int j1;1125
int j2;

list M;

poly c1;

poly c2;

poly f;1130
int m;

int b1;

ideal I;

matrix C;

matrix C1;1135
int q;

int i1;

i=1;

while(i<=b)

{1140
for(j1=2;j1<=size(N[i]);j1++)

{

for(j2=1;j2<j1;j2++)

{

c1=coeffs(N[i][j1],t)[i+1,1];1145
c2=coeffs(N[i][j2],t)[i+1,1];

f=c2*N[i][j1]-c1*N[i][j2];

m=ord(f);

if(m>=0)

{1150
if(size(N[m])==0)

{

N[m]=insert(N[m],f);

if(size(L[m])==0)

{1155
M=AddElem(L,b,k,m,G[1]);

L=M[1];

b1=M[2];

G[k1+1]=m;

X[k+1]=f;1160
N[m]=insert(N[m],f);

k=k+1;

k1=k1+1;

if(b1<b)

{1165
for(i1=1;i1<=b1;i1++)

{

for(s=1;s<=size(N[i1]);s++){N[i1][s]=jet(N[i1][s],b1);}

}

for(s=size(N);s>b1;s--){N=delete(N,s);}1170
for(s=size(L);s>b1;s--){L=delete(L,s);}

}

b=b1;

}

}1175
else

{

for(q=1;q<=size(N[m]);q++){I[q]=N[m][q];}

I[size(N[m])+1]=f;

C=coeffs(I,t);1180
C1=gauss_col(C);

if(C1[size(N[m])+1]!=0){N[m]=insert(N[m],f);}

}

}

}1185
}

i++;

}

intvec S;

j=1;1190
for(i=1;i<=b;i++)

{

if(size(L[i])>0){S[j]=i;j++;}

}

U=Semi(G,b);1195
G=U[3];

list Q=G,b-G[1]+1,S;

return(Q);

}

example1200
{

"EXAMPLE:";echo=2;

ring r=0,(t),ds;

list X=t4,t5+t11,t9+2*t7;

list L=WSemigroup(X,30);1205
L;

}

//

116

static proc quickSubst(poly h, poly r, poly s,ideal I)1210
{

//=== computes h(r,s) mod I for h in Q[x(1),x(2),a]

attrib(I,"isSB",1);

if((r==x(1))&&(s==x(2))){return(reduce(h,I));}

poly q1 = 1;1215
poly q2 = 1;

poly q3 = 1;

int i,j,e1,e2,e3;

list L,L1,L2,L3;

if(r==x(1))1220
{

matrix M=coeffs(h,x(2));

L[1]=1;

for(i=2;i<=nrows(M);i++)

{1225
q2 = reduce(q2*s,I);

L[i]=q2;

}

i=1;

h=0;1230
while(i <= nrows(M))

{

if(M[i,1]!=0)

{

h=h+M[i,1]*L[i];1235
}

i++;

}

h=reduce(h,I);

return(h);1240
}

if(s==x(2))

{

matrix M=coeffs(h,x(1));

L[1]=1;1245
for(i=2;i<=nrows(M);i++)

{

q1 = reduce(q1*r,I);

L[i]=q1;

}1250
i=1;

h=0;

while(i <= nrows(M))

{

if(M[i,1]!=0)1255
{

h=h+M[i,1]*L[i];

}

i++;

}1260
h=reduce(h,I);

return(h);

}

for(i=1;i<=size(h);i++)

{1265
if(leadexp(h[i])[1]>e1){e1=leadexp(h[i])[1];}

if(leadexp(h[i])[2]>e2){e2=leadexp(h[i])[2];}

if(leadexp(h[i])[3]>e3){e3=leadexp(h[i])[3];}

}

for(i = 1; i <= size(h); i++)1270
{

L[i] = list(leadcoef(h[i]),leadexp(h[i]));

}

L1[1]=1;

L2[1]=1;1275
L3[1]=1;

for(i=1;i<=e1;i++)

{

q1 = reduce(q1*r,I);

L1[i+1]=q1;1280
}

for(i=1;i<=e2;i++)

{

q2 = reduce(q2*s,I);

L2[i+1]=q2;1285
}

for(i=1;i<=e3;i++)

{

q3 = reduce(q3*var(3),I);

L3[i+1]=q3;1290
}

int m=size(L);

i = 1;

h = 0;

while(i <= m)1295
{

h=h+L[i][1]*L1[L[i][2][1]+1]*L2[L[i][2][2]+1]*L3[L[i][2][3]+1];

117

i++;

}

h=reduce(h,I);1300
return(h);

}

static proc semi2char(intvec v)

{1305
intvec k=v[1..2];

intvec w=v[1];

int i,j,p,q;

for(i=2;i<size(v);i++)

{1310
w[i]=gcd(w[i-1],v[i]);

}

for(i=3;i<=size(v);i++)

{

k[i]=v[i];1315
for(j=2;j<i;j++)

{

k[i]=k[i]-(w[j-1] div w[j]-1)*v[j];

}

}1320
return(k);

}

///

proc primparam(poly x,poly y,int c)

"USAGE: MultiplicitySequence(x,y,c); x poly, y poly, c integer1325
ASSUME: x and y are polynomials in k(a)[t] such that (x,y) is a primitive parametrization of

a plane curve branch and ord(x)<ord(y).

RETURN: Hamburger-Noether Matrix of the curve branch given parametrically by (x,y).

EXAMPLE: example primparam; shows an example

"1330
{

int i,h;

poly F,z;

list L;

while(ord(x)>1)1335
{

list v;

while(ord(y)>=ord(x))

{

F=divide(y,x,c);1340
if(ord(F)==0)

{

v=insert(v,subst(F,t,0),size(v));

y=F-subst(F,t,0);

}1345
else

{

v=insert(v,0,size(v));

y=F;

}1350
}

v=insert(v,t,size(v));

L=insert(L,transform(v),size(L));

z=x;

x=y;1355
y=z;

kill v;

}

if(ord(x)==1)

{1360
list v;

while(i<c)

{

F=divide(y,x,c);

if(ord(F)==0)1365
{

v=insert(v,subst(F,t,0),size(v));

y=F-subst(F,t,0);

}

else1370
{

v=insert(v,0,size(v));

y=F;

}

if(y==0)1375
{

v=insert(v,t,size(v));

break;

}

i++;1380
}

L=insert(L,transform(v),size(L));

}

return(compose(L));

}1385

118

example

{

"EXAMPLE:"; echo=2;

ring r=(0,a),t,ds;

poly x=t6;1390
poly y=t8+t11;

int c=15;

primparam(x,y,c);

}

1395
//////////////////////////////////////

//L is a list of polynomials

//////////////////////////////////////

static proc transform(list L)

{1400
matrix m2;

matrix m1=matrix(L[1]);

for(int i=2;i<=size(L);i++)

{

m2=matrix(L[i]);1405
m1=concat(m1,m2);

}

return(m1);

}

///1410
//L is a list of matrices

///////////////////////////////////////

static proc compose(list L)

{

matrix M[ncols(L[1])][1]=transpose(L[1]);1415
for(int i=2;i<=size(L);i++)

{

M=concat(M,transpose(L[i]));

}

return(transpose(M));1420
}

//

static proc rduce(poly p)

{

int n=ord(p);1425
poly q=p/(tˆn);

return(q);

}

//

static proc divide(poly p,poly q,int c)i1430
{

int n=ord(p);

int m=ord(q);

poly p’=rduce(p);

poly q’=rduce(q);1435
poly r=tˆ(n-m)*p’*jet(1,q’,c);

return(jet(r,c));

}

///

static proc contact(list L)1440
{

def M=L[1];

intvec v=L[2];

int s,j,i;

for(i=1;i<=size(v);i++)1445
{

if(v[i]<0){v[i]=-1-v[i];}

for(j=1;j<=v[i];j++)

{

s=s+1;1450
if(find(string(M[i,j]),"a")!=0){return(s);}

}

}

}

///1455
static proc converter(list L)

{

def s=basering;

list D;

int i,c;1460
for(i=1;i<=size(L);i++)

{D=insert(D,deg(L[i][2]),size(D));}

ring r=(0,a),(t),ds;

list L=imap(s,L);

poly x,y,z;1465
list A,B;

for(i=1;i<=size(L);i++)

{A[5]=D[i];

x=L[i][1][1];

y=L[i][1][2];1470
if(ord(x)<=ord(y)){A[3]=0;}

else{A[3]=1;

z=x;

119

x=y;

y=z;1475
}

c=bound(x,y);

if(c==-1){ERROR("Bound is not enough");}

A[1]=primparam(x,y,c);

A[2]=lengths(A[1]);1480
A[4]=0;

B=insert(B,A,size(B));

A=list();

}

ring r1=(0,a),(x,y),ds;1485
list hne=fetch(r,B);

export(hne);

return(r1);

}

//1490
static proc intermat(list L)

{

int s=size(L);

intvec v=L[1][5];

intvec w1;1495
int i,j,d,b,l,k,c,o,p;

for(i=2;i<=s;i++)

{v=v,L[i][5];}

intvec u=v[1];

for(i=2;i<=s;i++)1500
{

l=u[size(u)]+v[i];

u=u,l;

}

int m=u[size(u)];1505
intmat M[m][m];

for(i=1;i<=m;i++)

{

for(j=i+1;j<=m;j++)

{1510
d=sorting(u,i);

b=sorting(u,j);

if(d==b){k=contact(L[d]);

w1=multsequence(L[d]);

if(size(w1)<k){for(p=size(w1)+1;p<=k;p++)1515
{w1=w1,1;} }

for(o=1;o<=k;o++){c=c+w1[o]*w1[o];}

M[i,j]=c;

c=0;

}1520
else

{M[i,j]=intersection(L[d],L[b]);}

}

}

return(M);1525
}

///

static proc lengths(matrix M)

{

intvec v;1530
int s,i,j;

for(i=1;i<=nrows(M);i++)

{

for(j=1;j<=ncols(M);j++)

{1535
if(M[i,j]==t)

{

v[i]=j-1;

if(i==nrows(M)){s=1;}

break;1540
}

}

}

if(s==0){v[nrows(M)]=-j;}

return(v);1545
}

//

static proc sorting(intvec u,int k)

{

int s=size(u);1550
int i;

for(i=1;i<=s;i++)

{

if(u[i]>=k){break;}

}1555
return(i);

}

//

proc MultiplicitySequence(ideal i)

"USAGE: MultiplicitySequence(i); i ideal1560
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

120

RETURN: list X of charts. Each chart contains the multiplicity sequence of

the corresponding branch.

EXAMPLE: example MultiplicitySequence; shows an example

"1565
{

def s=CurveParam(i);

setring s;

int j,k;

def r1=converter(Param);1570
setring r1;

list Y=hne;

list X;

for(j=1;j<=size(Y);j++)

{1575
for(k=1;k<=Y[j][5];k++)

{

X=insert(X,multsequence(Y[j]),size(X));

}

}1580
return(X);

}

example

{

"EXAMPLE:"; echo = 2;1585
ring r=0,(x,y),ds;

ideal i=x14-x4y7-y11;

MultiplicitySequence(i);

}

///1590
proc IntersectionMatrix(ideal i)

"USAGE: IntersectionMatrix(i); i ideal

ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

RETURN: intmat of the intersection multiplicities of the branches.

EXAMPLE: example IntersectionMatrix; shows an example1595
"

{

def s=CurveParam(i);

setring s;

int j,k;1600
def r1=converter(Param);

setring r1;

list Y=hne;

return(intermat(Y));

}1605
example

{

"EXAMPLE:"; echo = 2;

ring r=0,(x,y),ds;

ideal i=x14-x4y7-y11;1610
IntersectionMatrix(i);

}

///

proc CharacteristicExponents(ideal i)

"USAGE: CharacteristicExponents(i); i ideal1615
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

RETURN: list X of charts. Each chart contains the characteristic exponents

of the corresponding branch.

EXAMPLE: example CharacteristicExponents; shows an example

"1620
{

def s=CurveParam(i);

setring s;

int j,k;

def r1=converter(Param);1625
setring r1;

list X;

list Y=hne;

for(j=1;j<=size(Y);j++)

{1630
for(k=1;k<=Y[j][5];k++)

{

X=insert(X,invariants(Y[j])[1],size(X));

}

}1635
return(X);

}

example

{

"EXAMPLE:"; echo = 2;1640
ring r=0,(x,y),ds;

ideal i=x14-x4y7-y11;

CharacteristicExponents(i);

}

///1645
static proc contactNumber(int a,intvec v1,intvec v2)

{

//==== a is the intersection multiplicity of the branches

//==== v1,v2 are the multiplicity sequences

121

int i,c,d;1650
if(size(v1)>size(v2))

{

for(i=size(v2)+1;i<=size(v1);i++)

{

v2[i]=1;1655
}

}

if(size(v1)<size(v2))

{

for(i=size(v1)+1;i<=size(v2);i++)1660
{

v1[i]=1;

}

}

while((c<a)&&(d<size(v1)))1665
{

d++;

c=c+v1[d]*v2[d];

}

if(c<a)1670
{

d=d+a-c;

}

return(d);

}1675
//

proc ContactMatrix(ideal I)

"USAGE: ContactMatrix(I); I ideal

ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

RETURN: intmat N of the contact matrix of the braches of the curve.1680
EXAMPLE: example ContactMatrix; shows an example

"

{

def s=CurveParam(I);

setring s;1685
int j,k,i;

def r1=converter(Param);

setring r1;

list Y=hne;

list L;1690
for(j=1;j<=size(Y);j++)

{

for(k=1;k<=Y[j][5];k++)

{

L=insert(L,multsequence(Y[j]),size(L));1695
}

}

intmat M=intermat(Y);

intmat N[nrows(M)][ncols(M)];

for(i=1;i<=nrows(M);i++)1700
{

for(j=i+1;j<=ncols(M);j++)

{

N[i,j]=contactNumber(M[i,j],L[i],L[j]);

N[j,i]=N[i,j];}1705
}

return(N);

}

example

{1710
"EXAMPLE:"; echo = 2;

ring r=0,(x,y),ds;

ideal i=x14-x4y7-y11;

ContactMatrix(i);

}1715
///

proc plainInvariants(ideal i)

"USAGE: plainInvariants(i); i ideal

ASSUME: i is the defining ideal of a (reducible) plane curve singularity.

RETURN: list L of charts. L[j] is the invariants of the jth branch and the last entry1720
of L is a list containing the intersection matrix,contact matrix,resolution

graph of the curve.

L[j][1]: intvec (characteristic exponents of the jth branch)

L[j][2]: intvec (generators of the semigroup of the jth branch)

L[j][3]: intvec (first components of the puiseux pairs of the jth branch)1725
L[j][4]: intvec (second components of the puiseux pairs of the jth branch)

L[j][5]: int (degree of conductor of the jth branch)

L[j][6]: intvec (multiplicity sequence of the jth branch.

L[last][1]: intmat (intersection matrix of the branches)

L[last][2]: intmat (contact matrix of the branches)1730
L[last][3]: intmat (resolution graph of the curve)

SEE ALSO: MultiplicitySequence, CharacteristicExponents, IntersectionMatrix,

ContactMatrix

EXAMPLE: example plainInvariants; shows an example

"1735
{

def s=CurveParam(i);

122

setring s;

int j,k;

def r1=converter(Param);1740
setring r1;

list Y=hne;

list L,X,Q;

for(j=1;j<=size(Y);j++)

{1745
for(k=1;k<=Y[j][5];k++)

{

L=insert(L,invariants(Y[j]),size(L)); //computes the same thing again

X=insert(X,invariants(Y[j])[1],size(X));

}1750
}

L=insert(L,list(),size(L));

L[size(L)]=insert(L[size(L)],intermat(Y),size(L[size(L)]));

intmat N[nrows(intermat(Y))][ncols(intermat(Y))];

for(k=1;k<=nrows(intermat(Y));k++)1755
{

for(j=k+1;j<=ncols(intermat(Y));j++)

{

N[k,j]=contactNumber(intermat(Y)[k,j],L[k][6],L[j][6]);

N[j,k]=N[k,j];1760
}

}

L[size(L)]=insert(L[size(L)],N,size(L[size(L)]));

Q=L[size(L)][2],X;

L[size(L)]=insert(L[size(L)],resolutiongraph(Q),size(L[size(L)]));1765
return(L);

}

example

{

"EXAMPLE:"; echo = 2;1770
ring r=0,(x,y),ds;

ideal i=x14-x4y7-y11;

plainInvariants(i);

}

//1775
static proc bound(poly x,poly y)

{

poly z=x+y;

int m=ord(z);

int i;1780
int c=-1;

for(i=2;i<=size(z);i++)

{

if(gcd(m,leadexp(z[i])[1])==1)

{1785
c=2*leadexp(z[i])[1];

break;

}

else

{1790
m=gcd(m,leadexp(z[i])[1]);

}

}

return(c);

}1795
///

static proc boundparam(poly f)

{

int i;

int l=size(f);1800
int m=leadexp(f[l])[1];

for(i=l-1;i>=1;i--)

{

if(gcd(m,leadexp(f[i])[1])==1)

{1805
i=i-1;

break;

}

else

{1810
m=gcd(m,leadexp(f[i])[1]);

}

}

return(2*leadexp(f[i+1])[1]);

}1815

123

APPENDIX B

The Singular Library ”ArfClosure.lib”

///

version="$Id: $";

category="Singularity Theory";

info="

LIBRARY: space_curve.lib1820

AUTHOR: Feza Arslan email: feza.arslan@msgsu.edu.tr

Nil Sahin email: e150916@metu.edu.tr

1825
PROCEDURES:

Blwup(L,c); BlowingUp of the ring generated by the elements of L

Arfjet(L,c); Arf Closure of the ring generated by the elements of L in

simplest form

genlist(L,c); Generators of the maximal ideal of the Arf Closure of the1830
ring generated by the elements of L

Puiseux(x,y); Puiseux exponents of the curve generated by (x(t),y(t))

PuiseuxToChar(L); Converts puiseux exponents to characteristic exponents

";

1835
LIB "sing.lib";

LIB "qhmoduli.lib";

//

//-------------Computing the Arf Closure--------------------//1840
//

proc Blwup(list L,intc)

"USAGE: Blwup(L,c);

L=list

c=integer1845

ASSUME: The basering is r=0,t,ds

L is a list of polynomials in r

COMPUTE: First blowing up of the ring with for which has the maximal ideal generated1850
by the elements of L.

RETURN: list of polynomials which generates the maximal ideal of the blowing up

EXAMPLE: example BlowingUp; shows an example"1855
{list F=list();

int s=size(L);

int i=1;

while(i<=s){int s_i=ord(L[i]);

def A=F;1860
def F=insert(A,s_i);

i++;}

list E=list();1865
int j=1;

int m=Min(F);

while(j<=s){if(ord(L[j])==m){int k=1;

while(k<=s){if(k!=j){def K=insert(E,divide(L[k],L[j],c));

def E=K;}1870
else{def K=insert(E,L[j]);

def E=K;}

k++;}

break;}

else{j++;}}1875
return(E);

}

example

{

"EXAMPLE:";1880

124

"ring r=0,t,ds;

list L=tˆ3,tˆ5

int c=10;

Blwup(L,c);";1885

ring r=0,t,ds;

list L=tˆ3,tˆ5

int c=10;

Blwup(L,c);1890
}

//

static proc rduce(poly p){

int n=ord(p);

poly q=p/(tˆn);1895
return(q);

}

//

static proc invers(poly p,int k)

{1900
poly q=1/p[1];

poly re=q;

p=q*(p[1]-jet(p,k));

poly s=p;

while(p!=0)1905
{re=re+q*p;

p=jet(p*s,k);}

return(re);

}

//1910
static proc divide(poly p,poly q,int c)

//Assume the order of p is greater than or equal to the order of q

//Divides p by q till the terms of power c.

{

int n=ord(p);1915
int m=ord(q);

poly p’=rduce(p);

poly q’=rduce(q);

poly r=tˆ(n-m)*p’*invers(q’,c);

return(jet(r,c));1920
}

//

static proc sub(list L)

//Assume L is a list of polynomials

//Subtracts the constant terms from the entries of L.1925
{

int s=size(L);

int i=1;

while(i<=s){

if(leadmonom(L[i])==1){L[i]=L[i]-lead(L[i]);}1930
i++;}

return(L);

}

//

static proc mmbrshp(list L,poly f)1935
// returns 1, if f is an elemnt of L; returns 0 if not.

{

int s=size(L);

int i=1;

while(i<=s){if(L[i]==f){break;}1940
else{i++;}

}

if(i==s+1){return(0);}

else{return(1);}

}1945
//

static proc Orders(list L)

//Assume L is a list of polynomials

//Returns a new list consisting of the orders of the elements of L(in reverse order)

{1950
list F=list();

int s=size(L);

int i=1;

while(i<=s){int s_i=ord(L[i]);

def A=F;1955
def F=insert(A,s_i);

i++;}

return(F);

}

//1960
static proc MinOrdElt(list L)

//Assume L is a list of polynomials

//Returns minimum ordered element of L

{

int m=Min(Orders(L));1965
poly f=FindOr(L,m);

return(f);

}

125

//

static proc irredundant(list L)1970
//Deletes the 0’s from the list L

{

poly f=0;

while(mmbrshp(L,f)==1){

int j=Place(L);1975
def T=L;

def L=delete(T,j);

}

return(L);}

//1980
static proc Place(list L)

//L is a list of polynomials

//Returns the index of the minimum ordered element of L

{

int j=1;1985
while(ord(L[j])!=Min(Orders(L))){j++;}

return(j);

}

//

static proc Arfclosure(list L,int c)1990
//Assume L is a list of polynomials and r=0,t,ds is the base ring

{

poly g=1;

list X=list();

while(Min(Orders(irredundant(sub(L))))!=1){1995
def K=irredundant(sub(L));

def L=Blwup(K,c);

poly h=g;

poly g=h*MinOrdElt(K);

def Y=X;2000
def X=insert(Y,g);

}

return(X);

}

//2005
proc Arfjet(list L,int c)

"USAGE: Arfjet(L,c);

L list

c integer

2010
ASSUME: The basering is r=0,t,ds

L is a list of polynomials.

COMPUTE: Arf Closure of the local ring whose maximal ideal is generated by the elements of L.

2015
RETURN: A list S of polynomials of degree less than or equal to c

If the output is S=S[1],S[2],...,S[m], the Arf Closure is k+k S[1]+...+k S[m]

EXAMPLE: example Arfjet; shows an example"

{2020
list S=Arfclosure(L,c);

int s=size(S);

poly f=S[1];

int k=ord(f);

int i=1;2025
while(i<=s){S[i]=jet(S[i],k);

i++;}

return(S);

}

example2030
{

"EXAMPLE:";

"ring r=0,t,ds;

list L=t5,t7+t9,t11;2035
int c=17;

Arfjet(L,c);

";

ring r=0,t,ds;2040
list L=t5,t7+t9,t11;

int c=17;

Arfjet(L,c);

}

//2045
proc genlist(list L,int c)

"USAGE: genlist(L,c);

L list

c integer

2050
ASSUME: The basering is r=0,t,ds

L is a list of polynomials.

COMPUTE: Generetors of the Arf Closure of the local ring whose maximal ideal is generated

by the elements of L.2055

126

RETURN: A list S of polynomials of degree less than or equal to c

If the output is K=K[1],K[2],...,K[m], the Arf Closure is k[[K[1],...,K[m]]].

EXAMPLE: example genlist; shows an example"2060
{

list C=list();

list A=Arfjet(L,c);

int s=size(A);

int i=1;2065
while(i<=s){list B=insert(C,ord(A[i]));

def C=B;

i++;}

def D=reorder(B);

int n=Min(D);2070
int h=D[s];

int j=1;

while(j<h){int k=D[1];

def E=insert(D,k+1);

def D=E;2075
j++;}

list F=generator(reorder(D));

int k=1;

list M=list();

while(k<=size(F)){int p=F[k];2080
if(mmbrshp(Orders(A),p)==0){list K=insert(M,tˆp);

def M=K;}

else{poly q=FindOr(A,p);

list K=insert(M,q);

def M=K;}2085
k++;}

return(K);}

example

{

"EXAMPLE:";2090

"ring r=0,t,ds;

list L=t5,t7+t9,t11;

int c=17;

genlist(L,c);2095
";

ring r=0,t,ds;

list L=t5,t7+t9,t11;

int c=17;2100
genlist(L,c);

}

///

static proc FindOr(list L,int n)

//Gives the first element of L of order n2105
{

int s=size(L);

int i=1;

while(i<=s){if(ord(L[i])==n){break;}

else{i++;}2110
}

return(L[i]);

}

//

static proc generator(list L)2115
//Assume L is a list of integers which is sorted in increasing order

//Finds an Apery set for L with respect to L[1]

{

int s=size(L);

int m_1=Min(L);2120
int i=2;

list M=0;

list G=m_1;

while(i<=s){int m_i=L[i] mod m_1;int t=mmbrshp(M,m_i);

if(t==1){i++;}2125
else{def T=insert(M,m_i);

def M=T;

def K=insert(G,L[i]);

def G=K;

i++;}}2130
return(G);

}

//

static proc reorder(list L)

//aligns the elements of L in the revers order. That is, first element of2135
//L becomes the last and so on.

{

int s=size(L);

int i=2;

int k=L[1];2140
list E=k;

while(i<=s){def T=E;

def E=insert(T,L[i]);

i++;

127

}2145
return(E);

}

//

//-------------Finding the Puiseux Expansion----------------//

//2150
proc Puiseux(poly x,poly y)

"USAGE: Puiseux(x,y);

x polynomial

y polynomial

2155
ASSUME: Base ring is r=0,t,ds.

COMPUTE: Puiseux form of the parametrization (x(t),y(t)) by using the

Borodzik’s Algorithm.

2160
RETURN: list L containing the powers of the terms having nonzero coefficients

in the Puiseux Expansion.

EXAMPLE: example Puiseux; shows an example"

{2165
poly P0=y;

number p=ord(x);

number q=ord(y);

list L=p,q;

number p1=gcd(p,q);2170
if(p1!=1)

{

poly x’=diff(x,t);

poly y’=diff(y,t);

poly x’’=diff(x’,t);2175
poly P1=y’*x-x’*y*(q/p);

number r1=ord(P1)-(p-1);

L[3]=r1;

int k=1;

number p2=gcd(p1,r1);2180
poly P2;

number r2;

while(p2!=1)

{

P2=diff(P1,t)*x*x’-x’ˆ2*(r1/p)*P1-(2*k-1)*(x’’)*x*(P1);2185
r2=ord(P2)-(2*k+1)*(p-1);

L[3+k]=r2;

p2=gcd(p2,r2);

P1=P2;

r1=r2;2190
k=k+1;

}

}

return(L);

}2195
example

{

"EXAMPLE:";

"ring r=0,t,ds;

poly x=t12+t13+(37/28)*t14;2200
poly y=t18+(3/2)*t19+(33/14)*t20+(13/14)*t21+(675/1568)*t22-(675/3136)*t23;

Puiseux(x,y);

";

ring r=0,t,ds;

poly x=t12+t13+(37/28)*t14;2205
poly y=t18+(3/2)*t19+(33/14)*t20+(13/14)*t21+(675/1568)*t22-(675/3136)*t23;

Puiseux(x,y);

}

///

proc PuiseuxToChar(list L)2210
"USAGE: PuiseuxToChar(L);

L list

ASSUME: L is the list of the powers in a Puiseux expansion

2215
COMPUTE: Converts the Puiseux powers to the characteric exponents.

RETURN: list L containing the characteristic exponents.

EXAMPLE: example PuiseuxToChar; shows an example"2220
{

list A;

A[1]=L[1];

int i=2;

int r=int(L[1]);2225
int p;

while(r!=1)

{

p=gcd(r,int(L[i]));

if(p<r)2230
{

A[size(A)+1]=L[i];

128

r=p;

}

i++;2235
}

return(A);

}

example

{2240
"EXAMPLE:";

"list L=6,12,18,21,25;

PuiseuxToChar(L);";

list L=6,12,18,21,25;

PuiseuxToChar(L);2245
}

///

129

VITA

PERSONAL INFORMATION

Name, Surname: Nil Şahin

Date and Place of Birth: 19 September 1983, Ankara

Nationality: Turkish (TC)

Phone: (+90) 507 5797263

E-mail : e150916@metu.edu.tr

EDUCATION

Degree Institution Year

Visiting Scholar Technische Universitat Kaiserslautern, Department of Mathematics 2011

BS Ankara University, Department of Mathematics 2001-2005

High School Çankaya High School 1997-2001

FOREIGN LANGUAGES

English (Fluent), German (Beginner)

RESEARCH INTERESTS

Computational Algebraic Geometry and Commutative Algebra

- Arf Rings and their Hilbert Functions,

- Gluing of Monomial Curves and their Hilbert Functions,

- Invariants of Plane Algebraic Curves

SCHOLARSHIPS

- Ph. D. Scholarship Program, TUBITAK, 2005 - 2010

- Research Scholarship for Ph.D. students, TUBITAK, march 2011-december 2011

130

PUBLICATIONS, WRITTEN CODES

- Symmetric Numerical Semigroup Families Supporting Rossi’s Conjecture (submitted)

- curvepar.lib , SINGULAR 3-1-4 Library for Curve Resolutions

131

