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ON THE PARAMETERS OF ALGEBRAIC GEOMETRY
CODES RELATED TO ARF SEMIGROUPS

ANTONIO CAMPILLO, JOSE IGNACIO FARRAN, AND CARLOS MUNUERA

Abstract. In this paper we compute the order (or Feng-Rao) bound on the

minimum distance of one-point algebraic geometry codes CΩ(P, ρlQ), when the

Weierstrass semigroup at the point Q is an Arf semigroup. The results developed

to that purpose also provide the dimension of the improved geometric Goppa codes

related to these CΩ(P, ρlQ).

Index Terms: Linear codes, algebraic geometry codes, improved geometric Goppa

codes, Feng-Rao (or order) bound, Arf semigroups.

1. Introduction

Let Fq be a finite field and F a function field over Fq. The construction of algebraic

geometry (or geometric Goppa) codes from F is well known (see [9]). Take a rational

place Q and let K∞(Q) be the set (ring) of functions having no poles outside Q. Let

S = S(Q) be the Weierstrass semigroup of Q, that is S = {−vQ(f) | f ∈ K∞(Q)},
where vQ is the valuation at Q. Usually we shall write S as an enumeration of its

elements in increasing order, S = {ρ1 = 0 < ρ2 < · · · }. For a positive integer m, we

also consider L(mQ) = {f ∈ K∞(Q) | vQ(f) ≥ −m}. Given a set of n distinct rational

places in F , P = {P1, · · · , Pn}, such that Q 6∈ P, we consider the evaluation map

evP : K∞(Q) −→ Fnq , evP(f) = (f(P1), · · · , f(Pn))

and define the (one-point) algebraic geometry code CΩ(P, ρlQ) = evP(L(ρlQ))⊥, that

is, if for i = 1, 2, · · · , we choose a function hi ∈ K∞(Q) such that −vQ(hi) = ρi, then

CΩ(P, ρlQ) is defined by the system of parity checks h1, · · · ,hl, with hj = evP(hj).

For simplicity, from now on, we shall write Cl instead of CΩ(P, ρlQ) if no confusion

arises.

The parameters of Cl are as follows: its length is obviously n and its dimension is at

least n − l, with equality if ρl < n. When ρl ≥ n, then some of the checks h1, · · · ,hl
can be dependent, and the exact value of the dimension can be computed with the help

of the Riemann-Roch theorem. Thus, these two parameters are, at least theoretically,

easy to compute. On the contrary, the minimum distance of Cl is often difficult to

compute. A general lower bound on d(Cl) is given by the Goppa bound (or Goppa
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designed minimum distance), d(Cl) ≥ dG(l) = l+ 1− g, where g is the genus of F (that

is, the number of gaps in S). A better bound is the so-called Feng-Rao or order bound

dORD(Cl), defined as follows (see [5] and [9]): for a pole ρ ∈ S, let us consider the set

A[ρ] = {p ∈ S|ρ− p ∈ S},
Then, the order bound on the minimum distance of Cl is

dORD(l) = min{#A[ρ]|ρ ∈ S, ρ ≥ ρl+1}
and it holds that dG(l) ≤ dORD(l) ≤ d(Cl). A remarkable property of the order bound

is that it is computed only in terms of the semigroup S (that is, without any relation

neither with F nor the set P).

A way to improve algebraic geometry codes was introduced by Feng and Rao in [6].

For a positive integer d let us consider the set

Rd = {i | #A[ρi] < d}.
The improved geometric Goppa code C̃(d) is defined as

C̃(d) = {c ∈ Fn | c · hi = 0 for all i ∈ Rd}
(see [6, 9, 12]). The parameters of C̃(d) are as follows: its minimum distance is at least

d. Furthermore, if d = dORD(l), then Cl ⊆ C̃(d) (which explains the meaning of the

term ‘improved’), so its dimension is at least the dimension of Cl. On the other hand,

it is clear that dim C̃(d) ≥ n−#Rd, with equality if 2c ≤ n and 1 ≤ d ≤ 2r− 2, where

c = ρr is the conductor of S. Thus, here we find again that the unknown parameters

of the code can be estimated in terms of the semigroup S (and more precisely, they are

closely related to the A-sets A[ρ] in S).

In this paper, we show how to compute both, the order bound on the minimum distance

of an (one-point) algebraic geometry code and the redundancy of the corresponding

improved code, when the involved semigroup S is an Arf semigroup. The organization

of the paper is as follows: Arf semigroups, their main properties and some examples

are presented in section 2. In section 3, we show how to deal with the sets A[ρ] for

Arf semigroups. These results are used in section 4 for computing the order bound on

the minimum distance of Cl, and again in section 5 in order to give a formula for #Rd.

With regard to this last section, we have to point out that the study of the sequence

(#Rd) has been already treated in the paper [12] by Pellikaan and Torres, and in fact,

our section 5 can be viewed as a continuation of that paper. In particular, we simplify

and extend some results stated there, and solve some open problems from it.

2. Arf semigroups

Let S = {ρ1 = 0 < ρ2 < · · · } be a numerical semigroup. Let c = ρr be the conductor

of S and let g = c − r + 1 be its genus. The elements ρ ∈ S will be called poles and

the elements n ∈ N0 \ S will be called gaps.
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Definition 2.1. S is called an Arf semigroup if for every i, j, k ∈ N with i ≥ j ≥ k, it

holds that ρi + ρj − ρk ∈ S.

Arf semigroups were introduced by C. Arf in [1] as the semigroups of values of the

so called Arf one-dimensional local rings, which geometrically correspond to curve

singularities being maximal among the class of singularities with the same resolution

type (see [10] for details).

Remark 2.2. If ρi ≥ c, then for every j, k, with i ≥ j ≥ k, we have ρi + ρj − ρk ∈ S.

Thus, the condition stated in definition 2.1 should be imposed only in the range that

k ≤ j ≤ i < r.

The defining Arf condition can be changed by another, apparently weaker, property.

Proposition 2.3. Let S be a semigroup. The following conditions are equivalent:

a) S is Arf;

b) for every two positive integers i, k, with i ≥ k, it holds that 2ρi − ρk ∈ S.

Proof. Obviously every Arf semigroup verifies b). Conversely, let us assume b) and

let i, j, k, be positive integers such that k ≤ j ≤ i < r. We have to prove that

m = ρi + ρj − ρk ∈ S. If i = j or j = k, then it is clear. Otherwise, if k < j < i, let

i0 = i, j0 = j, k0 = k, and write

m = ρi0 + ρj0 − ρk0 = (2ρj0 − ρk0) + ρi0 − ρj0 .
Note that 2ρj0 − ρk0 ∈ S and 2ρj0 − ρk0 > ρj0 . Let i1, j1, k1 be defined by

ρi1 = max{2ρj0 − ρk0 , ρi0}
ρj1 = min{2ρj0 − ρk0, ρi0}
ρk1 = ρj0

thus m = ρi1 + ρj1 − ρk1 , with i1 ≥ j1 > k1 and i1 ≥ i0, j1 ≥ j0, k1 > k0. If i1 = j1, then

condition b) implies that m ∈ S; otherwise we can repeat the reasoning, obtaining

three increasing sequences of integers (it), (jt), (kt), such that

m = ρit + ρjt − ρkt
with it ≥ jt ≥ kt. There are two possibilities: if there exists an index h such that ih = jh
or jh = kh, then m ∈ S; otherwise, if it > jt > kt for all t, then, by construction, the

sequence (jt) is strictly increasing, so there exists an index h such that jh ≥ r, and

again we get m ∈ S.

Example 2.4. Let X be the Klein quartic, that is, the curve of homogeneous equation

X3Y + Y 3Z + Z3X = 0. Let Q be the point at infinity Q = (1 : 0 : 0) on X . The

Weierstrass semigroup of Q is easily seen to be S = {0, 3, 5, 6, 7, · · · }. Thus S is an Arf

semigroup.
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Example 2.5. Let us consider the tower of function fields (Tn) over Fq2, where T1 =

Fq2(x1) and for n ≥ 2, Tn is obtained from Tn−1 by adjoining a new element xn satisfying

the equation

xqn + xn =
xqn−1

xq−1
n−1 + 1

.

This tower was introduced by Garcia and Stichtenoth in [7] (following some previous

work of Feng, Rao and Pellikaan) and it attains the Drinfeld-Vlăduţ bound. Thus,

codes coming from this tower have great interest. However, the study of these codes

is turning out to be very hard. Some steps in this direction are given by Høholdt and

Voss [8], Pellikaan, Stichtenoth and Torres [11], and Chen [3], [4].

Let Qn be the rational place on Tn that is the unique pole of x1 . It is known (see [11])

that the Weierstrass semigroups Sn of Tn at Qn are as follows: S1 = N0, and for n ≥ 2,

Sn = q · Sn−1 ∪ {m ∈ N | m ≥ cn}
where

cm =

{
qn − q n+1

2 if n is odd;

qn − q n2 if n is even,

thus, it is easy to see by induction that all of them are Arf semigroups.

Usually, the codes constructed from this tower are one-point algebraic geometry codes,

CΩ(P, ρlQn). The minimum distance of some of these has been bounded by Chen

in [3],[4] where he gives codes on all members after level 4 of the family of curves,

having true minimum distance greater than the order bound, and uses these results to

get a sequence of codes giving an improvement on the Tsfasman-Vlăduţ-Zink bound.

However note that in those papers, neither the true minimum distance nor the order

bound are computed.

At the moment, the order bound is already computed for some types of semigroups,

including telescopic semigroups and semigroups generated by two elements (see [9]).

Some results are known for symmetric semigroups (see [9] and [2]). Remark that Arf

semigroups do not lie in these types, because they are, in general, not symmetric (that

is, c < 2g). The only exception are hyperelliptic semigroups.

Example 2.6. Let X be an hyperelliptic curve and let Q be a rational hyperelliptic

point on X . The Weierstrass semigroup of Q is hyperelliptic, that is, S = 〈2, t〉, for

some odd integer t ≥ 3 (if t = 3 the semigroup is often called elliptic). Hyperelliptic

semigroups are also Arf semigroups. In fact, if k ≤ j ≤ i < r, then ρi+ρj−ρk ∈ 2N ⊆ S.

Proposition 2.7. The only Arf symmetric semigroups are hyperelliptic semigroups.

Proof. As seen before, every hyperelliptic semigroup is an Arf semigroup. Conversely,

if S is Arf and ρ ∈ S, ρ < c, then ρ+ 1 6∈ S, because otherwise we have 2(ρ+ 1)− ρ =
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ρ + 2 ∈ S, and in the same way ρ + 3, ρ + 4, · · · ∈ S, contradicting the fact that

ρ < c. Thus two consecutive integers in the interval [0, c] cannot be both poles. If S is

symmetric, the same happens for gaps (if l, l+ 1 are gaps, then c− l− 2, c− l− 1 are

poles). Since 0 is always a pole, we get [0, c]∩S = [0, c]∩2N and S is hyperelliptic.

3. Computing A-sets in Arf semigroups

Let CΩ(P, ρlQ) be an one-point algebraic geometry code. Let S be the Weierstrass

semigroup at the point Q. In the previous sections we have seen how the computation

of both the order bound on the minimum distance of CΩ(P, ρlQ) and the dimension of

the improved codes related to it, involves computations concerning only the semigroup

S. More precisely, it requires the knowledge of the A-sets A[ρ]. This study is often

difficult for general semigroups. In this section we shall show that the study of the

structure and cardinality of the A[ρ]’s is rather simple for Arf semigroups. In order to

simplify the exposition, in what follows we shall assume S 6= N0.

For ρ ∈ S, let j be maximum such that {ρ1, · · · , ρj} ⊆ A[ρ]. Then

A[ρ] = {ρ1, · · · , ρj , ρ− ρ1, · · · , ρ− ρj}
because obviously {ρ1, · · · , ρj , ρ− ρ1, · · · , ρ − ρj} ⊆ A[ρ], and conversely, if ρk ∈ A[ρ]

with k > j, we have ρ−ρk = ρi with i ≤ j, since otherwise ρ−ρj+1 = ρi+ρk−ρj+1 ∈ S,

contradicting the choice of j.

However, note that the fact A[ρ] = {ρ1, · · · , ρj, ρ − ρ1, · · · , ρ − ρj} does not imply

#A[ρ] = 2j, since the set {ρ1, · · · , ρj , ρ − ρ1, · · · , ρ − ρj} can contain many repeated

elements. Thus we define for ρ ∈ S,

α(ρ) = max{j | ρ1, · · · , ρj ∈ A[ρ]}
β(ρ) = max{j | ρ1, · · · , ρj ∈ A[ρ], ρj ≤ ρ − ρj}

= max{j | ρj ∈ A[ρ], 2ρj ≤ ρ}.
Then α(ρ) ≥ β(ρ) and we have

A[ρ] = {ρ1, · · · , ρβ(ρ), ρ− ρ1, · · · , ρ− ρβ(ρ)}
with

#A[ρ] =

{
2β(ρ)− 1 if 2ρβ(ρ) = ρ;

2β(ρ) if 2ρβ(ρ) 6= ρ.

In particular, #A[ρ] is odd if and only if ρ ∈ 2S. The same happens for general

semigroups as we shall prove later on. Now, let us see what can be said about the

numbers α(ρ) and β(ρ). Let us begin with the case that #A[ρ] is odd.

Proposition 3.1. If S is Arf, then for every ρi ∈ S we have β(2ρi) = i and conse-

quently #A[2ρi] = 2i− 1.
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Proof. If S is Arf, then for every k ≤ i we have 2ρi − ρk ∈ S, so {ρ1, · · · , ρi} ⊆ A[2ρi].

If β(2ρi) > i then there exist j, k > i such that ρj + ρk = 2ρi what is impossible.

For poles ρ ∈ S\2S, we cannot give, in general, an explicit expression for β(ρ). However

we can give some bounds which are enough for our main purposes.

For a positive integer i, let pi = c + ρi+1 − 1. Clearly pi ≥ c for all i, so it is a pole

number. Furthermore pi = ρr + ρi+1 − 1 = ρr+ρi+1−1. In particular, for i ≥ r − 1 we

can write i = (r − 1) + t with t ≥ 0, and thenwe have ρi+1 = ρr+t = c + t, hence

pi = 2c + t− 1 = ρc+i.

Proposition 3.2. Let S be a numerical semigroup (not necessarily Arf). If ρ ∈ S and

ρ > pi−1, then {ρ1, · · · , ρi} ⊆ A[ρ]. If furthermore i < r, then #A[ρ] ≥ 2i.

Proof. If ρ > pi−1, then for j = 1, · · · , i, we have ρ − ρj ≥ c + ρi − ρj ≥ c. Thus

ρ− ρj ∈ S and ρj ∈ A[ρ], hence {ρ1, · · · , ρi, ρ− ρ1, · · · , ρ− ρi} ⊆ A[ρ]. If furthermore

i < r, then ρi < c so 2ρi ≤ pi−1 < ρ and ρi < ρ − ρi. Thus, all the elements in the set

{ρ1, · · · , ρi, ρ − ρ1, · · · , ρ− ρi} are distinct.

Remark 3.3. If S is Arf, proposition 3.2 means that α(ρ) ≥ i provided that ρ > pi−1.

Furthermore, if i < r then also β(ρ) ≥ i.

Proposition 3.4. If S is an Arf semigroup, then α(pi) = i. Furthermore, if i < r

then β(pi) = i and #A[pi] = 2i.

Proof. Since pi − ρi+1 = c − 1 6∈ S, then ρi+1 6∈ A[pi] and α(pi) ≤ i. The conclusion

follows from remark 3.3 and the fact that 2ρi < pi for i < r.

As said before, when i ≥ r− 1 the sequence (pi) runs over all poles ρ ≥ pr−1 = 2c− 1,

that is, for j ≥ c+ r − 1 we have ρj = pj−c. Since α(pj−c) = j − c, we obtain

A[ρj] = {ρ1, · · · , ρj−c, ρj − ρ1, · · · , ρj − ρj−c}.
If j ≥ c+ r, then ρj − ρs > ρj−c if and only if s ≤ r− 1, and we obtain then expression

A[ρj] = {ρ1, · · · , ρj−c, ρj − ρ1, · · · , ρj − ρr−1}
without repeated elements. In particular we get the well known result

Proposition 3.5. For j ≥ c+ r, we have #A[ρj] = j − g.

As a particular case of this proposition, we have #A[ρc+r] = c + r − g = 2r − 1. This

number is an upper bound for the cardinalities #A[ρj] when j ≤ c+ r.

Proposition 3.6. If j < c+ r, then β(ρj) ≤ r − 1 and #A[ρj] ≤ 2r − 2 < #A[ρc+r].

Proof. It suffices to show that β(ρj) ≤ r−1. Otherwise, if β(ρj) ≥ r for some j < c+r,

then we have 2ρr ≤ ρj ≤ ρc+r−1, what leads to 2c ≤ 2c − 1.
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Corollary 3.7. If ρr−1 + r ≤ j < c+ r, then β(ρj) = r − 1.

Proof. If ρr−1 + r ≤ j then pr−2 < ρj , and the result follows from remark 3.3 and

proposition 3.6.

4. The order bound on the minimum distance

Keeping the notations as in the introduction, let Cl = CΩ(P, ρlQ) be an algebraic

geometry code arising from a function field F , defined by the system of parity checks

h1, · · · ,hl, that is

Cl = {c ∈ Fnq | c · hi = 0 for all i = 1, · · · , l}.
The dimension of Cl is lower bounded by n− l, with equality when all the checks hi are

independent i = 1, · · · , l. It can be shown that this happens if ρl < n. The minimum

distance of Cl is lower bounded by the Goppa bound, dG(l) = l+ 1− g. A better bound

on the minimum distance is the order bound (or Feng-Rao bound), given by

dORD(l) = min{#A[ρ] | ρ ≥ ρl+1}.
The order bound is always better than the Goppa bound (in fact, it has been proved to

be sharp for a number of codes, see [9], but not always, see [3]). However, it is usually

difficult to compute.When the semigroup S is Arf, the results obtained in section 2

provide very quickly the order bound of Cl for all l.

Theorem 4.1. Let S be an Arf semigroup of genus g and let c = ρr be the conductor

of S. For i = 1, · · · , r − 1, let li = r + ρi+1 − 2. In addition, let l0 = 0. Then, for any

positive integer l, we have:

a) if li−1 < l ≤ li ≤ lr−1, then dORD(l) = 2i;

b) if c+ r − 2 = lr−1 ≤ l, then dORD(l) = dG(l) = l + 1− g.

Proof. Since lr−1 = r + c − 2, part b) follows from proposition 3.5. To prove a), let

us first note that for i = 1, · · · , r − 1, it holds that pi = ρr+ρi+1−1 = ρli+1. Thus, if

li−1 < l ≤ li, we have pi−1 < ρl+1 ≤ pi, hence, according to propositions 3.2, 3.4 and

3.6, we have

dORD(l) = min{#A[ρ] | ρ ≥ ρl+1} = #A[pi] = 2i

and the proof is complete.

For some particular types of Arf semigroups we can still give more explicit formulas.

For example, while studying the redundancy of improved codes coming from the tower

in example 2.5, Pellikaan and Torres introduce in [12] the following:

Definition 4.2. A sequence (Hn) of semigroups is called inductive if there exist se-

quences (an) and (bn) of positive integers such that H1 = N0 and for n > 1,

Hn = anHn−1 ∪ {m ∈ N0 | m ≥ anbn−1}. A semigroup is called inductive if it is a

member of an inductive sequence.
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The Weierstrass semigroups obtained from the tower of function fields of example 2.5

at the points Qn are obviously inductive. Notice that Hn = Hn−1 if an = 1. Thus, we

can assume that an ≥ 2 for n ≥ 2, and hence the sequence bn is super-increasing. For

n ≥ 2 the conductor of Hn is obviously cn = anbn−1. Since N0 is inductive, with the

aid of the following result one easily proves by induction that any inductive semigroup

is Arf.

Lemma 4.3. Let S be an Arf semigroup and take arbitrary positive integers a,R. Then

S = aS ∪ {m ∈ N0 | m ≥ R} is an Arf semigroup.

Proof. Let ρi, ρj, ρk ∈ S, i ≥ j ≥ k, be three poles smaller than the conductor of S

(hence R > ρi ≥ ρj ≥ ρk). There exist poles ρα, ρβ, ργ ∈ S such that α ≥ β ≥ γ and

ρi = aρα, ρj = aρβ, ρk = aργ. Then, since ρi + ρj − ρk = a(ρα + ρβ − ργ) ∈ aS ⊆ S, the

result follows from the fact that S is Arf.

As a consequence, given an inductive sequence of semigroups, (Hn), in order to de-

termine the order bound for Hn one can describe inductively the intervals where such

bound changes, according to the results of the previous section. Let c(n), r(n), ρ
(n)
i (i =

1, 2, · · · ) and l
(n)
i (i = 0, · · · , r(n)−1), be the corresponding elements and parameters of

Hn. In addition, let g(n) be the genus of Hn and denote λ(n) = bn−c(n), λ(0) = 1, L(n) =

λ(0) + · · ·+ λ(n).

Proposition 4.4. With the above notations, the following holds:

a) c(n) = anbn−1;

b) r(n) = L(n−1);

c) for i = 1, · · · , r(n), we have ρ
(n)
i = anρ

(n−1)
i , and hence

c.1) for i = 1, · · · , r(n−1) − 1 one has ρ
(n)
i+1 = anρ

(n−1)
i+1 , and thus l

(n)
i = l

(n−1)
i + λ(n−1) +

(an − 1)ρ
(n−1)
i+1 ;

c.2) for i = r(n−1) + 1, · · · , r(n) one has ρ
(n)
i = an(c(n−1) + i − r(n−1)), and thus l

(n)
i =

r(n−1) + λ(n−1) − 2 + an(c(n−1) + i+ 1− r(n−1)) = r(n) − 2 + an(c(n−1) + i+ 1− r(n−1));

d) g(n) = anbn−1 − L(n−1) + 1.

The proof of this result is left to the reader.

There is a nice alternative description of the semigroup Hn which allows us to compute

in another way the intervals where the order bound is constant. Namely, such intervals

are described in an iterative way, instead of recursively. In fact, for k = 1, · · · , n− 1,

denote A
(n)
k =

∏n
i=k+1 ai. Then Hn can be described as follows: ρ

(n)
1 = 0; the following

λ(1) poles are obtained by summing A
(n)
1 to the previous one; the following λ(2) poles

are obtained by summing A
(n)
2 to the previous one; and so on until we reach c(n), and

then we sum 1 each time. This description of Hn will be called [?]. It allows us to list

the poles ρ
(n)
i and the numbers l

(n)
i for Hn by means of the following
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Proposition 4.5. With the above notations, if L(k) < i ≤ L(k+1) and λ(k+1) > 0 then

ρ
(n)
i = ρ

(n)

L(k) + (i− L(k))A
(n)
k+1

and hence

l
(n)
i−1 = L(n−1) − 2 + ρ

(n)
i .

Example 4.6. Consider again the tower of function fields (Tn) given in example 2.5.

Since the semigroups Sn are inductive, one can apply the above results to compute the

order bound. In this way, we obtain:

• an = q for n ≥ 2,

• A(n)
k = qn−k for 1 ≤ k ≤ n− 1,

• λ(2i−1) = qi−1(q − 1) and λ(2i) = 0 for i ≥ 1,

• L(2i−1) = L(2i) = qi for i ≥ 1, hence L(n) = qb(n+1)/2c.

By using the description [?] for Sn, one easily obtains

ρ
(n)

qk
= qn−k(qk − 1)

for k = 0, · · · , bn/2c. Then, if qk < i+ 1 ≤ qk+1 for some k, with 0 ≤ k ≤ bn/2c, from

proposition 4.5 we get

l
(n)
i = qb

n
2
c − 2 + (i+ 1− qk)qn−k−1 + qn−k(qk − 1)

= qb
n
2
c − 2 + qn−k−1(qk+1 − qk − q + i+ 1).

Since r(n) = L(n−1) = qbn/2c, this formula provides all the values l
(n)
1 , · · · , l(n)

r(n)−1
, and

hence, according to theorem 4.1, the order bound for all codes Cl coming from Tn.

5. The redundancy of improved codes

By using the same notation as in the previous section, let us consider the algebraic

geometry code Cl defined by means of the set of checks h1, · · · ,hl. For a positive

integer d let us consider the set

Rd = {i | #A[ρi] < d} ∼ {ρ ∈ S | #A[ρ] < d}
and the improved geometric Goppa code C̃(d) defined as

C̃(d) = {c ∈ Fnq | c · hi = 0 for all i ∈ Rd}
(see [6, 9, 12]). The minimum distance of C̃(d) is at least d. Furthermore, if d =

dORD(l), then Cl ⊆ C̃(d) (this is the reason of the term ‘improved’). Thus, a natural

question is to compute the improvement on the dimension, dim C̃(d)−dimCl. It is well

known (see [9]) that dimCl ≥ n− l, with equality if ρl < n; on the other hand, from its

definition, it follows that dim C̃(d) ≥ n−#Rd. It is easy to see that when 2c ≤ n, then

for d in the range 1 ≤ d ≤ 2r−2 (where one can hope an improvement on the dimension)

all the checks hi are independent, and thus we have equality, dim C̃(d) = n−#Rd. In
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this section we shall compute the sequence (#Rd) when the semigroup S is Arf. This

result, together with theorem 4.1, allows us the computation of the improvement on

the dimension.

The sequence (#Rd) has been already treated in the paper [12] by Pellikaan and Torres.

They show that for every semigroup S, one has

#Rd = d + g − 1 if d ≥ 2r − 1;

#R2r−2 = ρr−1 + r − 1

what can be written as

#Rd = ρd d
2
e + bd

2
c

provided that d ≥ 2r− 2. In order to simplify the exposition, the semigroups verifying

the above formula for all d ≥ 1 will be called stable. In the paper [12], the authors

propose the characterization of stable semigroups as an open problem, and they show

that inductive semigroups are stable.

In this section, we shall prove that stable semigroups are precisely Arf semigroups.

To prove this, we introduce some notation. For d a positive integer, let Sd = {ρ ∈
S | #A[ρ] = d} (so #Rd+1 = #Rd + #Sd). In order to characterize stable semigroups

it is enough to consider values of d in the range that 1 ≤ d ≤ 2r − 3, and then, a

semigroup S is stable if and only if for every odd integer d, 1 ≤ d ≤ 2r− 3, if we write

d = 2t+ 1, then it holds that

#Sd = 1

#Rd = ρt+1 + t.

Lemma 5.1. Let S be a semigroup and let ρ ∈ S. Then #A[ρ] is odd if and only if

ρ ∈ 2S. In this case, if ρ = 2ρi then #A[ρ] ≤ 2i− 1.

Proof. For every p ∈ A[ρ] we have p′ = ρ − p ∈ A[ρ], hence #A[ρ] is even unless there

exists a (unique a fortiori) pole p ∈ A[ρ] such that p = p′ = ρ − p, that is, ρ ∈ 2S. In

this case, if ρ = 2ρi, then for every p, p′ ∈ A[ρ] with p+p′ = ρ = 2ρi, then either p ≤ ρi
or p′ ≤ ρi, and hence #A[ρ] ≤ 2i − 1.

Proposition 5.2. Let S be a semigroup. The following statements are equivalent:

a) #A[2ρi] = 2i− 1 for all ρi ∈ S;

b) #Sd = 1 for all d odd;

c) S is Arf.

Proof. According to lemma 5.1, we have #Sd = 1 for all d odd if and only if #A[2ρi] =

2i− 1 for all ρi, and this happens if and only if

A[2ρi] = {ρ1, · · · , ρi, 2ρi − ρ1, · · · , 2ρi − ρi}
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that is, if and only if 2ρi − ρj ∈ S for all i, j with i ≥ j. This is equivalent to S being

Arf according to proposition 2.3.

Thus, all stable semigroups are Arf. In the sequel we shall prove that Arf semigroups

are stable. To that end it suffices to show that for all d odd in the range 1 ≤ d ≤ 2r−3,

if d = 2t+ 1, then #Rd = ρt+1 + t.

Lemma 5.3. Let S be an Arf semigroup and let d be as above. Then Rd ⊆ [0, pt] ∩ S.

Proof. If #A[ρ] < d ≤ 2r − 3, then proposition 3.6 implies ρ ≤ pr−1. Thus the result

follows from proposition 3.2.

For ρ ∈ [0, pt] ∩ S, it holds that ρ ∈ Rd if and only if β(ρ) ≤ t, so we get the following

Lemma 5.4. Let S and d be as in the previous lemma. Then

{ρ ∈ [0, pt] ∩ S | β(ρ) ≥ t+ 1} = {ρt+1 + ρt+1, · · · , ρt+1 + ρr−1}.

Proof. If ρ ∈ [0, pt] ∩ S is such that α(ρ) ≥ t+ 1, then we have ρ = ρt+1 + ρi for some

i. Since 2ρt+1 ≤ ρ, it holds that i ≥ t + 1. On the other hand, since ρ ∈ [0, pt] and

β(pt) = t, we have ρ < pt and i ≤ r − 1. Hence {ρ ∈ [0, pt] ∩ S | β(ρ) ≥ t + 1} ⊆
{ρt+1 + ρt+1, · · · , ρt+1 + ρr−1}. The converse is clear.

Finally we have the following

Theorem 5.5. Let S be a semigroup. The following statements are equivalent:

a) S is Arf;

b) for every positive integer d, we have #Rd = ρd d
2
e + bd

2
c.

Proof. If b) holds then #Sd = 1 for all d odd and S is an Arf semigroup as we have

seen in proposition 5.2. Conversely, assume S is Arf and let d be an odd integer with

1 ≤ d ≤ 2r − 3. According to proposition 5.2 we have #Sd = 1. Now if we write

d = 2t+ 1, then, according to lemma 5.4, we have

#Rd = #([0, pt] ∩ S)−#{ρt+1 + ρt+1, · · · , ρt+1 + ρr−1}.
Since pt = ρr + ρt+1 − 1 = ρr+ρt+1−1, we obtain #([0, pt] ∩ S) = r + ρt+1 − 1. Thus,

#Rd = (r + ρt+1 − 1)− (r − t− 1) = ρt+1 + t and S verifies b).

We are now able to compare the dimension of the codes Cl and C̃(d).

Proposition 5.6. Let S be an Arf semigroup. For a positive integer l let us consider

the codes Cl and C̃(d), where d = dORD(l). Let l0, · · · , lr−1 be as in theorem 4.1.

a) If li−1 < l ≤ li, with i ≤ r − 1 and 2c ≤ n, then dim C̃(d)− dimCl = l − ρi − i.
b) If l > lr−1 = c+ r − 2, then Cl = C̃(d).
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Proof. If 2c ≤ n, then (see [12]) all the checks hi in Cl and C̃(d) are independent,

so dimCl = n − l, dim C̃(d) = n − #Rd and dim C̃(d) − dimCl = l −#Rd. Now, if

li−1 < l ≤ li, then d = 2i and #Rd = ρi + i. Thus l−#Rd = l− ρi− i. This proves a).

If l ≥ c+ r − 1, then, according to theorem 4.1, we have d = l+ 1− g ≥ 2r − 1. Thus

#Rd = d+ 1− g = l, hence Rd = {ρ1, · · · , ρl} and Cl = C̃(d).
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