A generalization of the Hasse-Arf theorem^{*})

By Masatoshi Ikeda at Ankara

Introduction

Let L/K be a totally ramified finite galois extension of a complete field K with respect to a discrete valuation such that the residue class field \overline{L} of L is a separable extension of the residue class field \overline{K} of K. Then a class function \mathfrak{a}_G on the galois group Gof L/K is defined which turns out to be a character of G called the Artin character attached to L/K. The purpose of this paper is to give an explicit formula of the multiplicity $f(\chi)$ of an absolutely irreducible character χ of G in \mathfrak{a}_G^{-1}). Namely we prove the following.

Theorem 1. Let L/K be a totally ramified finite galois extension of a complete field K with respect to a discrete valuation such that the residue class field \overline{L} of L is separable over the residue class field \overline{K} of K. For any absolutely irreducible character χ of G, let u be the largest index in the sequence of the ramification groups $\{G_i\}$ of L/K such that any representation of G affording χ is not trivial on G_u , where, for the unit character of G, u is assumed to be -1. Then the multiplicity $f(\chi)$ of χ in the Artin character α_G attached to L/K is equal to $(\varphi_{L/K}(u) + 1)\chi(e)^2)$, where e is the unit element of G.

From this we obtain the following theorem which is a generalization of the Hasse-Arf theorem³).

Theorem 2. Let L/K be as above. For each jump index u in the sequence of the ramification groups of L/K, there is an absolutely irreducible character χ of G such that any representation of G affording χ is not trivial on G_u but trivial on G_{u+1} . The number $\varphi_{L/K}(u)\chi(e)$ is then an integer.

Preliminaries. Let L/K be as before. The normalized valuation of L is designated by v_L . The function i_q on the galois group G of L/K is defined by

$$\mathfrak{i}_G(s) = \mathfrak{v}_L(s(\alpha) - \alpha)$$
 for $s \in G$,

where α is a generator of the valuation ring of L over that of K. i_G is well-defined, i. e., it does not depend on the special choice of α . For each integer $i \ge 0$, the group $G_i = \{s \in G \mid i_G(s) \ge i+1\}$ is a normal subgroup of G, and the descending sequence

^{*)} This work was carried out at the Research Unit for Pure Mathematics supported by the Turkish Scientific and Technical Research Council.

¹⁾ $f(\chi)$ is the exponent of the conductor of χ . For linear characters the multiplicity is well known. Cf., for instance, Serre [5], VI, § 2, Prop. 5.

²) As for the definition of $\varphi_{L/K}$, cf. Preliminaries.

³) Cf. Arf [1], Hasse [3], [4] or Serre [5], IV, §4.

 $\{G_i\}$ is the sequence of the ramification groups of L/K. For the sake of simplicity the definition of the function $\varphi_{L/K}(x)$ is given only for integral values $x \ge -1$. Namely $\varphi_{L/K}(m) = \sum_{i=1}^{m} |G_i/G_0|$ for an integer $m \ge 1$, $\varphi_{L/K}(0) = 0$, and $\varphi_{L/K}(-1) = -1$. Herein |H| stands for the order of a group H. If $G_u \neq G_{u+1}$, then u is called a jump index in the sequence $\{G_i\}$. For each jump index u_i , the group G_{u_i} is designated by V_i . Note that if $s \in V_i \setminus V_{i+1}$, then $i_G(s) = u_i + 1$. The function \mathfrak{a}_G on G is defined by

$$\mathfrak{a}_G(s) = egin{cases} - \mathfrak{i}_G(s), \ ext{for } s \ + e, \ \sum_{t \neq e} \mathfrak{i}_G(t), \ ext{for } s = e. \end{cases}$$

where e is the unit element of G. The theorem of Artin⁴) states that the function \mathfrak{a}_G is actually a character of G, the Artin character attached to L/K. Any representation over the complex number field affording the character \mathfrak{a}_G is called the Artin representation attached to L/K.

Proof of the theorem

We begin with the following elementary lemma.

Lemma 1. Let $G = N_0 > N_1 > \cdots > N_r = \{e\}$ be a sequence of distinct normal subgroups of a finite group G, v_i the character of the augmentation representation of N_i/N_{i+1} , and v_i^* be the induced character of v_i for $i = 0, 1, \ldots, r-1$. Then, being v_g and 1_g the regular and the unit character of G respectively, we have

$$\mathfrak{r}_{_{G}}=1_{_{G}}+\sum_{_{i=0}}^{r-1}\mathfrak{v}_{i}^{*}.$$

Proof. To prove the assertion we compare the values taken by the characters above at each point in G. First, for the unit element e of G, we have $\mathfrak{r}_G(e) = |G|$. On the other hand we have

$$\left(\mathbf{1}_{G} + \sum_{i=0}^{r-1} \mathfrak{v}_{i}^{*}\right)(e) + \mathbf{1} + \sum_{i=0}^{r-1} |G/N_{i}| (|N_{i}/N_{i+1} - \mathbf{1}) = \mathbf{1} + |G/N_{r}| - |G/N_{0}| = |G|.$$

Next let a be in $N_{i_0} \setminus N_{i_{0}+1}$. Then $v_j^*(a) = 0$ for all $j \ge i_0 + 1$. Hence the value taken by the right-hand side in the above formula is

$$\left(\mathbf{1}_{G} + \sum_{i=0}^{i_{0}} \mathfrak{v}_{i}^{*} \right)(a) = \mathbf{1} + \sum_{i=0}^{i_{0}-1} |G/N_{i}| (|N_{i}/N_{i+1}| - 1) + \sum_{x \mod N_{i_{0}}} \mathfrak{v}_{i_{0}}(x^{-1}ax)$$

= $\mathbf{1} + \sum_{i=0}^{i_{0}-1} |G/N_{i+1}| - \sum_{i=0}^{i_{0}} |G/N_{i}| = 0,$

since $v_{i_0}(b) = -1$ for any $b \in N_{i_0} \setminus N_{i_0+1}$. On the other hand $r_G(a) = 0$, hence the values taken by the characters in question coincide with each other at each point in G. This completes the proof.

Corollary. Keeping the notations and assumption in Lemma 1, let χ be any absolutely irreducible character of G indifferent from 1_G . Then there is a uniquely determined index *i* such that χ is an irreducible constituent of v_i^* . The index *i* is characterized as the largest index *i* for which any irreducible representation of G affording χ is not trivial on N_i . The multiplicity of χ in v_i^* is equal to $\chi(e)$.

184

⁴⁾ Cf. Serre [5], VI, §2, Théorème I.

Proof. If we could show that, for i < j, v_i^* and v_j^* do not have any common absolutely irreducible constituent, then the rest of the assertions follows from the ordinary representation theory. Now if φ were a common irreducible constituent of v_i^* and v_j^* , then the restriction φ_{N_j} would consist on one hand only of the unit character of N_j , on the other hand it would consists of irreducible characters of N_j different from the unit character. A contradiction.

Lemma 2. Let $u_0 < u_1 < \cdots < u_r$ be the set of whole jump indices in the sequence of the ramification groups of L/K. Further let v_i be the character of the augmentation representation of V_i/V_{i+1} for $i = 0, 1, \ldots, r$, where V_{r+1} stands for the unit subgroup of G. Then, being v_i^* the induced character of v_i , we have

$$\mathfrak{a}_{G}=\sum_{i=0}^{r}ig(arphi_{L/K}(u_{i})+1)\mathfrak{v}_{i}^{*}$$

Proof. It suffices to show that $\mathfrak{a}_G = \mathfrak{a}_{G/V_r} + (\varphi_{L/K}(u_r) + 1)\mathfrak{v}_r^*$. Here again we compare the values taken by the above characters at each element of G. Let $s \neq e$ be an element of G. Then $\mathfrak{a}_G(s) = -\mathfrak{i}_G(s)$. To compute the value of the right-hand side at s, we consider the following two cases:

- (i) $s \notin V_r$;
- (ii) $s \in V_r$.

In the first case, let $\bar{s} \in G/V_r$ be the coset containing s. Then \bar{s} is different from the unit element \bar{e} of G/V_r . Hence $\mathfrak{a}_{G/V_r}(s) = -\mathfrak{i}_{G/V_r}(\bar{s})$. Now, as is known⁵),

$$\mathfrak{i}_{G/V_r}(\bar{s}) = 1/|V_r| \sum_{s' \in \bar{s}} \mathfrak{i}_G(s').$$

Each element s' in \bar{s} is of the form st with $t \in V_r$. Being α a generator of the valuation ring of L over that of K, we have $i_G(st) = v_L(st(\alpha) - \alpha) = v_L(st(\alpha) - t(\alpha) + t(\alpha) - \alpha)$. The fact that $v_L(st(\alpha) - t(\alpha)) = v_L(s(\alpha) - \alpha)$ together with the assumption that $s \notin V_r$ and $t \in V_r$, implies $i_G(s') = i_G(s)$. Hence $\mathfrak{a}_{G/V_r}(s) = -i_G(s)$. On the other hand, $s \notin V_r$ implies that $\mathfrak{v}_r^*(s) = 0$. Thus we have $\mathfrak{a}_G(s) = (\mathfrak{a}_{G/V_r} + (\varphi_{L/E}(u_r) + 1)\mathfrak{v}_r^*)(s)$.

In the case (ii), $s \in V_r$ but $s \neq e$. Hence $v_r^*(s) = - |G/V_r|$, which in turn implies

$$(\varphi_{L/K}(u_r) + 1)\mathfrak{v}_r^*(s) = -1/|V_r| \sum_{i=0}^{u_r} |G_i| = -\sum_{i=0}^r (u_i - u_{i-1})|V_i/V_r|,$$

where u_{-1} is, as usual, assumed to be -1. Furthermore $s \in V_r$ implies that the coset \overline{s} in G/V_r containing s is the unit element \overline{e} . Hence

$$\begin{aligned} \mathfrak{a}_{G/V_{r}}(s) &= \mathfrak{a}_{G/V_{r}}(\bar{e}) = \sum_{\bar{i}\,+\,\bar{e}}\,\mathfrak{i}_{G/V_{r}}(\bar{i}) = \sum_{i=0}^{r-1}\,(u_{i}\,+\,1)\,(\mid V_{i}/V_{r}\mid-\mid \mid V_{i+1}/V_{r}\mid) \\ &= \sum_{i=0}^{r-1}\,(u_{i}\,-\,u_{i-1})\mid V_{i}/V_{r}\mid-\,(u_{r-1}\,+\,1), \end{aligned}$$

where $u_{-1} = -1$. Here note that $(G/V_r)_i = G_i/V_r$ for any $i \leq u_r^{6}$. Thus we obtain

$$\left(\mathfrak{a}_{G/V_{r}}+(\varphi_{L/K}(u_{r})+1)\mathfrak{v}_{r}^{*}\right)(s)=-(u_{r}-u_{r-1})-(u_{r-1}+1)=-(u_{r}+1).$$

On the other hand the assumption that $s \in V_r$ but $s \neq e$, implies that $i_G(s) = u_r + 1$. Hence $\mathfrak{a}_G(s) = (\mathfrak{a}_{G/V_r} + (\varphi_{L/K}(u_r) + 1)\mathfrak{v}_r^*)(s)$.

⁶) Cf. Serre [5], IV, § 1, Corollaire.

Journal für Mathematik. Band 252

⁵) Cf. Serre [5], IV, §1, Prop. 3.

Ikeda, A generalization of the Hasse-Arf theorem

To complete the proof we have to show that the same holds for *e*. This however can be seen from the fact that $\sum_{s \in G} \mathfrak{a}_G(s) = 0$ and $\sum_{s \in G} (\mathfrak{a}_{G/V_r} + (\varphi_{L/K}(u_r) + 1)\mathfrak{v}_r^*)(s) = 0$.

Now the proof of Theorems 1 and 2 follows immediately from the above lemmata.

Remark. The proof of Theorem 2 given above is based on the theorem of Artin, the proof of which depends on the Hasse-Arf theorem together with some reduction techniques in the representation theory such as Brauer's theorem concerning induced characters. The statement in Theorem 2 however has, at least superficially, nothing to do with Artin's representations, and the theorem of Artin is even a direct consequence of Theorem 2. In this respect it would be of interest to try to prove the theorem without using the theorem of Artin. By the way Theorem 2 is best possible. Namely Serre gave an example of a totally ramified extension L/K with the galois group isomorphic to the quaternion group such that the jump indices are 1 and 3, and $\varphi_{L/K}(3) = 3/2^7$).

7) For the detail, cf. Serre [6], Section 4.

References

- [1] C. Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper. J. reine angew. Math. 181 (1940), 1-44.
- [2] E. Artin, Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper. J. reine angew. Math. 164 (1931), 1-11.
- [3] H. Hasse, Führer, Diskriminante und Verzweigungskörper relativ Abelscher Zahlkörper. J. reine angew. Math. 162 (1930), 169-184.
- [4] H. Hasse, Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper. J. Fac. Sci. Tokyo 2 (1934), 477-498.
- [5] J.-P. Serre, Corps locaux, Paris 1962.
- [6] J.-P. Serre, Sur la rationalité des représentations d'Artin. Ann. of Math. 72 (1960), 406-420.

Middle East Technical University, Mathematics Department, Ankara, Türkei

Eingegangen 24. Oktober 1970

186