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Abstract

We study the Schubert calculus on the space of d-dimensional linear subspaces
of a smooth n-dimensional quadric lying in the projective space. Following Hodge
and Pedoe we develop the intersection theory of this space in a purely combi-
natorial manner. We prove in particular that if a triple intersection of Schubert
cells on this space is nonempty then a certain combinatorial relation holds among
the Schubert symbols involved, similar to the classical one. We also show when
these necessary conditions are also sufficient to obtain a nontrivial intersection.
Several examples are calculated to illustrate the main results.

INTRODUCTION
The aim of the present paper is to establish Schubert calculus on a certain class of

homogeneous spaces. To be more precise, let Qn be a non-singular quadric hypersurface
in Pn+1 and let G(d,Qn) be the set of d-dimensional linear subspaces which lie on Qn.
The orthogonal group O(n + 2) acts transitively on G(d,Qn) in a natural way so
that G(d,Qn)'O(n + 2)/Pd+1, where Pd+1 is the stabilizer of an arbitrary element in
G(d,Qn). If d < [n

2
], then SO(n+2), the special orthogonal group, operates onG(d,Qn)

transitively, and hence G(d,Qn)'SO(n+ 2)/SPd+1, where SPd+1 = SO(n+ 2)∩Pd+1.
These spaces G(d,Qn) are the objects we study in this paper.

These spaces, which are also described as A(m)
s , the space of normalized complex

s-substructures of Rm, were studied by Dibağ, [3], where they appeared as fibers in
certain global obstruction problems. He defined some Schubert cells on them which
form bases of the cohomology rings of the space in question, and found that these
Schubert cells have beautiful duality properties. This discovery was our motivation to
establish Schubert symbolism on G(d,Qn).

G(d,Qn) is, by definition, a subvariety of G(d,Pn+1), the Grassmann variety of d-
dimensional linear subspaces in a complex projective space of dimension n + 1. Our
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method here is to follow and generalize the classical treatment of Hodge and Pedoe in
[7], where they develop the intersection theory on Grassmannians in a purely combina-
torial manner. Thus in this paper we prove that if triple intersection of Schubert cells
on G(d,Qn) is non-empty, then there follows a combinatorial relation, similar to the
classical one [7].

In the classical case, the combinatorial relation mentioned above implies the non-
empty triple intersection, which amounts to the Pieri formula and the Giambelli for-
mula. In our case, this does not hold in general because of the strange behaviour of
the linear subspaces of a quadric. Conditions for this to hold are also discussed here.

Geometrically speaking we are going to study the Schubert calculus on the space
of d-dimensional linear subspaces of a smooth quadric Qn lying in the projective space
P
n+1. This variety is denoted by G(d,Qn). It is a 1

2
(d + 1)(2n − 3d) dimensional

subspace of G(d,Pn+1), the Grassmann space of d-dimensional linear subspaces of the
projective space Pn+1. The correspondence between the spaces mentioned so far is as
follows:

SO(n+ 2)/Pd+1 = G(d,Qn) = A
(n+2)
d+1 .

Throughout the article we let n = 2m or n = 2m + 1 and d is always a positive
integer less than or equal to m. In section I we define certain points of Pn+1 as the
skeleton points of Qn. We define a flag using these skeleton points and interpret the
definition of Schubert cells of G(d,Qn) with respect to this flag. In section II we
quote the classical intersection theorem of Hodge and Pedoe for comparison reasons.
Section III gives the proof of our intersection theorem for G(d,Qn). Since the geometry
of smooth quadrics vary depending on the parity of their dimension, our arguments
inevitably treat these two cases separately. In section IV we give explicit examples and
discuss the converse of our triple intersection theorem.

Note that Hiller and Boe in [6] treated the case n = 2m+ 1 and d = m and gave a
Pieri type formula. A Giambelli type formula in this case was given by Pragacz in [9].
A simple and transparent proof of the main results of [6] can be found in [11]. Finally
we refer the reader to a recent survey article [10], for recent developments.

The special Schubert cycle σh, 0 < h ≤ n− d, is the set of [d]-planes intersecting a
given [n−d−h]-dimensional space lying on the quadric Qn. The codimension of σh is
h. For other definitions needed in the statement of our main result see section 3.

Main Theorem : For any two Schubert cycles Ωa0···ad and Ωb0···bd of A
(n+2)
d+1 there

exist integers λ0, . . . , λd+3 depending only on a0, . . . , ad, b0, . . . , bd and the parity of n
such that for any special Schubert cycle σh, 0 < h ≤ n− d, if
1) dim

C
Ωa0···ad+ dim

C
Ωb0···bd+ dim

C
σh = 2 dim

C
A

(n+2)
d+1

and
2) Ωa0···adΩb0···bdσh 6= 0
then

(3) (n− d)− 1

2
d(d+ 1) + e ≤ h+

d+3∑
i=0

λi ≤ n− d,

where
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e(Ωa0···ad) is defined as the cardinality of the set {(ai, aj)| i < j and ai + aj < n }, and
e is e(Ωa0···ad) + e(Ωb0···bd).

The λi’s for the n = 2m case are given in lemma 6.1 and in sections 6.2, 6.3. The
λi’s for the n = 2m+ 1 case are given in lemma 7.1. A partial converse to this theorem
is given in the last section, see theorem 13.

We refer to conditions (2) and (3) as MT(2) and MT(3) respectively in the forth-
coming discussions.
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I. FLAGS A AND B IN Qn AND SCHUBERT CELLS
1. Flags A and B in n = 2m case
We first fix 2m + 2 skeleton points on Q2m in section 1.1 and examine in sections 1.2
and 1.3 the dimensions of certain spaces constructed from skeleton points. Flags A and
B are then constructed in section 1.4. Schubert cells will be constructed in section 3.
They define homology cycles independent of the flags used, and hence are independent
of the skeleton points chosen; this follows from [3] and [7].
1.1 We choose and fix 2m + 2 points p0, . . . , p2m+1 in Q2m, called the skeleton points
of Q2m, as follows;
i) Choose p0 in Q2m arbitrarily.
ii) Once p0, . . . , pk−1 in Q2m are chosen with k ≤ m, choose pk as any point in Q2m which
is not in the join of p0, . . . , pk−1 but in the f-orthogonal of the join. (f-orthogonal means
orthogonal with respect to the form Qc(z1, ..., zn) = z2

1 + · · · + z2
n, see [3, pp 501-502]

for further details). In the notation from [3] we have

pk ∈ {(p0 ∨ · · · ∨ pk−1)⊥f − (p0 ∨ · · · ∨ pk−1)} ∩Q2m,

where we have used the notation ⊥f to denote orthogonality with respect to the above
form, (f-orthogonality).
iii) Once p0, . . . , pm ∈ Q2m are chosen, the remaining points are their complex conju-
gates, ordered as follows;

p2m+1−i = c(pi), i = 0, . . . ,m

where c(·) is the complex conjugate.

1.2 Let I be a subset of Im = {0, 1, ...,m}. Define SI as the intersection of Q2m

with the join of all skeleton points pi with i in I; SI = (∨i∈I pi) ∩ Q2m. Let I denote
the set of all integers of the form 2m + 1 − i with i in I. Then we have the following
lemma.
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Lemma 1.2 If I and J are two nonempty, disjoint subsets of Im then;
i) SI is a linear subspace of Q2m and dim

C
SI = #I − 1, where #I is the cardinality

of I.
ii) SJ∪J is a smooth subquadric of Q2m and dim

C
SJ∪J = 2#J − 2.

iii) SI∪J∪J is the join of SI and SJ∪J in Q2m and dim
C
SI∪J∪J = 2#J + #I − 2.

2
1.3 For any nonempty subset L of I2m+1 define SL as in 1.2. To find the dimension of
SL we construct two disjoint subsets I(L) and J(L) of Im as follows:

I(L) = { i ∈ Im | either i ∈ L or 2m+ 1− i ∈ L but not both }

J(L) = { i ∈ Im | i ∈ L and 2m+ 1− i ∈ L }.

The following lemma on the dimension of SL can now be proved using 1.2.

Lemma 1.3 (n = 2m)

dim
C
SL =

{
#L− 2 if J(L) 6= ∅,
#L− 1 if J(L) = ∅.

2

1.4 Flag A consists of a nested sequence of subvarieties

A0 ⊂ A1 ⊂ · · · ⊂ Am0 , Am1 ⊂ Am+1 ⊂ · · · ⊂ A2m = Q2m

of Q2m such that Ai−Ai−1 is an open cell of dimension i, [3, p 503]. Using the skeleton
points introduced above we define a flag A where each Ai is defined as follows:
i) Ai = S{0,1,...,i} for i = 0, ...,m− 1.
ii) Am0 = S{0,1,...,m} and Am1 = S{0,1,...,m−1,m+1}.
iii) Am+i = S{0,1,...m+1+i} for i = 1, ...,m.

Denote by V0 and V1 the two disjoint families of projective [m]-planes in Q2m. We have
arbitrarily labeled S{0,1,...,m} as an element of V0. Consequently S{0,1,...,m−1,m+1} must
belong to V1 regardless of m being odd or even. Together with a flag A we will consider
its “dual” flag B:

B0 ⊂ B1 ⊂ · · · ⊂ Bm0 , Bm1 ⊂ · · · ⊂ B2m = Q2m.

For a discussion of dual flags on quadrics see [3, p 512]. Assuming m is even we define
Bi as follows;
i) Bi = S{2m+1,2m,...,2m+1−i} for i = 0, ...,m− 1.
ii) Bm0 = S{2m+1,2m,...,m+2,m} and Bm1 = S{2m+1,2m,...,m+1}
iii) Bm+i = S{2m+1,2m,...,m−i} for i = 1, ...,m.

4



If however m is odd, then we redefine Bm0 and Bm1 as
Bm0 = S{2m+1,...,m+1} and Bm1 = S{2m+1,...,m+2,m}.

2. Flags A and B in n = 2m+ 1 case
2.1 The smooth quadric Q2m+1 in P2m+2 can be realized as the intersection in P2m+3 of
Q2m+2 with a hyperplane H. With this in mind the geometric meaning of the skeleton
points of Q2m+1 as defined below can be visualized as follows: construct a set of skeleton
points p0, ..., p2m+3 of Q2m+2 in P2m+3 as explained in 1.1. The hyperplane H is then
defined by identifying the coefficients of pm+1 with pm+2 in the join p0 ∨ . . . ∨ p2m+3.
The skeleton points of Q2m+1 are then obtained by renumbering the remaining points.

The skeleton points p0, ..., p2m+2 of Q2m+1 are chosen in the following manner;
i) Choose p0 ∈ Q2m+1 arbitrarily.
ii) For 0 < k < m, pk is any point in Q2m+1 which is in the f-orthogonal of the join
p0 ∨ . . . ∨ pk−1 but not in the join.
iii) The complex conjugates of p0, ..., pm are also skeleton points with indices set as
follows

p2m+2−i = c(pi), i = 0, ...,m.

iv) Choose pm+1 as any point in P2m+2 which is f-orthogonal to p0 ∨ . . . ∨ pm ∨ pm+2 ∨
. . . ∨ p2m+2.
It is easy to see that pm+1 is not a point of the quadric and that the points p0, ..., p2m+2

span the whole space P2m+2.

2.2 Let L be a subset of I2m+2 = {0, ..., 2m+ 2}. Define the subsets I(L) and J(L) of
Im as

I(L) = {i ∈ Im| either i ∈ L or 2m+ 2− i ∈ L, but not both }

J(L) = {i ∈ Im| i ∈ L and 2m+ 2− i ∈ L }.

Notice that neither of these sets can include m+ 1.
We further define a constant that depends on L;

ε =

{
0 if m+ 1 6∈ L,
1 if m+ 1 ∈ L.

We use this constant to determine the dimension of SL;

Lemma 2.2 (n = 2m+ 1)

dim
C
SL =

{
#L− 2 if J(L) 6= ∅,
#L− 1− ε if J(L) = ∅.

Proof: It can be shown that SL = (#I(L) − 1) + (2#J(L) − 2) + 1 + ε if J(L) 6= ∅,
and dim

C
SL = #I(L) − 1 if J(L) = ∅. Combining these equalities with the fact that

#L = #I(L) + 2#J(L) + ε yields the lemma. 2
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2.3 Flag A consists of a nested sequence

A0 ⊂ · · · ⊂ A2m+1 = Q2m+1

where
i) Ai = S{0,...,i} for i = 0, ...,m.
ii) Am+i = S{0,...,m+1+i} for i = 1, ...,m+ 1.
In this case flag B is defined as

B0 ⊂ · · · ⊂ B2m+1 = Q2m+1

where
i) Bi = S{2m+2,...,2m+2−i} for i = 0, ...,m
ii) Bm+i = S{2m+2,...,m+1−i} for i = 1, ...,m+ 1.

3. Schubert cells on A
(n+2)
d+1

Reference for the spaces A(n)
s and the Schubert cycles on them is [3]. Here we recall

the basic definitions and results. First note that for d < [n
2
] we can realize A

(n+2)
d+1

as a (d + 1)(n − 3
2
d) dimensional subvariety of G(d,Pn+1), the Grassmann variety of

[d]-planes in Pn+1. Any q ∈ A(2m+2)
d+1 can hence be considered as a [d]-plane, and using

this interpretation we can define a sequence of subspaces in Q2m,

q0 ⊂ · · · ⊂ qm−1 ⊂ qm0 , qm1 ⊂ qm+1 ⊂ · · · ⊂ q2m

where qi = q∩Ai if i = 0, 1, ..., m̂, ..., 2m and qmj = q∩Amj for j = 0 or 1. The (closed)
Schubert cell corresponding to the integers 0 ≤ a0 < · · · < ad ≤ n, with ai + aj 6= n for
i < j, is defined as

Ωa0···ad = {q ∈ A(2m+2)
d+1 | dim

C
qai ≥ i }.

We do not lose any generality by using only those Ωa0···ad ’s for which ai + aj 6= n. This
only avoids duplication, see [3, p 506].

The homology cycle represented by this cell, denoted by the same notation, is
independent of the skeleton points used in its definition. The dimension of the cycle
depends only on the Schubert symbol used;

dim
C

Ωa0···ad = a0 + · · ·+ ad − d(d+ 1) + e

where
e = #{(ai, aj)| i < j and ai + aj < n }.

In the above notation the special Schubert cycle σh appearing in the main theorem
(see Introduction) can be expressed as

Ωn−d−h n−d+1···n for 0 < h ≤ n− 2d, and

6



Ω
n−d−h n−d···d̂+h···n for n− 2d < h ≤ n− d,

where ̂d+ h means that d+ h is to be omitted.
If n−d−h = m, then we necessarily need to distinguish between m0 and m1, but in the
triple intersection arguments we do not need this distinction for the special Schubert
cycles.
The Schubert cycles for the odd dimensional case, A

(2m+1)
d+1 , are defined similarly using

the corresponding flag defined earlier.
II RECALLING SOME DEFINITIONS AND RESULTS FROM STAN-
DARD INTERSECTION THEORY
The results of this section are classical, see for example [4], [7], [8]. We include this
section with the sole purpose of comparing the main theorem of this paper with the
classical triple intersection theorem on Grassmannian manifolds.
4 Summary
Let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn+1 = Cn+1 be a nested sequence of vector subspaces of Cn+1

where dim
C
Vi = i for i = 0, ..., n+ 1. If we define Ai = P(Vi+1), the projectivization of

Vi+1, for i = 0, ..., n, then
A0 ⊂ A1 ⊂ · · · ⊂ An = Pn

is a cellular decomposition of Pn. The variety of projective [d]-planes in Pn is denoted
by G(d,Pn). The Schubert variety corresponding to the integers 0 ≤ a0 < · · · < ad ≤ n
is defined as

Ωc
a0···ad = {q ∈ G(d,Pn) | dim

C
(q ∩ Aai) ≥ i, i = 0, ..., d }.

Recall that the homology cycle represented by Ωc
a0···ad is independent of the flag chosen

and

dim
C

Ωc
a0···ad = a0 + · · ·+ ad −

1

2
d(d+ 1).

The special Schubert cycle σch is defined to be the cycle Ωc
n−d−h n−d+1 ···n and its codi-

mension is h. Schubert cycles give a Z-basis of the cohomology ring of G(d,Pn). As
for the cohomology ring structure, we have equalities of the form

Ωc
a0···adΩ

c
b0···bd =

∑
α(a, b, c)Ωc

c0···cd

where α(a, b, c) is an integer and the summation is over all Ωc
c0···cdsuch that

dim
C

Ωc
c0···cd = dim

C
Ωc
a0···ad + dim

C
Ωc
b0···bd − dim

C
G(d,Pn).

One has
α(a, b, c) = Ωc

a0···adΩ
c
b0···bdΩ

c
n+1−cd ···n+1−c0 .

The triple intersection theorem for G(d,Pn) decides on the value of α(a, b, c) when c
is the Schubert symbol for the dual of a special Schubert cycle. To be precise the
theorem, [7, thm III, p 333], states that given Ωc

a0···ad and Ωc
b0···bd there exist integers

λc0, . . . , λ
c
d+1 such that for any special Schubert cycle σch, if
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1) dim
C

Ωc
a0···ad + dim

C
Ωc
b0···bd + dim

C
σch = 2 dim

C
G(d,Pn)

and
2) Ωc

a0···adΩ
c
b0···bdσ

c
h = 1

then
3) h+

∑d
i=1 λ

c
i = n− d.

Conversely if (1) and (3) hold, then (2) holds. Here the λci ’s are defined as

λci = max{0, n− ad−i − bi−1 − 1}, i = 1, ..., d
λc0 = n− ad
λcd+1 = n− b0.

III TRIPLE INTERSECTION THEOREM FOR A
(n+2)
d+1

In section 5 we give a general argument which explains the role λi’s play in deriving
the main theorem (MT). The values of λi’s for the case n = 2m are determined in sec-
tion 6. The corresponding statements for the n = 2m+ 1 case are listed without proof
in section 7. Finally in section 8 we put all this together to establish the necessary
conditions for having nonzero triple intersections.

5 General arguments for the n = 2m case

We start with two cycles Ωa0···ad and Ωb0···bd and we assume that the Schubert con-
ditions for the former is expressed with respect to a flag A and that of the latter is
expressed with respect to the corresponding dual flag B. Our arguments are indepen-
dent of the choice of skeleton points used in the construction of the flags.

The two Schubert cycles Ωa0···ad and Ωb0···bd are disjoint unless ad−i+bi ≥ n for all i =
0, ..., d, hence we assume this throughout. Any point of the intersection Ωa0···ad∩Ωb0···bd
represents a [d]-plane lying inside Aad−i ∨ Bbi−1

for all i = 1, ..., d. Clearly this plane

also lies in Aad and Bbd , hence in the intersection

Λ = Aad ∩ (Aad−1
∨Bb0) ∩ · · · ∩ (Aa0 ∨Bbd−1

) ∩Bbd ⊂ Qn.

Recall that p0, ..., pn+1 ∈ Qn denote the skeleton points described in section 1.1. Using
them we define auxiliary subsets of In+1 = {0, 1, ..., n+ 1};
L(0) = {r ∈ In+1 | pr ∈ Aad}
L(i) = {r ∈ In+1 | pr ∈ Aad−i ∨Bbi−1

}, i = 1, ..., d

L(d+ 1) = {r ∈ In+1 | pr ∈ Abd}.
This is one of the key steps where we translate geometry into arithmetic. Observe in
particular that Aad = SL(0), Aad−i ∨ Bbi−1

= SL(i) for i = 1, ..., d, and Bbd = SL(d+1).

We can thus rewrite Λ as

Λ = SL(0) ∩ SL(1) ∩ · · · ∩ SL(d+1).
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Furthermore if we let
L = L(0) ∩ L(1) ∩ · · · ∩ L(d+ 1)

then clearly
Λ = SL.

It is the dimension of SL that we wish to calculate. For this we proceed as follows: we
first calculate the cardinality of L(0), then with the intersection of each L(i) certain
points of L(0) are left out, leaving us finally with only the points of L. Thus we define
λi’s as

λi = #(In+1 − L(i)),

= n+ 2−#L(i), i = 0, ..., d+ 1.

Note that each λi, i = 1, ..., d, counts the number of skeleton points which do not
belong to the sets Aad−i ∨Bbi−1

, respectively. Moreover

λ0 =

{
n− ad if ad > m
n− ad + 1 if ad ≤ m

and

λd+1 =

{
n− bd if bd > m
n− bd + 1 if bd ≤ m.

Normally the sum of these λi’s should correctly count the number of points left out while
forming the intersection L(0)∩· · ·∩L(d+1), but due to the geometric anomalities that
occur in the middle dimension of smooth quadrics, the point pm in the even dimensional
case can be counted twice. To correct this oversight of λ0, ..., λd+1 we introduce λd+2,
which is −1 when a certain combination of the Schubert conditions is present and 0
otherwise. We will need one more correction factor λd+3 which will decide when a jump
in dimension occurs as observed in lemmas 1.3 and 2.2.

6 Calculation of λi’s for the n = 2m case
We now give a lemma with a table to calculate the λi’s using the ai’s and bi’s.

Lemma 6.1 When n = 2m the λi’s, i = 1, ..., d, are determined as in the table below:

1 ≤ i ≤ d ad−i < m bi−1 ≤ m λi = n− ad−i − bi−1

bi−1 > m ad−i + bi−1 ≥ n λi = 0
ad−i + bi−1 < n λi = n− ad−i − bi−1 − 1

ad−i = mt bi−1 = mt m even λi = 1
m odd λi = 0

bi−1 = ms m even λi = 0
m odd λi = 1

ad−i > m bi−1 ≥ m λi = 0.
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Here s, t ∈ {0, 1} and s 6= t. To find the λi corresponding to the case when ad−i > m
and bi−1 ≤ m we must observe that λi is a symmetric function of ad−i and bi−1. (Note
that λ0 and λd+1 were calculated in section 5.)

Proof
Case 1 ad−i < m, bi−1 ≤ m.
L(i) = {0, 1, ..., ad−i, n + 1, n, ..., n + 1 − bi−1} ∈ In+1. Assume for the time being
that ad−i < bi−1 < m. Then the skeleton points missing from SL(i) have indices
ad−i + 1, ad−i + 2, ..., n − bi−1, and there are (n − bi−1) − (ad−i + 1) + 1 = λi of them.
Hence λi = n−ad−i−bi−1 as claimed. If bi−1 = m, then depending on whether Bbi−1

is

in V0 or in V1, the element m+ 1 of L(i) will be replaced by m, or vice versa depending
on the parity of m. This changes L(i) but not #L(i) and hence λi still has the same
value. Finally the argument is symmetric in ad−i and bi−1, and the assumption that
one is less than the other is redundant.
Case 2 ad−i < m, bi−1 > m.
If ad−i + bi−1 ≥ n, then L(i) = In+1 and λi = 0. If however ad−i + bi−1 < n, then
L(i) = {0, 1, ..., ad−i, n+ 1, n, ..., n− bi−1} and consequently λi = n− ad−i − bi−1 − 1.
Case 3 ad−i = m0, bi−1 = m0.
If m is even, then L(i) = In+1 − {m+ 1}, and if m is odd then L(i) = In+1. Hence λi
is 1 or 0 accordingly.
Case 4 ad−i = m0, bi−1 = m1.
Similar to case 3.
Case 5 ad−i > m, bi−1 ≥ m.
In this case ad−i + bi−1 > n so L(i) = In+1 and λi is 0.

2

Lemma 6.2 (Calculation of λd+2 when n is even) Assume that there exist two numbers
ai, bj with i+ j > d− 1, such that ai = mt, bj = ms where t, s ∈ {0, 1}. Then;

For even m, λd+2 =

{
−1 ifs = t,
0 ifs 6= t.

For odd m, λd+2 =

{
0 ifs = t,
−1 ifs 6= t.

Proof: For general indices x and z let ad−x = mt and bz−1 = ms where t, s ∈ {0, 1}.
If x = z then the middle dimension complications are already incorporated into the
considerations leading to the calculation of λx. If however x 6= z then a complication
will arise in the intersection L(x)∩L(z), and we intend to correct this with λd+2. First
assume x > z; then bx−1 > bz−1 = m and λx will be zero since ad−x + bx−1 ≥ n.
Similarly ad−z > ad−x = m and λz is also zero. In this case L(x) ∩ L(z) = In+1, and
λx + λz correctly counts the number of missing skeleton points. Next assume that
x < z; then ad−z < ad−x = m and bx−1 < bz−1 = m, which in turn gives λz = m− ad−z
and λx = m − bx−1 according to the previous lemma. Assume now that m is even.
When s 6= t the spaces Aad−x and Bbz−1 do not have a point in common and again
λx + λz correctly counts the number of missing skeleton points from the intersection
L(x)∩L(z). However if t = s, then the spaces Aad−x and Bbz−1 share a point. Without
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loss of generality assume that t is such that Aad−x ∩ Bbz−1 = pm+1. This shows that
the sets of skeleton points that are left out by L(x) and L(z) both contain the point
pm+1, i.e. λx and λz both count pm+1. Hence the number of skeleton points left out
by L(x) ∩ L(z) is λx + λz − 1. This correction factor is λd+2. If m is odd we argue
similarly. Thus when x < z we let i = d− x and j = z − 1 to obtain the statement of
the lemma.

2.
6.3 We are now in a position to calculate dim

C
SL in terms of λi’s. This is where we

need the correction factor λd+3 which registers the shift in dimension due to lemma 1.3.
First we observe that

#L = #L(0)− (λ1 + · · ·+ λd+2)

= (n+ 2− λ0)− (λ1 + · · ·+ λd+2)

= n− (λ0 + · · ·+ λd+2) + 2.

On the other hand

dim
C
SL =

{
#L− 2 ifJ(L) 6= ∅
#L− 1 ifJ(L) = ∅

Therefore define λd+3 as

λd+3 =

{
0 ifJ(L) 6= ∅
−1 ifJ(L) = ∅.

Then, we finally have
dim

C
SL = n− (λ0 + · · ·+ λd+3).

To calculate λd+3 we must observe that J(L) will be empty if either {0, 1, ...,m} or
{n + 1, n, ...,m + 1} is disjoint from L, i.e. if either of these sets is ignored by the
intersection L(0)∩L(1)∩· · ·∩L(d+1). We therefore define an algorithm which checks
if this is the case.

ALGORITHM: Define the following subintervals of Im:

I(0) =

{
Im if ad ≤ m
{j ∈ Im| j < n− ad } if ad > m.

I(d+ 1) =

{
Im if bd ≤ m
{j ∈ Im| j < n− bd } if bd > m.

For i = 1, ..., d define I(i) as

I(i) =


{j ∈ Im | j > min{ad−i, bi−1}} if ad−i, bi−1 ≤ m
{j ∈ Im | ad−i < j < n− bi−1 } if ad−i < m < bi−1

{j ∈ Im | bi−1 < j < n− ad−i } if ad−i > m > bi−1.
∅ otherwise.
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CONCLUSION OF THE ALGORITHM: (n = 2m)

λd+3 =

{
−1 if ∪d+1

i=0 I(i) = Im,
0 otherwise.

This completes the calculations of the λi’s in n = 2m case.
7 The λi’s for the n = 2m+ 1 case

In this section we give without proof the corresponding statements for the case n =
2m + 1. We also remind that λ0 and λd+1 were calculated in section 5 (regardless of
the parity of n).
Lemma 7.1 When n = 2m+1 the λi’s i = 1, ..., d are determined as in the table below:

1 ≤ i ≤ d ad−i < m bi−1 ≤ m λi = n− ad−i − bi−1

bi−1 > m ad−i + bi−1 ≥ n λi = 0
ad−i + bi−1 < n λi = n− ad−i − bi−1 − 1

ad−i = m bi−1 = m λi = 1
ad−i > m bi−1 > m λi = 0.

Once again we remind that λi is a symmetric function of ad−i and bi−1.

λd+2 = 0 when n is odd: Recall that we need this correction factor when Am and Bm

share a point which the other λi’s fail to count. But when n is odd, then Am is always
disjoint from Bm, hence the other λi’s do their job correctly.

λd+3 when n is odd is calculated using the same algorithm as before except that we
need the following modification.

CONCLUSION OF THE ALGORITHM: (n = 2m+ 1)

λd+3 =

{
−1 if ∪d+1

i=0 I(i) = Im, and m+ 1 6∈ L
0 otherwise.

8 Completion of the proof of the main theorem
We will describe the inequalities of the main theorem for the case n = 2m. The
arguments for the n = 2m + 1 case follow very closely the proof given here using this
time the λi’s defined for the odd dimensional case, and we leave it to the reader.

8.1 We have shown that all the [d]-spaces that are represented by points of
Ωa0···ad ∩ Ωb0···bd lie in the n−(λ0 + · · ·+λd+3) dimensional subvariety SL of Q2m. These
[d]-spaces also belong to σh if they intersect a certain [n− d− h]-dimensional space in
Q2m which belongs to a flag used in the description of σh. Generically this intersection
is empty if (n− d− h) + (n−∑λi) < n. i.e. for nonempty intersection we must have
h+ (λ0 + · · ·+ λd+3) ≤ n− d. This proves the second inequality of the main theorem.
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8.2 We rewrite the dimension condition (1) of the main theorem and rearrange it to
obtain

ad + bd +
d∑
i=1

(ad−i + bi−1 + 1)− d− (d+ 1)(n+
1

2
d) + e = h (∗)

where e is as given in the statement of the theorem. Recall that ad = n − λ0 and
bd = n− λd+1. For ad−i + bi−1 + 1, i = 1, ..., d, we have four cases to consider. We list
these cases first and then examine them;
Case 1: ad−i + bi−1 + 1 = n− λi if either “ad−i < m, bi−1 > m and ad−i + bi−1 < n” or
“ad−i > m, bi−1 < m and ad−i + bi−1 < n.”
Case 2: ad−i + bi−1 + 1 = n − λi + 1 if either “ad−i < m, bi−1 ≤ m” or “ad−i ≤ m,
bi−1 < m.”
Case 3: ad−i + bi−1 + 1 = n − λi + 2 if ad−i = bi−1 = mt, t = 0 or 1, when m is even.
When m is odd the same expression for λi holds if ad−i = mt, bi−1 = ms, t,s∈ {0, 1}
and s 6= t.
Case 4: ad−i + bi−1 + 1 ≥ n− λi + 1 if ad−i + bi−1 ≥ n.
We now examine these cases. If case 1 holds for all i = 1, ..., d, then no ai or bj is m
so λd+2 = 0. Since either ad−i or bi−1 is greater than m, then the interval I(i) does not
contain the integer m, for i = 1, ..., d. Hence λd+3 = 0, and

ad + bd +
d∑
i=1

(ad−i + bi−1 + 1) ≥ n−λ0 +n−λd+1 +
d∑
i=1

(n−λi)−λd+2−λd+3. (∗∗)

If case 2 holds only once, and the rest is case 1, then there is a single occurrence of
m among a0, ..., ad, b0, ..., bd, and hence λd+2 = 0. Assume either ad−k or bk−1 is ≤ m.
Then

ad−k + bk−1 + 1 = n− λk − λd+3,

hence (∗∗) holds.
If case 3 holds, say when i = k, then

ad−k + bk−1 + 1 = n− λk + 2 ≥ n− λk − λd+2 − λd+3,

hence (∗∗) holds.
If case 4 holds at least once and the rest is case 1, we can have at most one occurrence
of m, so λd+2 = 0. If case 4 holds for i = k,

ad−k + bk−1 + 1 ≥ n− λk + 1 ≥ n− λk − λd+3

and (∗∗) holds. In any other combination of cases from 1 to 4 the inequality (∗∗) is
easily seen to hold. Substituting (∗∗) into (∗) we obtain

(n− d)− 1

2
d(d+ 1) + e ≤ h+

d+3∑
i=0

λi

13



which completes the proof.
2

IV EXAMPLES
In this section we use the notation G(d,Qn) to denote the subvariety of the Grass-
mannian manifold consisting of the [d]-planes in the smooth quadric Qn. Due to the

representation theorem of Dibağ [3, p 501] we have A
(n)
d ' G(d− 1, Qn−2). The nota-

tion for Schubert varieties is explained in section 3.

NOTE: In the following intersection-product tables Schubert cycles appearing in the
intersection are given without multiplicities. e.g. in Table 1, Ω14 · Ω204 is given as
Ω121, Ω03 and Ω14 · Ω203 is given as Ω021 , meaning that Ω14 · Ω204 = c1Ω121 + c2Ω03

and Ω14 · Ω203 = c3Ω021 , where c1, c2 and c3 are nonzero integers which we omit. For
example, in the products involving special Schubert varieties, the multiplicities in the
examples below are 1, 2 or 4 as Pragacz (private communication) points out.

9 Cohomology ring structure of A
(6)
2 ' G(1, Q4)

We give the homology intersection structure. The 0-dimensional cycle Ω01 and the 5-
dimensional cycle Ω34 are dual, Ω01Ω34 = 1; and we omit them in table 1. The numbers
in the rightmost column are homological dimension.

10 Cohomology ring structure of A
(6)
3 ' G(2, Q4)

A
(6)
3 consists of two isomorphic connected components V0, V1, say. The dimension

of each component is 3 and planes from different components do not generically in-
tersect, see [5, p 735]. For example Ω1204Ω0203 = 1 but Ω1204Ω0213 = 0. In general
Ωa0a1a2Ωb0b1b2 = 0 if both 20 and 21 appear in the set of indices {a0, ..., b2}. For this
reason we give in table 2 the homology intersection table for one of the components
only. The table for the other component is identical. All the 2’s appearing in the table
are either all 20, for the component V0, or all 21, for the component V1, hence we omit
this labeling.

11 Cohomology ring structure of A
(7)
2 ' G(1, Q5)

The Hasse diagram for the Schubert cycles of A
(7)
2 is given in table 4 with the dimensions

given on the right hand column. Intersection products are given in table 3.
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Ω203 Ω213 Ω14 Ω204 Ω214

Ω020 0 0 0 1 0 1
Ω021 0 0 0 0 1 1
Ω120 1 0 0 Ω020 0 2
Ω121 0 1 0 0 Ω021 2
Ω03 0 0 1 Ω021 Ω020 2
Ω203 0 Ω020, Ω021 Ω021 Ω121 Ω121, Ω03 3
Ω213 Ω020, Ω021 0 Ω020 Ω120, Ω03 Ω120 3
Ω14 Ω021 Ω020 Ω020, Ω021 Ω121, Ω03 Ω120, Ω03 3
Ω204 Ω121 Ω120, Ω03 Ω121, Ω03 Ω203 Ω14 4
Ω214 Ω121, Ω03 Ω120 Ω120, Ω03 Ω14 Ω213 4

Table 1: Intersection products for A
(6)
2

Ω012 Ω023 Ω124 Ω234

Ω012 0 0 0 1 0
Ω023 0 0 1 Ω023 1
Ω124 0 1 Ω023 Ω124 2
Ω234 1 Ω023 Ω124 Ω234 3

Table 2: Intersection products for A
(6)
3

Ω15 Ω24 Ω25 Ω34 Ω35 dim
Ω02 0 0 0 0 1 1
Ω03 0 0 1 0 Ω02 2
Ω12 0 0 0 1 Ω02 2
Ω04 1 0 Ω02 0 Ω03 3
Ω13 0 1 Ω02 Ω02 Ω03, Ω12 3
Ω15 Ω02 Ω02 Ω03, Ω12 Ω03 Ω04, Ω15 4
Ω24 Ω02 Ω02 Ω03, Ω12 Ω03, Ω12 Ω04, Ω13 4
Ω25 Ω03, Ω12 Ω03, Ω12 Ω04, Ω13 Ω04, Ω13 Ω15, Ω24 5
Ω34 Ω03 Ω03, Ω12 Ω04, Ω13 Ω13 Ω24 5
Ω35 Ω04, Ω13 Ω04, Ω13 Ω15, Ω24 Ω24 Ω25, Ω34 6

Table 3: Intersection products for A
(7)
2
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Ω45 7

Ω35 6

Ω25 Ω34 5

Ω15 Ω24 4

Ω04 Ω13 3

Ω03 Ω12 2

Ω02 1

Ω01 0

Table 4: Hasse diagram for A
(7)
2

12 Examples of triple intersections
We verify the necessity of the condition (3) in MT by some examples.

1) Ω14Ω14Ω204 6= ∅ in A
(6)
2 ' G(1, Q4)

e = 0, h = 1, n = 4, d = 1, m = 2.

a1 = 4 λ0 = n− a1 = 0 Section 5
a0 = 1 b0 = 1 λ1 = n− a0 − b0 = 2 Lemma 6.1

b1 = 4 λ2 = n− b1 = 0 Section 5
λ3 = 0 Lemma 6.2
λ4 = 0 Algorithm 6.3

In this case MT(3) holds with 2 ≤ 3 ≤ 3, showing among other things that the upper
bound of h+

∑d+3
i=0 λi cannot be improved.
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2) Ω124Ω023Ω234 6= ∅ in one component of A
(6)
3 ' G(2, Q4).

e = 1 + 2 + 0, h = 0, n = 4 d = 2, m = 2.

a2 = 4 λ0 = n− a2 = 0 Section 5
a1 = 2 b0 = 0 λ1 = n− a1 − b0 = 2 Lemma 6.1
a0 = 1 b1 = 2 λ2 = n− a0 − b1 = 1 Lemma 6.1

b2 = 3 λ3 = n− b2 = 1 Section 5
λ4 = −1 Lemma 6.2
λ5 = −1 Algorithm 6.3

Hence MT(3) is satisfied as 2 ≤ 2 ≤ 2, showing also that the lower bound cannot be
improved either. Note also that if Ω124 and Ω023 are taken in different components of
A

(6)
3 then λ4 = 0 and (3) of MT is not satisfied, implying that the above intersection is

zero, which also follows from the fact that [2]-planes of different families in Q4 do not
generically intersect. Hence A2s and B2t cannot have a line in common for a generic
choice of flags.

3) Ω34Ω34Ω15 = 0 in A
(7)
2 'G(1, Q5).

e = 0, h = 3, n = 5, d = 1, m = 2.

a1 = 4 λ0 = n− a1 = 1 Section 5
a0 = 3 b0 = 3 λ1 = 0 Lemma 7.1

b1 = 4 λ2 = n− b1 = 1 Section 5
λ3 = 0 Section 7
λ4 = 0 Algorithm 7

h +
∑4
i=0 λi = 5 6≤ n− d. In this example the algebra predicts that the cycles will not

intersect, and indeed we can check from table 4 that (Ω34Ω34)Ω15 = Ω13Ω15 = 0.

4) We show that MT(3) is not sufficient;

Ω121Ω214Ω204 = 0 in A
(6)
2 ' G(1, Q4).

e = 1 + 0 + 0, h = 1, n = 4, d = 1, m = 2.

a1 = 21 λ0 = n− a1 + 1 = 3 Section 5
a0 = 1 b0 = 21 λ1 = n− a0 − b0 = 1 Lemma 6.1

b1 = 4 λ2 = n− b1 = 0 Section 5
λ3 = −1 Lemma 6.2
λ4 = −1 Algorithm 6.3

In this case MT(3) is satisfied with equality holding on both sides, 3 ≤ 3 ≤ 3, hence
MT(3) alone is not sufficient for MT(2).

13. Sufficiency of MT(3)

We start this section by analyzing the last example of the previous section. Using
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the notation of section 5, all the lines inQ4 which simultaneously belong to the Schubert
cells Ω121 and Ω214 lie in the space SL where L = {0, 1, 3}. SL is hence a [2]-plane which
belongs to V1. We want these lines also to belong to the Schubert cell Ω204, i.e. we
want to know if there is a line in SL which intersects a [20]-plane, an element of V0.
Since in Q4 elements of V1 do not generically intersect elements of V0 there is no such
line in SL. This explains why MT(3) alone is not sufficient for MT(2). But in this
particular example there is some relief(!); using the commutativity of intersection we
can write Ω121Ω214Ω204=Ω121Ω204Ω214, and we try our main theorem on this new order
of intersection:
Ω121Ω204Ω214=0 in A

(6)
2 ' G(1, Q4)

e = 1, h = 1, n = 4, d = 1, m = 2.

a1 = 21 λ0 = n− a1 + 1 = 3 Section 5
a0 = 1 b0 = 20 λ1 = n− a0 − b0 = 1 Lemma 6.1

b1 = 4 λ2 = n− b1 = 0 Section 5
λ3 = 0 Lemma 6.2
λ4 = −1 Algorithm 6.3

h+
∑4
i=0 λi = 4 6≤ n− d = 3. Hence the algebra tells us that the intersection is zero.

The key questions for the sufficiency of MT(3) are the following:
i) Is SL big enough to intersect a generic [n − d − h]-plane? (this is the condition
imposed by σh)
ii) Is SL big enough to contain a [d]-plane at all?
The first of these questions gives rise to the familiar necessary condition of MT(3)

h+
4∑
i=0

λi ≤ n− d. (∗)

This condition is also sufficient for an affirmative answer to (i) when n is odd, or when
h +

∑4
i=0 λi 6= m in case n = 2m. While SL is sufficiently large to intersect a generic

[n − d − h]-plane, it may not be large enough to contain any [d]-plane. And even it
does contain some [d]-planes we may not conclude that any of these [d]-planes also
satisfies the given Schubert conditions. However if dimSL < m, when n = 2m, then SL
is an [n−∑d+3

i=0 λi]-plane, and the inequality (∗) guarantees that SL intersects a generic
[n− d− h]-plane in Q2m. If furthermore SL is large enough to contain a [d]-plane, i.e.
if dimSL = n−∑d+3

i=0 λi ≥ d, then we can conclude that Ωa0···adΩb0···bdσh 6= ∅.
We collect these arguments in the following theorem. Assume here that Ωa0···ad ,

Ωb0···bd and σh are as given in the statement of the main theorem.

Theorem 13 The condition MT(3) is sufficient for having a nontrivial triple inter-
section, Ωa0···adΩb0···bdσh 6= 0, if one of the following conditions holds:
i) λd+3 = −1 and

∑d+3
i=0 λi > m, when n = 2m

or
ii) λd+3 = −1 when n = 2m+ 1. 2
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Note that when λd+3 = −1 then J(L) = ∅ and in that case SL is an [n−∑d+3
i=0 λi]-plane.

In the even dimensional case we want to exclude the case when
∑d+3
i=0 λi = m since the

cases m = m0 or m = m1 are different (see section 3). If, for example, λd+3 = −1,
n−∑d+3

i=0 λi = ms and n− d− h = mt, then MT(3) is sufficient for MT(2) when
i) s = t and m is even,
or
ii) s 6= t and m is odd.

When n is odd on the other hand, we do not have such middle dimension complications
and λd+3 = −1 is enough to assure the sufficiency of MT(3).

Now applying theorem 13 to the example 4 of section 12, we find that MT(3) holds,
λd+3 = −1 but

∑d+3
i=0 λi 6> m, so as Theorem 13 above predicts, MT(2) does not hold.

It is important to observe that λd+3 = −1 is not a necessary condition of MT(2).
Hence if MT(3) holds but λd+3 = 0, then we can conclude nothing about the triple
intersection. Compare the following two examples for this purpose. In example 1 of
section 12 MT(3) holds, λd+3 = 0 but MT(2) also holds. In G(1, Q6) on the other hand,
if we consider Ω04Ω45Ω46 we see that MT(3) holds, and λd+3 = 0, but this intersection
is zero, i.e. MT(2) does not hold.

These two examples show us that when λd+3 = 0 the inequalities of MT(3) do not
necessarily imply MT(2). However when λd+3 = −1 and

∑d+3
i=0 λi > m then MT(3)

safely implies MT(2), as it does in the following example.

In A
(8)
2 ' G(1, Q6) consider Ω130Ω45Ω46.

e = 1, h = 1, n = 6, d = 1, m = 3.

a1 = 30 λ0 = n− a1 + 1 = 4 Section 5
a0 = 1 b0 = 4 λ1 = n− a0 − b0 − 1 = 0 Lemma 6.1

b1 = 5 λ2 = n− b1 = 1 Section 5
λ3 = 0 Lemma 6.2
λ4 = −1 Algorithm 6.3

Here MT(3) holds with 5 ≤ 5 ≤ 5. We also have
∑d+3
i=0 λi = 4 > 3 = m and λ4 = −1.

Hence we conclude from these algebraic considerations that Ω130Ω45Ω46 6= 0.
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