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SİNAN SERTÖZ

Abstract. We describe the Grassmann Graph construction of MacPherson
in the analytic category using a C∗-action and the corresponding Bialynicki-

Birula decomposition. It is shown that the cycle at infinity is analytic in the

compact Kaehler case.

0. Introduction.

This paper describes the Grassmann Graph construction of MacPherson in the
analytic category using C∗-actions. The details of the algebraic case can be found
in [1].

In section 1 we summarize the decomposition theorem of Bialynicki-Birula in
the compact Kaehler case, [2], [3]. Section 2 describes a C∗-action on Grassmann
manifolds and gives the corresponding Bialynicki-Birula decomposition. Examples
are given in the next section. In section 4 this C∗ action is carried on to Grass-
mann bundles and Z∞, the cycle at infinity corresponding to a bundle morphism
is defined. It is shown that in the compact Kaehler case Z∞is an analytic cycle.
The graph construction is finally accomplished in section 5. Examples are given in
section 6.

Verdier uses the existence of a closed analytic space S which contains the closure
of the graph in transcribing for analytic spaces the results of MacPherson, [9, section
5, proposition], [6]. We show in theorem 1 that in the compact Kaehler case S not
only contains but is equal to the closure of the graph.

1. Bialynicki-Birula decomposition

The references for this section are [2] for the algebraic case and [3] for the complex
case. There is also a clear summary in [4, section Ic].

Let M be a compact Kaehler manifold with a C∗-action on it. Let this C∗-action
have nontrivial fixed point set B with components B1, . . . , Bm. The components of
the fixed point set are complex submanifolds of M . For λ ∈ C∗ and p ∈M let λ · p
denote the action of λ on p. The C∗-action extends to a meromorphic map

P
1 × {p} −→M

hence limλ→0 λ · p and limλ→∞ λ · p exist in M . Clearly these limits are in B.
There are two canonical decompositions of M into invariant complex submanifolds.
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Define

M+
i = {p ∈M | lim

λ→0
λ · p ∈ Bi}

for i = 1, ...,m. Each M+
i is a complex submanifold of M and

M =
⋃
M+
i , 1 ≤ i ≤ m.

This is called the plus decomposition of M . Similarly the minus decomposition is
defined as

M−i = {p ∈M | lim
λ→∞

λ · p ∈ Bi}

for i = 1, ...,m. Each M−i is a complex submanifold and similarly

M =
⋃
M−i , 1 ≤ i ≤ m.

There are two distinguished components of the fixed point set B, say B1 and Bm,
which are determined by the property that M+

1 and M−m are open and dense in M .
B1 is called the source and Bm is called the sink.

2. C∗-action on G(k, n).

In this section we describe a particular C∗-action on G(k, n), the Grassmann
manifold of k-planes in n-space. Fix a coordinate system on Cn. We will use the
representation of G(k, n) by matrices. Any point p ∈ G(k, n) can be represented by
a k × n-matrix A of rank k. Two such matrices A and B represent the same point
in G(k, n) if there is an invertible k× k-matrix g ∈ G(k,C) such that gA = B. For
a k × n-matrix A of rank k set [A] = the row space of A.

Given a k × n-matrix A = (aij), 1 ≤ i ≤ k, 1 ≤ j ≤ n define two submatrices

A1 = (aij , 1 ≤ i, j ≤ k

and

A2 = (aij , 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

A1 is a k× k-matrix and A2 is a k× (n− k)-matrix and A = (A1, A2) is a partition
of A.

Define a C∗-action on G(k, n)

C
∗ ×G(k, n) −→ G(k, n)

by

λ · [A] = [(A1, λA2)].

To describe the behaviour of this action define a subset Xij of G(k, n) as the set
of all p in G(k, n) which can be represented by a k × n-matrix A = (A1, A2)
such that rankA1 = i and rankA2 = j, where k − min{k, n − k} ≤ i ≤ k and
0 ≤ j ≤ min{k, n− k}. Let B = (B1, B2) be another k × n-matrix representing p.
Then there is an invertible k × k-matrix g such that gA = B.

gA1 = B1 and gA2 = B2.

Hence rankB1 =rank(gA1) =rankA1 = i and similarly rankB2 = j, and the follow-
ing definition of Xij is well defines:

Xij =
{

[A] ∈ G(k, n)
∣∣ rankA1 = i, rankA2 = j

}
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where k −min{k, n − k} ≤ i ≤ k and 0 ≤ j ≤ min{k, n − k}. Necessarily we have
i+ j ≥ k; to see this, recall that A represents a point in G(k, n) hence has rank k,
and if A1 has rank i then A2 must supply at least the remaining k − i ranks.

To describe the behaviour of the C∗-action that is defined above we prove the
following lemmas.

Lemma 1. Xi k−i are the fixed point components of the C∗-action, k−min{k, n−
k} ≤ i ≤ k.

Proof: Let [A] ∈ Xi k−i, A = (A1, A2). We first show that λ · [A] = [A]. If
i = 0, then A1 = 0, and if i = k, then A2 = 0. In both cases λ · [A] = [A]. Assume
0 < i < k. Then there exists an invertible k × k-matrix g such that gA is of the
form (

B1 0
0 B2

)
where B1 ∈ GL(iC) and B2 ∈ GL(k−i,C). For λ ∈ C∗ define hλ to be the diagonal
matrix [1, . . . , 1, 1/λ, . . . , 1/λ], where the number of 1/λ’s is k − i. We then have
the following sequences of equalities:

λ · [A] = λ · [gA]

= λ ·
[(
B1 0
0 B2

)]
=
[(
B1 0
0 λB2

)]
=
[
hλ

(
B1 0
0 B2

)]
=
[(
B1 0
0 B2

)]
= [A]

Thus we have proven that Xik−i is a subset of the fixed point set. That in fact
there are no other fixed points than ∪Xik−i, k−min{k, n−k} ≤ i ≤ k follows from
the results of the following two lemmas.

Lemma 2. If [A] ∈ Xij, then limλ→0 λ · [A] ∈ Xik−i, where

k −min{k, n− k} ≤ i ≤ k, 0 ≤ j ≤ min{k, n− k} i+ j ≥ k.
In particular Xk0 is the source.

Proof: If i = 0 or i = k, then Xij is a component of the fixed point set as in
Lemma 1. Assume 0 < i < k. then there exists g ∈ GL(k,C) such that

gA =



... 0

B1

...

... B2

. . . . . . . . . .

0
... B3
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where B1 ∈ GL(i,C), B3 ∈ GL(k − i,C) and B2 is a (i+ j − k)× (n− k)-matrix.
Let hλ be as in Lemma 1. then

hλλgA =



... 0

B1

...

... λB2

. . . . . . . . . . . .

0
... B3


and since limλ→0 λB2 = 0 we have

lim
λ→0

λ · [A] = lim
λ→0

[hλλgA]

=
[(
B1 0
0 B3

)]
.

This last matrix is clearly in Xik−i as claimed.

Lemma 3. If [A] ∈ Xij, then limλ→∞ λ · [A] ∈ Xk−jj, where

k −min{k, n− k} ≤ i ≤ k, 0 ≤ j ≤ min{k, n− k}.
In Particular k−mm is the sink, where m = min{k, n− k}.

Proof: If i = 0 or i = k, then Xij is a fixed point component. Assume 0 < i < k.
there exists g ∈ GL(k,C) such that

gA =



B1

... 0
. . . . . . . . . .

B2

...

... B3

0
...


where B1 ∈ GL(k − j,C), B3 ∈ GL(j,C) and B2 is a (i+ j − k)× k-matrix. Then

lim
λ→∞

λ · [A] = lim
λ→∞

[λhλgA]

= lim
λ→∞




B1 0
λ−1B2

B3

0




=
[(
B1 0
0 B3

)]
.

This last matrix is in Xk−jj as desired.

These last two lemmas show that Xik−i for k−min{k, n− k} ≤ i ≤ k are the only
fixed point components and thus complete the proof of lemma 1.

We can apply these lemmas to examine the behaviour of Schubert cells under
the action of C∗ on the Grassmann manifold. we will adopt the terminology of
Griffiths and Harris on Schubert cells. For details refer to [5, pp. 195-196].
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Let {e1, ..., Vn} be the standard basis for Cn and Vi = span{e1, ..., ei}. Then
{V1, ..., Vn} defines a flag. For any nonincreasing sequence of nonnegative integers
between 0 and n− k define a cell

Wa =
{

[Λ] ∈ G(k, n)
∣∣ dim(Λ ∩ Vn−k+i−ai) = i

}
.

The sequence of nonincreasing integers a = (a1, ..., ak) with 0 ≤ ai ≤ n−k is called
a Schubert symbol. For [Λ] ∈ G(k, n), let A be a k × n-matrixsuch that [A] = [Λ].
If [A] ∈ Wa for some Schubert symbol a = (a1, ..., ak), then the rank of the first
k× (n−k+ i−ai) minor is i and the rank of the last k× (k− i+ai) minor is k− i.
The closure of Wa

Wa =
{

[Λ] ∈ G(k, n)
∣∣ dim(Λ ∩ Vn−k+i−ai) ≥ i

}
is called a Schubert variety. If A is a matrix representing [Λ] as above, then [Λ] is
in Wa iff the rank of the first k × (n − k + i − ai) minor of A is at most k − i. It
is well known that Wais an analytic subvariety of G(k, n) and the homology class
of Wa, denoted by σa, is independent of the flag used in its definition, [5, p. 196].
σa is called the Schubert cycle corresponding to a = (a1, ..., ak). Regarding the
behaviour of Schubert cycles under the C∗-actionwe give the following corollary to
the above lemmas:

Corollary 1. All Schubert cycles of positive codimension in G(k, 2k) lie in
Xij’s where j < k. In particular they do not flow to the sink, i.e. if p ∈ Wa then
limλ→∞ λ · p is not in the sink.

Proof: The codimension of Wafor a = (a1, ..., ak) is
∑
ai, [5, p. 196]. It suffices

to prove the corollary for a = (1, 0, ..., 0). For [Λ] ∈ Wa let A = (A1, A2) be a
matrix representation where A is a k × n-matrixof rank k, and A1, A2 are k × k-
matrices. The rank of the last k × k minor of A is of rank at most k − 1. Hence in
particular the rank of A2 is not k, therefore [A] is not in Xik. Since the only points
that flow to the sink belong to the components of the form Xik, [Λ] does not flow
to the sink. In general if a = (a1, ..., ak) with a1 ≥ 1 then the last k × (k + a1 − 1)
minor has rank at most k − 1. Since k + a1 − 1 ≥ k, the rank of A2 cannot be k.
Hence Wadoes not flow to the sink. If a1 = 0, then a = (0, ..., 0) and Wadoes not
have positive codimension.

Using the same notation as in the previous corollary we can generalize as follows:

Corollary 2. Let Wa, a = (a1, ..., ak), be a Schubert variety in G(k, n), where
a1 ≥ n− 2k + 1. Then Wadoes not flow to the sink if n ≥ 2k.

Proof: Let A = (A1, A2) be a k × n-matrixwith rank k representing a point [A]
in Wa. A1 is a k×(n−k)-matrix and [A] will flow to the sink if rank A2 is maximal.
Since n ≥ 2k means n − k ≥ k, the maximal rank of A2 is k. the rank of the last
k × (k + a1 − 1) minor of A is at most k − 1. By assumption k + a1 − 1 ≥ n − k,
therefore the rank of A2 cannot be k. Hence Wadoes not flow to the sink.

3. Examples

In examples 1 and 2 we assume that the C∗-actionof the previous section is
defined on the spaces G(2, 4) and G(4, 9).
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1) G(2,4). In G(2, 4) we have defined the following sets:

X20, X11, X02, X22, X12, X21.

The first three sets are the fixed point sets. As λ → 0 the elements of X21 and
X22 flow to the source X20, and the elements of X12 flow to X11. As λ → ∞ the
elements of X22 and X12 flow to the sink X02, and the elements of X21 flow to X11.

See Figure 1 for the direction of these flows for each Xij as λ→∞.
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Fig. 1

2) G(4,9). For the direction of flow as λ→∞ see Figure 2. From the decomposi-
tion of G(4, 9) into Xij it can be seen that the points that lie in

X13 ∪X33 ∩X31 ∩X32 ∩X22 ∩X23

do not flow to the sink or the source under the action of C∗.
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4. C∗-actions on Grassmann bundles

This section defines in the compact Kaehler case the Grassmann Graph con-
struction of [1, pp. 120-121].

Let E, F be vector bundles of ranks k and n, respectively, on an analytic space
M . Let G(k,E⊕F )→M denote the Grassmann bundle whose fibre at each x ∈M
is G(k,Ex ⊕ Fx), the Grassmannian of k-planes in Ex ⊕ Fx. Define a C∗-action on
G(k,E ⊕ F ) as the fibrewise C∗-action. Let

π1 : E ⊕ F −→ E

π2 : E ⊕ F −→ F

and

π : G(k,E ⊕ F ) −→M

be the projections. Any p ∈ G(k,E ⊕F ) is represented by a k-plane H in Ex ⊕Fx
where x = π(x). π1(H) and π2(H) are linear subspaces of Ex and Fx, respectively.
The total space G(k,E ⊕ F ) can be decomposed into C∗-equivariant subbundles

Xij =
{

[H] ∈ G(k,E ⊕ F )
∣∣ dimπ1(H) = i, dimπ2(H) = j

}
where k −min(k, n) ≤ i ≤ k, 0 ≤ j ≤ min(k, n), and i + j ≥ k. It is easy to see
that

Xij
∼= G(i, E)×G(j, F ) if i+ j = k,

which are the fixed point sets of the C∗-action. Let

Hom(E,F ) −→M

be the bundle of morphisms from E to F and let

j : Hom(E,F ) −→ G(k,E ⊕ F )

be the natural inclusion defined fibrewise as

jx(Φ) = graph(Φ
∣∣ Ex) =

{(
e,Φ(e)

)
∈ Ex ⊕ Fx

}
.

Recall that C can be imbedded into P1 as

C −→ P
1

λ −→ [1 : λ],

[1, p. 120]. Define a C∗-action on G(k,E ⊕ F )× P1

C
∗ ×G(k,E ⊕ F )× P1 −→ G(k,E ⊕ F )× P1

as (
λ, p, [λ0 : λ1]

)
−→

(
λ · p, [λ0 : λλ1]

)
where λ · p is the C∗-action which is defined above. Also define the C∗-action on
M × C,

C
∗ ×M × C −→M × C
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as (
λ, x, t

)
−→

(
x, λt

)
.

Every Φ ∈ Hom(E,F ) defines an equivariant imbedding s(Φ) of M×C into G(k,E⊕
F )× P1,

s(Φ) : M × C −→ G(k,E ⊕ F )× P1

where

s(Φ)(x, λ) =
([
jx(λΦx)

]
, [1 : λ]

)
.

Let s(Φ) = pr(s(Φ)) where pr is the projection

pr : G(k,E ⊕ F )× P1 −→ G(k,E ⊕ F ).

s(Φ)(M,λ) is the graph of λΦ. Now define

Z∞ = lim
λ→∞

s(Φ)(M,λ).

Theorem 1. If M is a compact Kaehler manifold, then for any Φ ∈ Hom(E,F )
the corresponding Z∞ is an analytic cycle.

Proof: Let ρ : C∗ ×G(k,E ⊕F )→ G(k,E ⊕F ) be the C∗-action defined above.
Consider M as a subspace of G(k,E⊕F ) by the imbedding s(Φ)(M,λ); i.e. identify
M and the graph of Φ. define a holomorphic map

A : M × C∗ −→ G(k,E ⊕ F )

as

A(m, t) = s(Φ)(m, t),

where m ∈M and t ∈ C∗. This map is equivariant with respect to ρ and the trivial
action of C∗ on M ×C∗, multiplication in the second component; for if λ ∈ C∗ then

A(m,λ · t) = s(Φ)(m,λt)

= s(λΦ)(m, t)

= λ · s(Φ)(m, t)

= ρ(λ, s(Φ)(m, t))

= ρ(λ,A(m, t))

hence equivariance. But Sommese has shown that if ψ : Y ×C∗ → X is a holomor-
phic map equivariant with respect to the trivial action of C∗ on Y × C∗ and the
action of C∗ on X with fixed points then ψ extends meromorphically to Y × P1,
[8,p. 111 (Lemma II-B)]. Thus A extends meromorphically to

A′ : M × P1 −→ G(k,E ⊕ F ).

Let T be the closure of the graph of A in M × P1 ×G(k,E ⊕ F ).
By the definition of a meromorphic map, T is an analytic space. Since

M × {∞} × Z∞ = T ∩
(
M × {∞} ×G(k,E ⊕ F )

)
,

being the intersection of two analytic spaces it is analytic. If pr: M ×{∞}×Z∞ →
M is the projection, then for any m ∈M , pr∗(M) = {m}×Z∞ is an analytic cycle,
from which it follows that Z∞ is analytic as desired.
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Z∞ is called the cycle at infinity corresponding to the map Φ. Notice that there is
an alternate definition of Z∞ see [1, p. 121];

Let W be the closure of s(Φ)(M × C) in G(k,E ⊕ F )× P1. Then Z∞ × {∞} is
the intersection of W and G(k,E ⊕ F )× {∞}.

In the algebraic category W is an algebraic variety but in the analytic category
the observation that W can be obtained through a C∗-action with fixed points on
a compact Kaehler manifold is crucial in concluding that it is analytic.

Clearly {Zλ = s(Φ)(M,λ)} defines a family of cycles which are algebraically and
hence homologically equivalent.

5. Graphs of complexes

In this section we define the Grassmann Graph construction and the cycle at
infinity associated to a complex of vector bundles. This construction was first
introduced by MacPherson and used by Baum, Fulton and MacPherson to prove
Riemann-Roch theorem for singular algebraic varieties, [1] and [6].

Consider a complex of vector bundles on M ,

(E.) : 0 −→ Em −→ Em−1 −→ · · · −→ E0 −→ 0.

Denote the maps by γi, i.e.

γi : Ei −→ Ei−1

where i = 0, ...,m, E−1 = 0.
Assume that there is a subvariety S of M such that (E.) is exact on M − S.
Let

GI = G(rankEi, Ei ⊕ Ei−1 ), i = 1, ...,m.

and let

τi −→ Gi the tautological bundle, i = 1, ...,m.

Define

G = G0 ×M · · · ×M Gm

where ×M denotes the bundle product on M . On G let τi denote the pull back of
τi → Gi by the projection pri : G→ Gi of the i-th component, i = 0, ...,m.

Let

τ = τ0 − τ1 + · · ·+ (−1)mτm

be the virtual tautological bundle on G. Recalling the definition of s from the
previous section, for any λ ∈ C define an imbedding

siλ : M −→ Gi

as

siλ(x) = s(γi)(x, λ)

where i = 0, ...,m. Then define for any λ ∈ C an imbedding

sλ : M −→ G
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as

sλ(x) =
(
s0
λ(x), ..., smλ (x)

)
.

Using sλ(M) we define

Z∞ = lim
λ→∞

sλ(M)

to be the cycle at infinity corresponding to the complex (E.).
Let π : G → M be the natural projection. Recalling that S is the set off which

(E.) is exact we have the following result: (For proofs see [1, p. 121].)

Theorem (Baum, Fulton, MacPherson). The cycle Z∞ has a unique decomposi-
tion Z∞ = Z∗ + M∗, where
1) π maps M meromorphically onto M .
2) π : M∗ − π−1(S) −→M − S is a biholomorphism.
3) π maps Z into S.
4) τ restricts on M∗ to the zero bundle.

Remark. By Theorem 1 of the previous section, Z∞ is a product of analytic
cycles in the product bundle G, hence this theorem can be stated in the analytic
category as above. Any cycle can be written as a sum of irreducible cycles. the
decomposition of Z∞ is such a sum. For a proof of (4) see [1, p. 122].

Finally we define two residues on S. Let E be the virtual bundle E0 − E1 + · · ·+
(−1)mEm on M . Then τ

∣∣ Z0 is isomorphic to E since Z0
∼= M . Since Z) and Z∞

are rationally equivalent

c(E) ∩ [M ] = c(τ) ∩ Z0 = c(τ) ∩ Z∞

where c(·) denotes the Chern class and ∩ denotes the cap product. Since Z∞
decomposes

ci(τ) ∩ Z∞ = ci(τ) ∩ (Z∗ + M∗)

= ci(τ) ∩ Z∗ + ci(τ) ∩M∗

= ci(τ) ∩ Z∗

where i > 0 and the last equality follows since τ
∣∣ M∗ = 0 by (4) of the above

theorem.
Define

ciS(E.) = π∗
(
ci(τ) ∩ Z∗

)
∈ H∗(S : C).

Similarly let ch(·) denote the Chern character, then

ch(E) ∩ [M ] = ch(τ) ∩ Z0

= ch(τ) ∩ Z∞
= ch(τ) ∩ Z∗ + ch(τ) ∩M∗

= ch(τ) ∩ Z∗.

Similarly define

chS(E.) = π∗
(
ch(τ) ∩ Z∗

)
∈ H∗(S;C).
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For basic properties of ch(E.) in the algebraic category see [1, pp. 121-126]. We will
use ciS(E) for calculating the Baum-Bott residue of singular holomorphic foliations
in [7].

6. Examples

1) Let E,F be vector bundles on M and ψ ∈ Hom(E,F ).Then the graph
Γ(ψ) of ψ gives rise to a cycle at infinity Z∞. Let rankE = k, rankF = n, and
m = min{k, n}. For i = 0, 1, ...,m, let Bi = Xk−ii, where Xij is as defined in
Section 4. B0, ..., Bm are the components of the fixed point set B under the C∗-
action on the Grassmann bundle G(k,E ⊕ F ). To understand the structure of Z∞
we describe its intersection with B. For this purpose define the following sets

Σi = {p ∈M
∣∣ rank ψp ≤ i }, i = 0, ..., r

where r is the generic rank of ψ. the behaviour of Z∞ can now be described as
follows: (

Z∞ ∩Bi
)
p
6= ∅ iff p ∈ Σt and t ≥ i ≥ r.

2) We want to show that the Hironaka Blow-up at a point can be recovered as
a Grassmann Graph construction. The problem is local so let M be an open set in
C
n. Define two trivial bundles L and F as

L = M × C and F = M × Cn.
Define a morphism θ ∈ Hom(L,F ) as:

θ(p, t) = (p, tp) for p ∈ Cn, t ∈ C.
The cycle at infinity Z∞ corresponding to θ intersects the sink of G(1, L ⊕ F ) in
M∗, that is Z∞ = M∗ + Z∗. M∗is the Hironaka Blow-up of M at the origin. We
can see this as follows. Let p = (p1, ..., pn) ∈ M = C

n. We also identify P(L ⊕ F )
with Pn. There is a C∗-action

C
∗ ×M × Pn −→M × Pn

given as (
λ, p, [y0 : y1 : · · · : yn]

)
→
(
p, [y0 : λy1 : · · · : λyn]

)
.

The graph of θ has the form

Γ(θ) =
{

(p, [1 : p1 : · · · : pn]) ∈M × Pn
}
.

The C∗-action moves Γ(θ) as

λ · Γ(θ) =
{

(p, [1 : λp1 : · · · : λpn]) ∈M × Pn
}
.

Consider the usual imbedding of C∗ in P
1 as λ = [1 : λ] = [λ0 : λ1], where

λ = λ1/λ0. Since λ→∞ iff λ0 → 0 with λ1 6= 0, we have the following limit

Z∞ = lim
λ→∞

λ · Γ(θ)

= lim
λ0→0

{
(p, [λ0 : λ1p1 : · · · : λ1pn]) ∈M × Pn

}
=
{

(p, [0 : λ1p1 : · · · : λ1pn]) ∈M × Pn
}
.

Clearly (p, [0 : λ1p1 : · · · : λ1pn]) ∈ M × Pn can be considered as a point (p, [x1 :
· · · : xn]) in M × Pn−1 such that

pjxi = pixj , i 6= j, 1 ≤ i, j ≤ n.
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From here it is easy to see that the intersection of Z∞ with the sink of the C∗-action
is the Hironaka blow-up of M at the origin.

Acknowledgment. This work constitutes part of the author’s dissertation. The
author thanks his supervisor professor J. B. Carrell for his encouraging and stimu-
lating conversations. Financial support for this work was provided by TÜBİTAK
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