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Abstract. We study the homological intersection behaviour for the Chern
cells of the universal bundle of G(d,Qn), the space of [d]-planes in the smooth
quadric Qn in Pn+1 over the field of complex numbers. For this purpose we define
some auxiliary cells in terms of which the intersection properties of the Chern cells
can be described. This is then applied to obtain some new necessary conditions
for the global decomposability of a 2-form of constant rank.

1. Introduction. In this article we study from a purely projective geo-
metric point of view the obstructions to globally decomposing a 2-form. It
was shown by Dibağ that the vanishing of certain Chern classes is necessary
for such a decomposition, [3]. We construct new classes whose nonvanish-
ing implies the nonvanishing of the Chern classes. Moreover some vanishing
patterns of these new classes imply the vanishing of the Chern class obstruc-
tions. This is achieved by studying the intersection structure of the integral
homology generated by the Chern cells. Our methods are purely geometric
and reveal the required products up to a nonzero multiplicative constant.
However this suffices for our purposes since we eventually check for vanish-
ing of obstructions. In the case of maximal planes these coefficients can be
explicitly calculated. This is done by Hiller and Boe in [7] where the au-
thors consider the case of type B maximal isotropic Grassmannians. Type D
(which is a consequence of the result in type B) appeared in [9]. The results
of [7] are further reproved by Pragacz and Ratajski in [11] by using divided
differences. Recently similar calculations in type B are done by Sottile, [14].
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In the non-maximal case these calculations are due to Pragacz and Rata-
jski, see [12]. However to adopt these general formulas for our cases would
lead to complicated combinatorial formulas. By checking only nonvanishing
conditions we are able here to present a purely geometrical argument which
suffices for our results.

We denote by G(d,Qn) the space of complex projective [d]-planes lying
in the smooth quadric hypersurface Qn of Pn+1. Dibağ has shown that
G(d,Qn) represents A

(n+2)
d+1 , the space of normalized 2-forms in Rn+2 of rank

2(d + 1), on which the Stiefel bundle Vn+2,2(d+1) of orthonormal 2(d + 1)-
frames in Rn+2 induces a principal U(d+ 1)-bundle, see [2, 3].

In general if ω is a 2-form of constant rank 2(d + 1) on a trivial Rn+2

bundle E over some base space B, then it can be represented by a map ω1 :
B → A

(n+2)
d+1 . Lifting this map to Vn+2,2(d+1) is equivalent to decomposing the

2-form ω globally as ω = y1∧yd+2+· · ·+yd+1∧y2(d+1) for some 1-forms on E.

Then the images ω∗1(ci) ∈ H2i(B;Z) of the Chern classes ci ∈ H2i(A
(n+2)
d+1 ;Z),

i = 0, ..., d+1, of the principal U(d+1)-bundle Vn+2,2(d+1) necessarily vanish.
If E is not trivial then the above geometry is analyzed on a certain subbundle
Sω of E, depending on ω, and its triviality is another necessary condition
for the decomposability of ω, [3].

We define some cohomology classes PD Ωi ∈ H`−i(A
(n+2)
d+1 ;Z), where

` = dimA
(n+2)
d+1 and i = 0, . . . , d + 1, and show that if ω∗1(PD Ωs) = 0 for

some 0 ≤ s ≤ d + 1, and ω∗1(PD Ωs+i) 6= 0 for i = 1, . . . , d + 1 − s, then
ω∗1(ci) = 0 for i = 1, . . . , d + 1− s. Moreover if ω∗1(PD Ωs) 6= 0 for some s,
then ω∗1(ci) 6= 0 for all i = 1, . . . , d+ 1− s, see Theorem 3 and Corollary 4.
When n = 2d, a trivial line bundle splits off the universal bundle on each
irreducible component, V0 and V1, of G(d,Qn) forcing cd+1 to vanish. In
this case s > 0 if it exists. These results occupy the last section after we
establish in Section 3 the intersection properties of Chern cells.

For background on intersection problems we refer to [1, 5, 6]. For recent
applications one can refer to [10, 12, 13, 14]. For the existence and the
decomposability of 2-forms see [2, 3, 8]. And finally for 2-forms on spheres
see [2, 4]

It is my pleasure to thank İ. Dibağ for his constant support and en-
couragement, and for saving me from an error in an early version of this
manuscript.
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2. Preliminaries. In this section we summarize some constructions which
help us to understand the geometry of the space of d-planes lying in a
smooth quadric Qn. First we define a set of points which we propose to call
the skeleton points and use in describing flags and Schubert cells. We refer
to [13, pp 203-207] for further details and here briefly describe the main
lines for completeness.

For two points p = (p1, . . . , pN) and q = (q1, . . . , qN) in CN we say that
p and q are f-orthogonal if p ·q = p1q1 + · · ·+pNqN = 0, and m-orthogonal if
p·q = p1q1+· · ·+pNqN = 0, where the overbar denotes complex conjugation.
When p and q are used as homogeneous coordinates of the corresponding
points in the projective space the same terminology prevails.

Assume n = 2m. The skeleton points of Q2m is a set of 2m + 2 points
in P2m+1 chosen as follows:
(i) choose p0 in Q2m arbitrarily. This means that p is f-orthogonal to itself.
(ii) Once p0, ..., pk−1 are chosen, where 1 ≤ k ≤ m, choose pk as any point of
Q2m which is both f-orthogonal and m-orthogonal to the join p0

∨ · · ·∨pk but
not in the join itself. The set of points in P2m+1 satisfying these conditions
is a 2(m− k) dimensional subspace so a choice is always possible.
(iii) After having chosen p0, ..., pm the remaining m+ 1 points are chosen as
the complex conjugates of these where indexing is done as follows:

pm+i = pm+1−i, i = 1, ...,m+ 1.

Here again the overbar denotes complex conjugation.
These points p0, ..., p2m+1 all lie in Q2m and their join is the whole space

P
2m+1. The particular way we choose and index them enables us to build

a link between geometry and algebra. This can be seen in the following
construction.

For any subset L of the set I2m+1 = {0, 1, ..., 2m + 1} define SL as the
intersection of Q2m with the join of those skeleton points whose index is in
L;

SL = Qn

⋂∨
j∈L

pj

 .
The link between geometry and algebra comes into play at this stage; the
dimension of this space SL is determined by the indexing set L. For this
define a particular subset of L which affects the dimension of SL.

J(L) = {i ∈ Im | i ∈ L and 2m+ 1− i ∈ L }.
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In other words J(L) contains the indices of only those skeleton points among
p0, ..., pm whose complex conjugates also lie in SL.

In [13, Lemma 1.3] we proved that

dim
C
SL =

{
#L− 2 if J(L) 6= ∅
#L− 1 if J(L) = ∅.

Now we are ready to construct two dual flags for Q2m . The first one is
called the A-flag and consists of a nested sequence of subvarieties of Q2m

A0 ⊆ · · · ⊆ Am−1 ⊆ Am0 , Am1 ⊆ Am+1 ⊆ · · · ⊆ A2m = Q2m

such that Ai−Ai−1 is an open cell of dimension i, and each Ai is chosen as
follows
(i) Ai = S{0,1,...,i} for i = 0, ...,m− 1
(ii) Am0 = S{0,1,...,m} and Am1 = S{0,1,...,m−1,m+1}
(iii) Am+i = S{0,1,...,m+1+i} for i = 1, ...,m.
Note that dimAi = i for i = 0, . . . , 2m, where the indices m0 and m1 are
considered to be different as indices but both equal to m as values.

The second flag is the dual flag for the A-flag and is called the B-flag.
It also consists of a nested sequence of subvarieties of Q2m

B0 ⊆ · · · ⊆ Bm−1 ⊆ Bm0 , Bm1 ⊆ Bm+1 ⊆ · · · ⊆ B2m = Q2m

where each Bi is chosen as follows
(i) Bi = S{2m+1,2m,...,2m+1−i} for i = 0, ...,m− 1
(ii) Bm0 = S{2m+1,2m,...,m+2,m} and Bm1 = S{2m+1,2m,...,m+1} if m is even,

Bm1 = S{2m+1,2m,...,m+2,m} and Bm0 = S{2m+1,2m,...,m+1} if m is odd
(iii) Bm+i = S{2m+1,2m,...,m−i} for i = 1, ...,m.
Note again that dimBi = i for i = 0, . . . , 2m.

For the corresponding constructions in the n = 2m+ 1 case we refer the
reader to [13, pp 205-207].

To conclude this section we summarize the construction of Schubert cells
onG(d,Q2m ), the space of d-planes inQ2m. In the notation of [3]G(d,Q2m )

is A
(n+2)
d+1 . A Schubert symbol for G(d,Q2m ) is a finite sequence of integers

a = (a0, ..., ad), d ≤ m, satisfying the conditions
(i) 0 ≤ a0 < · · · < ad ≤ 2m
(ii) ai + aj 6= 2m for i < j. This conditions is to avoid assigning different
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Schubert symbols to the same cell. See [3, p 506].
Here again m0 and m1 are used as two different entities but both having
the value m, so if one of them appears in the sequence a the other does not
according to (ii).

The Schubert cell corresponding to the Schubert symbol a is a subvariety
of G(d,Q2m ) defined as

Ωa0···ad = {P ∈ G(d,Q2m ) | dim
C

(P ∩ Aai) ≥ i }.

Here Aai denotes the corresponding member of the A-flag. It turns out that

dim
C

Ωa0···ad = a0 + · · ·+ ad − d(d+ 1) + e

where
e = #{(ai, aj) | i < j and ai + aj < n }.

For further details on the intersection properties of these cells we refer to
[3, 13].

3. Intersecting Chern Cells. Following Dibağ the i-th Chern cell Ωi of
the principal U(d+ 1)-bundle Vn+2,d+1

(
A

(2n)
d+1 ;U(d+ 1)

)
is defined in terms

of Schubert cells on G(d,Qn) as

Ωi = Ω
0··· ̂(d−i+1)···d+1

, 0 ≤ i ≤ d+ 1

when n ≥ 2d+3. (Here ̂(d− i+ 1) means “omit d− i+1”). The restriction
on n ensures that the condition ai + aj 6= n for i < j holds in the Schu-
bert symbols corresponding to the Chern cells, which is important to avoid
redundant representations.

It turns out that the homology duals of the Chern cells play a crucial
part in the intersection behaviour of the Chern classes. These are defined
as follows;

∆j = Ω
n−d−1··· ̂(n−d−1+j)···n, 0 ≤ j ≤ d+ 1.

Note that ∆j is the ‘dual’ of Ωj, i.e Ωt
j = ∆j in the notation of [3]. A direct

calculation shows that dim
C

Ωi = codim
C

∆i = i, for 0 ≤ i ≤ d+ 1.
The intersection properties of the Chern cells can now be described fully

in terms of the dual cells: the i-th Chern cell non trivially intersects a cell if
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and only if this cell is the j-th dual Chern cell with j not bigger than i, and
in that case the intersection is precisely a multiple of the (i − j)-th Chern
cell. We can now formulate this in the following theorem;

Theorem 1. Let Ωi and ∆j be as defined above and let Ω be any Schubert
cell of G(d,Qn) with n ≥ 2d+ 3. Then

Ωi · Ω 6= 0 if and only if Ω = ∆j with 0 ≤ j ≤ i ≤ d+ 1.

And moreover in that case we have

Ωi ·∆j = αΩi−j, 0 ≤ j ≤ i ≤ d+ 1,

where α is a nonzero integer.

Remark. P. Pragacz has communicated these coefficients as powers of 2.
In fact Hiller and Boe have shown in [7] that for the maximal plane case,
i.e. the n = 2d case, these coefficients are indeed powers of 2, see also
[11, 14]. We will deal with the 2d ≤ n < 2d + 3 cases in the next section.
However we are only interested in the obstruction theoretical properties of
these intersections so it only matters for us if the coefficients are zero or
not. By appealing to some general facts about Schubert cycles and Bruhat
order it is possible to give a shorter proof of this theorem but we prefer this
approach which is elementary and exhibits the inner workings of geometry.

Proof of Theorem 1. We will give the proof for the n = 2m case which
reflects the main geometric ideas involved. The n = 2m + 1 case is similar
and is omitted. First we note that Ω0 is a point and hence non trivially
intersects only ∆0, with α = 1. Next let 1 ≤ i ≤ d: Suppose Ωi intersects
non trivially a Schubert cell Ω whose Schubert symbol is a = (a0, ..., ad).
Let P be a d-plane in G(d,Qn) which lies in the intersection Ωi · Ω. Then
P must satisfy simultaneously the Schubert conditions dictated by the two

symbols (0, ..., ̂(d− i+ 1), ..., d+ 1) and (a0, ..., ad) of Ωi and Ω respectively.

Using the A-flag of G(d,Qn) the first symbol (0, ..., ̂(d− i+ 1), ..., d + 1)
implies that the d-plane P contains the join p0

∨ · · ·∨pd−i and itself lies in
the join p0

∨ · · ·∨pd+1. Here we used the description of the spaces Ai of the
A-flag. Next we use the dual B-flag to interpret the second symbol. The
a0 of a now requires that P intersects the space Ba0 , but dim

C
Ba0 = a0.
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The d-dimensional plane q lies in the d + 1 dimensional join p0
∨ · · ·∨pd+1.

Then this join must have at least a point common with Ba0 , which forces
(d + 1) + a0 ≥ n or equivalently a0 ≥ n − d − 1. Combining this with the
general properties of Schubert symbols we have

n− d− 1 ≤ a0 < · · · < ad ≤ n.

This means that we have to choose d+ 1 integers from the interval [n− d−
1, n]. But there are already only d+ 2 integers in this interval so we choose
all the integers from this interval except one;

(a0, ..., ad) = (n− d− 1, ..., ̂(n− d− 1 + j), ..., n), 0 ≤ j ≤ d+ 1.

This is precisely the definition of ∆j and thus the first part of the theorem
is proved. That j must not exceed i will follow from the proof of the second
part of the theorem.

To prove the second part of the theorem we assume that the intersection
of Ωi with ∆j is nonempty. We may again assume that i > 0. Assume that
P is a d-plane lying in the nonempty intersection Ωi ·∆j. We know from the
above analysis that P must contain the join p0

∨ · · ·∨pd−i and must lie in the
d+ 1 dimensional space defined by the join p0

∨ · · ·∨pd+1. These conditions
are imposed on P because it belongs to Ωi. Now we inspect what further
conditions will be imposed on P by forcing it to belong to ∆j as well.

The Schubert symbol of ∆j is

(a0, ..., ad) = (n− d− 1, ..., ̂(n− d− 1 + j), ..., n) 1 ≤ j ≤ d+ 1.

Using the B-flag the number a0 imposes that

dim
C
P ∩ (p2m+2

∨ · · ·∨pd+1) ≥ 0.

But since P lies only in p0
∨ · · ·∨pd+1 the condition imposed by a0 holds if

and only if P contains the point pd+1.
Through the same vein we argue that since the integers a0, ..., aj−1 are

consecutive the condition

dim
C
P ∩ (p2m+2

∨ · · ·∨pd+2−j) ≥ j − 1

can hold if and only if P contains the join pd+1
∨ · · ·∨pd+2−j. The other

integers in the Schubert symbol a do not impose any further conditions on
P .
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In view of these arguments we find out that if the d-plane P lies in
the nonempty intersection Ωi ·∆j then it must contain the following list of
skeleton points;

p0, ..., pd+1 and pd+2−j, ..., pd+1.

The first part of the list is derived from the fact that P ∈ Ωi and the second
part from the fact that P ∈ Q2m . But there are altogether d + 1− (i− j)
skeleton points in this list and hence their join, which necessarily belongs to
P , has dimension d− (i− j). Since P is a d plane we must have i− j ≥ 0
or i ≥ j.

We thus find the description for all P ∈ Ωi ·∆j; each such P must live
in the join p0

∨ · · ·∨pd+1 and must contain a d + 1 − (i − j)-dimensional
subspace of this join. This is the description of Ωi−j.

This then completes the proof of the theorem. 2

4. The Unstable Cases. The cases when 2d ≤ n ≤ 2d+ 2 are called the
unstable cases (the terminology belongs to Dibağ, see [3]). The theorem of
the previous section holds verbatim in the unstable cases if we provide the
correct definitions of the ∆j’s. In the following subsections we describe the
necessary modifications in the definitions to make the theorem hold.

4.1. The n = 2d+ 2 case. In this case the Chern cycles are defined as

Ωi = Ω
0··· ̂(m−i)···m0

+ Ω
0··· ̂(m−i)···m1

, 0 ≤ i ≤ m.

Here note that m = d + 1. For these Chern cycles we define the following
dual Chern cycles

∆j = Ω
m0··· ̂(m+j)···n + Ω

m1··· ̂(m+j)···n, 1 ≤ j ≤ m.

Our theorem of the previous section now holds verbatim with these defini-
tions.

4.2. The n = 2d+1 Case. The Chern cycles for i = 0, ..., d+1 are defined
as

Ωi = 2Ω
0··· ̂(d+1−i)···d,d+i

.

Define the required ‘duals’ as

∆j = Ω
d+1−j,d+1···̂(d+j)···2d+1

, j = 0, ..., d+ 1.
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4.3. The n = 2d Case. This is the maximal plane case. There are two
disjoint, irreducible families of d-planes in Qn. Call these families V0 and
V1. The Schubert cells of G(d,Qn) are evenly divided among these families.
It suffices to consider V0 only. The V1 case is obtained simply by reversing
the marking of d in the following definitions.

First assume that d is even. Ω0 is defined as

Ω0 = 2Ω0···d0 .

The nontrivial Chern cycles are defined as

Ωi = 2Ω
0···̂(d−i)···d1,d+i

, i = 1, ..., d.

And finally define Ωd+1 = 0. The ‘duals’ are then defined as

∆0 = Ωd0···2d

∆j = Ω
d−j,d1···̂(d+j)···2d, j = 1, ..., d

∆d+1 = 0.

When d is odd, to obtain the symbolism in V0 reverse the indexing of d in
the definition of Chern cycles but leave the indexing of the ‘duals’ the same.

With these definitions Theorem 1 holds. Because of the significance of
the maximal plane case we quote this result separately as a corollary to
Theorem 1.

Corollary 2. In the n = 2d case we also have

Ωi ·∆j = αΩi−j

for 0 ≤ j ≤ i ≤ d where α is a nonzero integer.

Proof. We give the proof when d is even. The odd case is similar. Let Λ be
a d-plane in the intersection of Ωi ·∆j. Assume that a fixed set of skeleton
points p0, . . . , p2d+1 is fixed. We interpret the Schubert conditions of Ωi with
respect to the A-flag and those of ∆j with respect to the B-flag. Then Λ lives
in p0

∨ · · ·∨pd+i+1, must have a point p in pd+j+1
∨ · · ·∨pd+i+1. Therefore the
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complex conjugate of this join, which is pd−i
∨ · · ·∨pd−j can contribute only

i − j − 1 dimension to Λ, i.e. dim (Λ ∩ (p0
∨ · · ·∨pd−j)) = d − j − 1. Since

by the Schubert conditions of Ωi the join p0
∨ · · ·∨pd−i−1 belongs to Λ, it

follows that Λ also contains pd−j+1
∨ · · ·∨pd−1 and pd+1. These conditions

thoroughly describes any Λ in the intersection. To prove the corollary we
translate these descriptions to Schubert conditions. For this purpose define
a new set of skeleton points q0, . . . , q2d+1 as follows:

• qt = pt where t = 0, . . . , d− i− 1.

• qd−i+t = pd−j+1+t where t = 0, . . . , j − 2.

• qd−(i−j)−1 = pd+1.

• qd−(i−j)+t = pd−i+t where t = 0, . . . , (i− j)− 1.

• qd = pd+j. (This is to respect the V0, V1 formalism of maximal planes
in a quadric.)

• qd+t = qd−t+1 where t = 1, . . . , d+ 1.

Defining an A-flag with respect to this set of skeleton points, the above
description of Λ becomes equivalent to the description of Ωi−j as claimed.
2

5. Obstruction Classes. We first define the Chern classes as

ci = Ω∗i = PD Ωt
i = PD ∆i ∈ H i(A

(n+2)
d+1 ;Z)

where ∗ denotes the cell dual, PD denotes Poincaré duality and t denotes
homology duality, see [3]. Since boundary operations are zero, the cycles
and cocyles constitute the homology and cohomology respectively.

A necessary condition for the decomposability of a 2-form ω of constant
rank 2(d + 1) on a trivial Rn+2 bundle E, with n > 2d, on some base
space B is the vanishing in H2(d+1)(B;Z) of ω∗1(ci), 0 ≤ i ≤ d + 1, where

ci ∈ H2(d+1)(A
(n+2)
d+1 ;Z) is the Chern class of the principal U(d+1)-bundle of

Stiefel manifold of orthonormal 2(d+ 1)-frames in Rn+2 with the projection
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onto A
(n+2)
d+1 being given by (y1, . . . , y2(d+1)) 7→ y1 ∧ yd+1 · · · + yd+1 ∧ y2(d+1)

and where ω1 : B → A
(n+2)
d+1 represents ω, [3].

In this section as an application of our intersection theorem we intend
to describe the vanishing of ω∗1(ci) in terms of the vanishing of ω∗1(PD Ωi).
Intersection of homology cells being Poincaré dual to cup product in coho-
mology we have the following relations which follow from Theorem 1:

PD Ωi−j = PD (Ωi ·∆j)

= (PD Ωi) ∪ (PD ∆j)

= (PD Ωi) ∪ cj, 0 ≤ j ≤ i ≤ d+ 1.

We now quote our application to obstruction of decomposability;

Theorem 3. If ω∗1(PD Ωs) 6= 0 for some fixed s with 0 ≤ s ≤ d + 1, then
ω∗1(ci) 6= 0 for all i = 0, . . . , d+ 1− s.

Proof. This follows from the equation

ω∗1(PD Ωs) = ω∗1(PD Ωs+i) ∪ ω∗1(ci).

The left hand side being nonzero, each term on the right hand side has to
be nonzero. 2

In particular ω∗1(PD Ω0) is an obstruction to the vanishing of every
ω∗1(ci). We conclude with the following remark which we record as a corol-
lary.

Corollary 4. If ω∗1(PD Ωs) = 0 and ω∗1(PD Ωs+i) 6= 0 for i = 1, . . . , d+
1 − s, then ω∗1(ci) = 0 for i = 1, . . . , d + 1 − s. In particular if ω∗1(PD Ωi)
vanishes for i = 0 only, then ω∗1(ci) = 0 for all i = 1, . . . , d+ 1. 2
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