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Abstract

A generalized Nash Blow-up M ′ with respect to coherent subsheaves of locally
free sheaves is defined for complex spaces. It is shown that M ′ is locally iso-
morphic to a monoidal transformation and hence is analytic. Examples of M ′

are given. Applications are given to Serre’s extension problem and reductive
group actions. A C∗-action on Grassmannians is defined, fixed point sets and
Bialynicki-Birula decomposition are described. This action is generalized to
Grassmann bundles. The Grassmann graph construction is defined for the an-
alytic case and it is shown that for a compact Kaehler manifold the cycle at
infinity is an analytic cycle. A calculation involving the localized classes of
graph construction is given. Nash residue for singular holomorphic foliations is
defined and it is shown that the residue of Baum-Bott and the Nash residue
differ by a term that comes from the Grassmann graph construction of the sin-
gular foliation. As an application conclusions are drawn about the rationality
conjecture of Baum-Bott. Pontryagin classes in the cohomology of the splitting
manifold are given which obstruct an imbedding of a bundle into the tangent
bundle.



Acknowledgments

I would like to thank to my thesis supervisor James B. Carrell who suggested
the use of Grassmann Graph technique with residues and made several valuable
comments. My thanks also go to J. King for his numerous suggestions and to
L. G. Roberts for his encouragement at most needed moments.

The production of this thesis on computer owes much to Tülin who not only
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CHAPTER 0
INTRODUCTION

A singular holomorphic foliation is defined as an integrable coherent subsheaf
of the tangent sheaf of a complex manifold, [see BB2]. We find it promising
to study coherent subsheaves of locally free sheaves in order to get a better
understanding of singular holomorphic foliations. This project is carried out
in Chapter 1 where a generalized Nash blow-up is defined; the context of this
work is the complex analytic category. Let M be a complex analytic space
with G a complex analytic locally free sheaf on M and F a complex analytic
coherent subsheaf of G. We will drop the phrase “complex analytic” from now
on unless we want to emphasize it. Assume without loss of generality that M is
connected and that the support of F is M . There is a proper closed subvariety
S of M such that F is locally free on M − S. Let F have rank k on M − S
and G have rank n on M . For every point x ∈ M − S, Fx defines a k-plane
in Gx, hence a point of the Grassmann manifold G(k, n) of k-planes in n-space.
Let G(k,G) denote the Grassmann bundle of k-planes in G over M . Thus we
have a holomorphic map from M − S into the Grassmann bundle G(k,G). The
topological closure of the image of this map in G(k,G) is denoted by M ′ and
is called the generalized Nash blow-up of M with respect to F and G. In the
algebraic category it is clear that M ′ coincides with the Zariski closure of the
image and hence is algebraic. It is not however clear that M ′ is a complex
analytic space. It is shown in Chapter 1 that M ′ is a complex analytic space
and that in fact M ′ is a monoidal transformation of M whose center need not
coincide with S, the singular set of F . This generalizes works of Nobile on Nash
blow-up and Rossi and Riemenschneider on blowing up coherent sheaves using
the structure sheaf [N], [Ro], [Ri]. Counterexamples which yield non-analytic
sets are given along with examples to the theorem. Conditions on smoothness
on M ′ are also given. Several applications are given to Serre’s extension problem
and to reductive group actions.

One interesting aspect of generalized Nash blow-up is that M ′ comes equipped
with a vector bundle, the restriction of the tautological bundle on G(k,G), which
agrees with the pull-back of F|M − S. We then want to measure in terms of
characteristic classes how much the tautological bundle differs from the pull-back
of F . For this we employ the technique of Grassmann graph construction of the
algebraic category [BFM]. It must then be shown that this technique is valid in
the complex analytic category. This is accomplished in Chapter 2 which starts
with C∗-actions on Grassmann manifolds. We describe the Bialynicki-Birula
decomposition of this action on Grassmann manifolds and give examples. C∗-
actions are then used to describe analytically the graph construction which
produces localized Chern classes. This localized class is computed for a special
case at the end of the chapter as an example.

These techniques are collaborated in Chapter 3 to give a calculation of Baum-
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Bott residues. First we define a Nash residue for singular holomorphic foliations
for which the Nash blow-up is smooth. Then we consider those singular holo-
morphic foliations that are integrable images of vector bundles in the tangent
bundle, i.e. let E be a vector bundle, T be the tangent bundle on M and
Ψ : E → T be a holomorphic vector bundle map; Ψ(E) defines a singular holo-
morphic foliation if it is integrable. When the Nash Blow-up of this singular
holomorphic foliation is smooth the Baum-Bott residue is shown to be equal to
the sum of the Nash residue and a term that is calculated by using Grassmann
Graph construction on the Nash Blow-up. This result allows us to conclude
that the Rationality Conjecture of Baum and Bott is true in this set up.

In chapter 4 we continue our investigation of singular holomorphic foliations by
again viewing them as integrable images of vector bundles in the tangent bundle.
We then ask if any vector bundle E can be imbedded into T, dropping the
integrability condition on the image and requiring that Φ be injective. Several
topological obstructions can be found in the literature. Here we look at the
problem from a Differential Geometric point of view. The problem is pulled
back to the splitting manifold MS of T. If E imbeds into T then it is shown
that certain Pontryagin classes in the cohomology ring of MS vanish. For this
we need and prove a general statement of Bott’s vanishing theorem [B2]. We
conclude by discussing some future research projects that follow from this work
on singular holomorphic foliations.



CHAPTER 1
NASH CONSTRUCTION

0 Introduction

We will be working in the category of complex analytic spaces. A complex
analytic space is locally the variety of an ideal of holomorphic functions. We
will drop the phrases “complex”, “analytic” or even “complex analytic” from
“complex analytic space” when the reference is clear. All sheaves are complex
analytic and again we will drop “complex analytic” from their names when the
omission causes no ambiguity.

Let F be a coherent complex analytic subsheaf of a locally free complex analytic
sheaf G on a complex space M . Outside a closed proper subvariety S of M the
sheaf F is locally free. Assuming that rankG = n and rankF|M −S = k we can
define a holomorphic map F from M−S into the Grassmann bundle G(k,G) over
M . Let M ′ be the closure of the image of this map in the Grassmann bundle.
Our contribution is to show that the map F is meromorphic in the sense of
Remmert, i.e. M ′ is complex analytic. This is accomplished in section 3 by
showing that M ′ is locally a monoidal transformation. The first two sections
gather together some facts on coherent sheaves and monoidal transformations
and set up the notation that is going to be used throughout the chapter. The
third section describes the construction of M ′ and proves that it is analytic.
We then discuss its relation to the literature, in particular to the works of
Nobile, Rossi, and Riemenschneider. Smoothness of M ′ and conditions for M ′

to be globally a monoidal transformation are also discussed. Examples and
counterexamples are given to demonstrate the theorem and reductive group
actions are discussed as an application. In the second part of the chapter Serre’s
extension problem is stated and Siu’s solution is given along with the necessary
terminology. We then give applications to this problem which follow from the
analyticity of M ′.

1 Coherent Sheaves

In this section we collect together some of the facts on coherent sheaves in
the forms that we are going to use them in the sequel. All sheaves are going
to be complex analytic; in particular “coherent” will mean “complex analytic
coherent”. For further details on coherent sheaves together with the proofs of
the statements of this section the reader is referred to [GH, p 695 ff], [F, p 1-34,
94-95], [C].

3



Singular Holomorphic Foliations – UBC 1984 – Ali Sinan Sertöz 4

Let M be a complex space and let OM be its structure sheaf. A sheaf of
OM -modules will be called a sheaf of modules, the structure sheaf OM being
understood.

Definition: A sheaf of modules F over M is called coherent if for every
x ∈ M there is an open neighbourhood U of x such that there exists an exact
sequence

Om
U −→ Ok

U −→ FU −→ 0

for some integers m and k.

For any epimorphism of the form

Ok
U −→ FU −→ 0

let RU denote the kernel sheaf;

0 −→ RU −→ Ok
U −→ FU −→ 0.

Then by the above definition of coherence, F is coherent if RU is finitely gener-
ated as a OU -module for all U in M . It is a classical result of Oka that if F is
coherent then RU is also coherent.

The most common examples of coherent sheaves arise as the sheaves of holomor-
phic sections of vector bundles. Such coherent sheaves are called locally free.
For a locally free sheaf F let s1, . . . , sr be global holomorphic sections. Then
s1, . . . , sr generate an analytic subsheaf which is coherent. This example can be
generalized as follows; call a sheaf of modules G of finite type if for any x ∈ M
there is a neighbourhood U of x and an epimorphism

Um −→ GU −→ 0

for some integer m. Then for a coherent sheaf any subsheaf of finite type is
coherent.

If G is a coherent subsheaf of a coherent sheaf F then the quotient sheaf F/G
is also coherent. In general if there is a short exact sequence of sheaves

0 −→ F1 −→ F2 −→ F3 −→ 0

such that any two of them are coherent then the third one is also coherent.

Support of a sheaf F is defined as

suppF = {x ∈ M
∣∣ Fx 6= 0}.

Assume that F is coherent and that suppF is open in M . Define a function rk
on M as

rk(x) = rank of Fx as an Ox −module.
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This is an upper semi-continuous function on M . To see this let rk(p) = m for
some p ∈ M . F is coherent so in particular it is locally of finite type. Hence
there is an open neighbourhood U of p such that there exists an epimorphism

Om
U −→ FU −→ 0

for this m. Then there are sections s1, . . . , sm of FU such that they generate
each stalk Fx for x ∈ U . Clearly this implies that rk(x) ≤ m for all x ∈ U .

Since rk takes on nonnegative numbers, it achieves a minimum. This minimum
value of rank is called the rank of F and is denoted by rankF .

Define a subset S of M as

S = {x ∈ M
∣∣ rk(x) > rankF }.

S is called the singular set of F and is a closed proper subvariety of M . Outside
S the coherent sheaf F is the sheaf of sections of a vector bundle of rank = n
where n = rankF , i.e. F|M − S is locally free. For this reason rankF is also
referred to as the generic rank of F .

The above definition of rank coincides with the more usual definition of rank
which is given as

r(x) = dimk(x) Fx ⊗Ox k(x)

where k(x) = Ox/mx, mx being the maximal ideal of Ox. The fact that r(x) =
rk(x) follows from Nakayama’s lemma:

Nakayama Lemma: Let Λ be a finitely generated module over the ring of
convergent power series C{X1, . . . , Xn} and let m be the maximal ideal. Then

a1, . . . , ak generate Λ iff a1, . . . , ak generate Λ/mΛ.

For a proof of Nakayama’s lemma see [GH, pp 680-681]. For the equivalence of
r and rk see [Ha, p 288, (12.7.2)].

If F is a coherent sheaf, then it admits a local syzygy; for any point p ∈ M
there is an open neighbourhood U of p such that

0 −→ Ok
U −→ · · · −→ Om

U −→ FU −→ 0

is exact for some integers k, ..., m. Global syzygies however need not exist for
complex analytic coherent sheaves. This difficulty is circumvented by Atiyah
and Hirzebruch by passing to the real analytic category [AH]. View M as a real
analytic space and let A be the real structure sheaf of M , i.e. A is the sheaf of
complex valued real analytic functions. A sheaf of A-modules on M is called a
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coherent sheaf of A-modules if for every x ∈ M there is an open neighbourhood
U of x and an exact sequence

Ap
U −→ Aq

U −→ GU −→ 0

for some integers p and q. For any coherent sheaf G of A-modules and any
compact subset X of the real analytic manifold M , GU has a resolution on open
subsets V of X by locally free AV -modules, [AH, p 29, (2.6)], [BB2, p 310,
(6.30)]. If M is a compact manifold then every coherent sheaf of A-modules has
a global resolution of locally free sheaves of A-modules. For a coherent sheaf F
of O-modules F ⊗O A is a coherent sheaf of A-modules. If M is compact then
F ⊗O A has a global resolution

0 −→ Hm −→ · · · −→ H0 −→ F ⊗A −→ 0

where Hi are locally free sheaves of A-modules and m is the real dimension
of M . Let Hi be the real analytic complex vector bundle whose sheaf of real
analytic sections is Hi. The Chern class of F is defined in terms of Chern classes
of Hi’s as follows; let H be the virtual bundle which is defined as the alternating
sums of Hi’s

H =
m∑

i=0

(−1)iHi.

Then c(F) = c(H) =
∏m

i=0 c(Hi)p(i) where p(i) is +1 if i is even and −1 if i is
odd.

For further details on characteristic classes of virtual bundles see [BB2]. For a
proof that c(F) depends only on F see [BS, p 106, (lemma 11)].

2 Monoidal Transformations

We will follow the exposition of Hironaka and Rossi [HR] to remind the reader
of the terminology related to monoidal transformations, also known as Hironaka
blow-ups.

We adopt the definition of meromorphic map as introduced by Remmert. Let X
and Y be complex analytic spaces. A map f : X −→ Y is called meromorphic
if there exists a proper subvariety V of X such that
i) f |X − V −→ Y is holomorphic,
ii) the closure in X × Y of the graph of f |X − V is a complex analytic variety.

It is easy to see that this definition reduces to the definition of a meromorphic
function when X = C, the complex numbers, and Y = P1, the projective line.
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Let f : X −→ Y be a morphism of complex spaces and let I be an ideal sheaf
on Y . The pull back of I under f is denoted by f∗(I), and the ideal generated
by f∗(I) in OX is denoted by f−1(I). If D in Y is the variety defined by I then
the variety that corresponds to f−1(I) in X is denoted by f−1(D). The pair
f : X −→ Y and D is called the monoidal transformation of Y with center D if
i) the ideal sheaf f−1(I) on X is invertible, i.e. locally free of rank=1,
ii) if g : Z −→ Y is any morphism of complex spaces having the property (i)
then there is a unique morphism h : Z −→ X such that g = f ◦ h.

From the definition it is easy to see that Y −D is isomorphic to X − f−1(D).
It can also be shown that the monoidal transformation is determined by D and
not X, see [HR], but we call X the monoidal transformation of Y .

To construct one such monoidal transformation of Y let U be an open subset
of Y which is isomorphic to Cm. Let f0, . . . , fn be holomorphic functions on U ,
not all identically equal to zero, and let I be the ideal generated by the fi’s. If
we denote the variety of I as V then we can define a holomorphic map

F : U − V −→ Pn

where

F (x) = [f0(x) : · · · : fn(x)].

We wish to show that F : U −→ Pn is meromorphic. For this let J be the ideal
generated by the functions

(
x, [X0 : · · · : Xn]

) −→ (
Xifj(x)−Xjfi(x)

)
, 0 ≤ i, j ≤ n, i 6= j

over the structure sheaf of U × Pn where Xi are homogeneous coordinates on
Pn. The variety that is defined by J in U × Pn is the closure of the graph of
F . Let Ũ denote this closure. We have Ũ = V (J), hence Ũ is analytic and F is
meromorphic.

It can be shown that Ũ is a monoidal transformation of U , see [HR]. The center
of this transformation is V (I) in U . This particular description of a monoidal
transformation will be used in the next section on the Nash blow-up.

3 The Nash Construction

Let F be an analytic coherent subsheaf of a locally free sheaf G on a complex
analytic space M . Let rankF = k and rankG = n. There is a proper analytic
subvariety S of M such that F|M − S is locally free of rank k. Consider the
Grassmann bundle G(k,G) over M . Each fibre over x ∈ M is the space of
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k-planes in Gx and is therefore isomorphic to G(k, n), the Grassmann space of
k-planes in n-space. Define a map

F : M − S −→ M ×G(k, n)

by

F (x) =
(
x, [Fx]

)
.

Here [·] is used to denote the point that “· ” represents in G(k, n). Let M ′ be
the topological closure of F (M − S) in M × G(k, n). Let π : M ′ → M be the
restriction of the natural projection M ×G(k, n) → M . Then we have the

Definition: πM ′ → M is the Nash blow-up of M with respect to F and G.

We will sometimes abuse language and call M ′ the Nash blow-up of M .

Let τ → G(k, n) be the vector bundle on G(k, n) which restricts to the tauto-
logical bundle of G(k, n) on each stalk. Pull back τ to M ×G(k, n) and restrict
it to M ′. Again use “τ” to denote this restriction and call the bundle τ → M ′

the tautological bundle on M ′.

If U is an open subset of M then let U ′ denote π−1(U) where π : M ′ → M is
the Nash blow-up of M . Since the Nash blow-up is defined as the closure of the
image of F , it follows that π−1(U) is the closure of F (U−U ∩S) in U×G(k, n).

Theorem 1: M ′ is locally a monoidal transformation of M . Consequently
M ′ is a complex analytic space.

Proof: U be an open neighbourhood of M such that G|U is trivial and F|U is
finitely generated. Let f1, . . . , fr be holomorphic sections of F|U that generate
it, where r ≥ k. If U ∩ S = ∅ then U ′ ∼= U by construction, so we consider the
case when U ∩ S 6= ∅. Since F|U is a subsheaf of the locally free sheaf G|U we
can write each section fi as

fi = (fi1, ..., fin), 1 ≤ i ≤ r

where fij are holomorphic functions on U . This defines an r × n matrix

A =
(
fij

)
1 ≤ i ≤ r, 1 ≤ j ≤ n.

The row vectors of A generate a k-plane in n-space when A is evaluated on
U − U ∩ S, since rankFx = k for x ∈ U − U ∩ S, i.e. we have

rankA
∣∣ U − U ∩ S = k

and

rankA
∣∣ U ∩ S ≤ k.
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Let [A(x)] denote the point [Fx] in G(k, n) ∼= G(k,Gx) that is represented by
the k-plane generated by the row vectors of A(x), with x ∈ U − U ∩ S.

[
A(x)

]
=

[Fx

] ∈ G(k, n), x ∈ U − U ∩ S.

Introduce an indexing set

Bm =
{
(N1, ..., Nk) ∈ Zn

∣∣ 1 ≤ N1 < · · · < Nk ≤ m
}
.

Br will be used to pick k rows of A and Bn will be used to pick k columns of
A. If µ ∈ Br and β ∈ Bn then define

∆µβ = det(fij) i ∈ µ, j ∈ β.

Let

Aµ = (fij) i ∈ µ, 1 ≤ j ≤ n.

Aµ is the k × n-submatrix of A formed by choosing only the k rows of A that
correspond to µ. For µ ∈ Br let Iµ be the ideal generated by {∆µβ |β ∈ Bn}, the
determinants of all k × k-submatrices of Aµ. Since the rank of A on U −U ∩ S
is not zero there exists a µ ∈ Br for which the corresponding Iµ is not trivial.
Choose and fix this µ for the rest of the argument.

Iµ 6= {0}.

Recalling that V (Iµ) denotes the proper subvariety of U on which Iµ vanishes, it
can be seen that V (Iµ) is not necessarily equal to U ∩S. This is the reason why
the center of the monoidal transformation need not coincide with the singular
set S of F . On U − V (Iµ) the rank of Aµ is k and therefore it represents a
k-plane defined by Fx in Gx;

[
Aµ(x)

]
=

[
A(x)

]
=

[Fx

] ∈ G(k, n), x ∈ U − V (Iµ).

We define a new map

H : U − V (Iµ) −→ U ×G(k, n)

where

H(x) =
(
x, [Aµ(x)]

)
.

Notice that U − V (Iµ) and U − U ∩ S are dense in U . Let

Z = V (Iµ) ∪ (U ∩ S).

In general Z need not be equal to V (Iµ) but since F is a subsheaf of a locally
free sheaf we will assume that Z = V (Iµ) as in [BB2, pp 283-284].
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First it will be shown that H(U − V (Iµ)) coincides with F (U − U ∩ S). Clearly

F
∣∣ U − V (Iµ) = H

∣∣ U − V (Iµ).

U−U∩S is dense in U and contains U−V (Iµ). F |U−U∩S extends F |U−V (Iµ).
It follows from this that

F (U − V (Iµ) = F (U − U ∩ S).

Since F and H agree on U − V (Iµ) we conclude that the closure of the image
of H coincides with the closure of the image of F , i.e.

H(U − V (Iµ)) = F (U − U ∩ S).

One important aspect of this equality is that the right hand side does not depend
on the choice of µ. Therefore if the left hand side is a monoidal transformation
then this will also hold for F (U − U ∩ S) and will be independent of the choice
of µ. To show that H(U − V (Iµ)) is a monoidal transformation order Bn in
some fixed manner

β0, β1, ..., βN ∈ Bn, N =
(

n

k

)
− 1.

Recall that a monoidal transformation is defined as the closure of the image of
T ;

T : U − V (Iµ) −→ U × PN

where

T (x) =
(
x, [∆µβ0 : · · · : ∆µβN ]

)
.

Then T (U − V (Iµ)) = Ũ is the monoidal transformation of U with center V (Iµ)
and consequently Ũ is a complex analytic space as shown in section 2. It remains
to show that Ũ ∼= H(U − V (Iµ)).

For this we use the Plücker imbedding Pl, which is an imbedding of G(k, n)
into PN where N =

(
n
k

)− 1. To define Pl let Λ be a k × n matrix representing
a point y ∈ G(k, n) and let ∆β(Λ) be the determinant of the k × k-submatrix
of Λ determined by choosing all the rows and β-columns of ∆ for β ∈ Bn.

∆β(Λ) = det(Λij) 1 ≤ i ≤ k, j ∈ β

Using the previously fixed ordering of Bn we define Pl(y) as

Pl(y) = Pl([Λ]) = [∆β0(Λ) : · · · : ∆βN
(Λ)].

With the aid of the Plücker imbedding define a new map

(id, P l) : U ×G(k, n) −→ U × PN
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where

(id, P l)(x, [Λ]) =
(
x, [∆β0(Λ) : · · · : ∆βN

(Λ)]
)
.

If Λ = Aµ then

∆βi
(Λ) = ∆βi

(Aµ) = ∆µβi
0 ≤ i ≤ N.

Therefore for x ∈ U − V (Iµ) we have the following equalities;

(id, P l) ◦H(x) = (id, P l)(x, [Aµ(x)])
= (x, [∆β0(Aµ(x)) : · · · : ∆βN

(Aµ(x))])
= (x, [∆µβ0(x) : · · · : ∆µβN (x)])
= T (x)

i.e. we have

(id, P l) ◦H = T.

Since Pl is an imbedding then (id, P l) is an isomorphism of H(U −V (Iµ)) onto
T (U − V (Iµ)). Therefore

(id, P l)(H(U − V (Iµ))) = T (U − V (Iµ)).

Finally we list the string of equalities that we have proven; here Ũ is the
monoidal transformation of U with center V (Iµ) and U ′ is the Nash blow-up of
U with respect to F and G.

Ũ = T (U − V (Iµ))
∼= H(U − V (Iµ))

= F (U − U ∩ S)
= U ′

Hence U ′ is isomorphic to a monoidal transformation and in particular U ′ is
analytic. If V is another open neighbourhood of M such that G|V is free and
F|V is finitely generated with U ∩ V 6= ∅, then U ′ and V ′ agree on U ∩ V
since F (U ∩ V − U ∩ V ∩ S) depends only on F and G. Ũ and Ṽ are analytic
therefore U ′ and V ′ glue together to give a complex analytic space.
Hence M ′ is a complex analytic space. QED

More can be said about the nature of M ′ if more data is available. In chapter
3 we will be interested in the case when M ′ is smooth. For this we first give a
definition:

Definition: A coherent sheaf F of rank k on M with singular set S is called
rich if for any p ∈ S there exist an open neighbourhood U of p and k sections
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s1, ..., sk of F|U such that
i) s1, ..., sk generate F|U − U ∩ S,
ii) s1, ..., sk are linearly dependent on U ∩ S.

Examples of rich sheaves are easy to find. Complex actions of reductive groups
on complex manifolds give rise to rich subsheaves of the tangent sheaf of M .
Finitely generated subsheaves of locally free sheaves are rich. For a locally free
sheaf subsheaves which are locally of finite type are also rich. Most foliations
that will be considered will be rich. The significance of richness becomes clear
in the next corollary. Let the set up be as before; F is a coherent subsheaf of a
locally free sheaf G on a complex space M with S being the singular set of F .

Corollary 1: If F is rich then M ′ is a monoidal transformation of M with
center S.

Proof: The notation being as in Theorem 1 we have to establish two facts:
(i) locally the center of the monoidal transformation coincides with S, and (ii)
globally these two pieces glue together.
(i) This follows easily from the definition of richness.
(ii) Let U and V be open neighbourhoods in M such that U ′ and V ′ are monoidal
transformations of U and V respectively, with centres U ∩ S and V ∩ S respec-
tively. If U ∩ V 6= ∅, then from the uniqueness of monoidal transformations U ′

and V ′ agree on U∩V and hence glue together. Since a monoidal transformation
is uniquely determined by its centre, (U ∪ V )′ is the monoidal transformation
of (U ∪ V ) with centre (U ∪ V ) ∩ S. QED

The above proof showed that if F is rich then the centre of the monoidal trans-
formation can be explicitly defined. Carrying on this theme we can say more;
let the notation be as before, we have

Corollary 2: If F is rich and S is smooth then M ′ is a complex manifold.

Proof: If F is rich then M ′ is a monoidal transformation of M with centre S,
by corollary 1. A monoidal transformation with smooth centre is smooth. QED

Remmert has proven the following result; if N is an analytic subset of an analytic
space X and if Z is an analytic subset of X − N then the closure of Z in X
is an analytic space if dim(N) < dim(Z), see [R]. It is interesting to relate this
result with Theorem 1. Let X be the total space of the Grassmann bundle

π : G(k,G) −→ M

and let N be π−1(S) which is an analytic subset of G(k,G). Let Z be F (M−S)
which is also analytic and is in G(k,G)−π−1(S). If dim(π−1(S)) < dim(F (M−
S)) then Remmert’s theorem assures that M ′ = F (M − S) is analytic. In
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general the condition of Remmert’s theorem is not satisfied. For example take
rankF = 3, rankG = 5, dim(S) = 2 and dim(M) = 7; then dim(π−1(S)) =
2 + 3 · (5− 3) = 8 and dim(F (M − S)) = 7.

As an application of theorem 1 we can retrieve Nobile’s theorem on Nash
blowing-up [N]. For this let us define the usual Nash construction as used by
Nobile. Let X be a singular subvariety of Cn with dimension k. Let S be the set
of singular points of X. Then the tangent sheaf TX of X is a coherent subsheaf
of the tangent sheaf of Cn. Define

η : X − S −→ X ×G(k, n)

where

η(x) = (x, [(TX)x]).

The closure η(X − S) in X × G(k, n) is called the Nash Blowing-up of X and
is denoted by ∗, see [N].

Theorem (Nobile): A Nash Blowing-up is locally a monoidal transformation
(with centre a suitable ideal).

Proof: TX is a coherent subsheaf of the tangent sheaf T of Cn with

suppTX = X.

Let

F = TX
∣∣ X, G = T

∣∣ X.

Then the generalized Nash blow-up of X with respect to F and G as in theorem
1 is locally a monoidal transformation. QED

H. Rossi has proven that for any coherent sheaf F on M with singular set S,
there exists an analytic space N with a proper map

ψ : N −→ M

such that
(i) ψ : N − ψ−1(S) → M − S is biholomorphic and
(ii) ψ∗F is locally free modulo torsion.
Rossi constructs this N as follows, see [Ro]. Let p ∈ S. Since F is coherent
there exists an open neighbourhood U of p such that there is an exact sequence

Om
U −→ On

U −→ FU −→ 0

for some integers m and n, where O is the structure sheaf of M . Let I be the
image sheaf of the map

Om
U −→ On

U .
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Then I is a coherent subsheaf of On
U and is locally free of rank n−k on U−U∩S

where k is rankF . For each point x ∈ U −U ∩ S, Ix defines an (n− k)-plane in
the n-space of On

U . Define a map

η : U − U ∩ S −→ U ×G(n− k, n)

where

η(x) = (x, [Ix]).

Then Rossi defines N as, see [Ro],

N
∣∣ U = η(U − U ∩ S) in U ×G(n− k, n).

Theorem (Rossi): η is a meromorphic map.

Proof: We have to show that N |U is a complex analytic space. N |U is the
generalized Nash blow-up of U with respect to I|U and On

U , hence is analytic
by theorem 1. QED

That N |U ’s glue together to give a complex analytic space N follows from the
uniqueness of monoidal transformations.

Later O. Riemenschneider has shown that if N1 is another analytic space with
a proper map

χ : N1 −→ M

such that
(i) χ : N1 − χ−1(S) → M − S is biholomorphic and
(ii) χ∗F is locally free modulo torsion,
then there is a unique holomorphic map ω : N1 → N such that χ = ψ ◦ ω,
see [Ri]. He also showed that if F is an ideal sheaf then N coincides with a
monoidal transformation. Our Nash construction shows that M ′ is always lo-
cally a monoidal transformation. The universal property of M ′ is an interesting
problem which we propose to study elsewhere.

In the next section we will give several examples of the Nash construction.

4 Examples

1) Consider the C∗-action on Pn;

λ · [x0 : · · · : xn] = [x0 : λa(1)x1 : · · · : λa(n)xn]
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where λ ∈ C∗, a(i) are integers with 0 < a(1) < · · · < a(n), and [x0 : · · · : xn]
are homogeneous coordinates of Pn. The fixed points of this C∗-action are

[1 : 0 : · · · : 0], [0 : 1 : · · · : 0], ..., [0 : 0 : · · · : 1].

The orbits of this action define a singular holomorphic foliation whose set of sin-
gularities is the fixed point set of the C∗-action. This follows since the isotropy
groups are finite.

The Nash blow-up of this singular holomorphic foliation is a smooth manifold.
To see this let us choose Euclidean coordinates around the fixed point [1 : 0 :
· · · : 0];

X1 = x1/x0, ..., Xn = xn/x0.

The above C∗-action has the following form with respect to these coordinates;

λ · (X1, ..., Xn) = (λa(1)X1, ..., λ
a(n)Xn).

In this coordinate patch the fixed point set is the origin 0 = (0, ..., 0). Any
X = (X1, ..., Xn) ∈ Cn defines a holomorphic curve

λ −→ λ ·X = (λa(1)X1, ..., λ
a(n)Xn).

The direction of this curve at X, i.e. when λ = 1, is [a(1)X1 : · · · : a(n)Xn] in
Pn. This is the image of X under the Nash construction; to see why, let P(T)
be the projectivized tangent bundle of Cn,

P(T) = Cn × Pn−1.

Define a section S of P(T) as

S : Cn − 0 −→ P(T)

where

S(X) = (X, [a(1)X1 : · · · : a(n)Xn]).

Then the Nash blow-up of this coordinate patch with respect to the above C∗-
action is the closure of S(Cn− 0) in P(T). Let M0 denote this closure. To show
that M0 is a complex manifold we construct the following coordinate maps; let
e = [e1 : · · · : en] be a point in Pn−1 and let t ∈ C. Define a map

Λi : Pn−1 × C −→ M0

where

Λi(e, t) =
(
(

te1

a(1)ei
, ...,

ten

a(n)ei
), e

)
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for ei 6= 0 and i = 1, ..., n. Different Λi’s patch together to define a holomorphic
coordinate system. Hence M0 is a complex manifold. Let

π : M0 −→ Cn

be the natural projection. Then the fibre above the singular set 0 of the singular
foliation is π−1(0) = Pn−1.

Similarly we can construct Mi by blowing up that coordinate patch of Pn with
{xi 6= 0}. All these Mi’s are smooth and they glue together to form a complex
manifold M . It is possible to give defining equations for Mi. If for example(
(x1, ..., xn), [y1 : · · · : yn]

)
are coordinates for P(T)|U0 then M0 is defined by

the equations

a(j)yixj = a(i)yjxi, i, j = 1, ..., n, i 6= j.

The isomorphism between the Nash blow-up M0 and the monoidal transforma-
tion of {x0 6= 0} with centre [1 : 0 : · · · 0] is given by the map

Υ : P(T) −→ P(T)

where

Υ
(
(x1, ..., xn), [y1 : · · · : yn]

)
=

(
(x1, ..., xn), [a(1)y1 : · · · : a(n)yn]

)
.

2) In this example we will define a rank 2 singular foliation on P4 and construct
its Nash blow-up. Start with two C∗-actions on P4 defined as

λ · [x0 : · · · : x4] = [λc10x0 : · · · : λc14x4]

and

λ · [x0 : · · · : x4] = [λc20x0 : · · · : λc24x4]

where λ ∈ C∗, [x0 : · · · : x4] ∈ P4 and cij ∈ Z, i = 1, 2, j = 0, ..., 4. Define a
2× 4 matrix Ck, for k = 0, ..., 4, as follows

Ck = (cij − cik), 1 ≤ i ≤ 2, 0 ≤ j ≤ 4, j 6= k.

Choose cij such that 1) all the entries of Ck are nonzero and 2) the determinants
of all the 2×2 minors of Ck are nonzero. To describe a rank 2 singular foliation
on P4 choose Euclidean coordinate patches

Ui = {xi 6= 0}, i = 0, ..., 4.

In U0 let

X1 = x1/x0, ..., X4 = x4/x0.
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On U0 let aij denote the entries of the matrix C0

C0 = (aij), 1 ≤ i ≤ 2, 0 ≤ j ≤ 4.

Note that by the above conditions on Ck the entries aij are nonzero, aij =
cij − ci0, 1 ≤ i ≤ 2, 0 ≤ j ≤ 4. On U0 the above C∗-actions take the form

λ · (X1, ..., X4) = (λa11X1, ..., λ
a14X4)

and

λ · (X1, ..., X4) = (λa21X1, ..., λ
a24X4)

At any point X = (X1, ..., X4) for each C∗-action the direction of the orbit
passing through X defines vector fields

V1(X) = (a11X1, ..., a14X4)

and

V2(X) = (a21X1, ..., a24X4).

Notice that Vi, i = 1, 2, is defined for all X ∈ U0
∼= C4. V1(X) and V2(X)

together generate a vector subspace of the tangent space of U0 at the point
X ∈ U0. Let

V (X) = (aijXj) 1 ≤ i ≤ 2, 1 ≤ j ≤ 4,

and

S0 = {X ∈ U0

∣∣ rankV (X) < 2 }.

On U0 − S0, V1 and V2 span an integrable 2-subbundle of the tangent bundle.
To construct the Nash blow-up define a map

F : U0 − S0 −→ U0 ×G(2, 4)

where

F (X) =
(
X, [V (X)]

)
.

The closure F (U0 − S0) of F (U0 − S0) in U0 × G(2, 4) is the Nash blow-up of
U0 with respect to the above C∗-actions˙

Let π : M0 → U0 be the usual projection. Then as in the previous example it
can be shown that
1) M0 − π−1(0) is a complex manifold.
V1(X) and V2(X) generate a coherent subsheaf F of the tangent sheaf T0 of
U0 − (0). V1(X) and V2(X) are linearly dependent along the coordinate axes
and by the definition of rich sheaves F is a rich coherent sheaf with singularities



Singular Holomorphic Foliations – UBC 1984 – Ali Sinan Sertöz 18

along the axes. Since the singular set is smooth, by corollary 2 of section 3 the
Nash bşow-up, M0 − π−1(0), is also smooth.
2) π : M0 − π−1(S0) → U0 − S0 is an isomorphism.
This follows from the above explanations by observing that S0 consists of the
coordinate axes in U0.
3) For X ∈ S0 − 0, π−1(X) ∼= P2.
4) π−1(0) is isomorphic to four copies of P2 in G(2, 4), which touch each other
at a single point. Thus four planes each touching each of the other three at a
single point give six singularities of M0.

These last two assertions follow if a matrix representation for elements of U0 ×
G(2, 4) is used in calculating the closure of F (U0 − S0). In particular π−1(0) is
obtained by observing the fibres in M0 above the coordinate axes; the four copies
of P2 in π−1(0) are each contributed by a coordinate axis at the origin. The fact
that they touch each other is again found by using the matrix representation and
calculating the limits. These calculations are straightforward and are omitted.

We can similarly construct M1, ...,M4 each of which will satisfy similar condi-
tions 1-4 as above. They glue together to give an analytic space M with 30
isolated singularities.

3) An example used in [CS1] can be adopted to describe a graph construction
which gives rise to a nonanalytic set. Let Z act on C2

Z× C2 −→ C2

where

n · (z1, z2) = (2nz1, 2nz2).

Let H = C2 − {(0, 0)}/Z and define

π : H −→ P1

as

π(< z, w >) = [z : w],

where < z, w > denotes the equivalence class of (z, w) ∈ C2 in H. There is a
C∗-action on H defined as follows

C∗ ×H −→ H

where

λ· < z,w >=< λz, w > .

Similarly we have a C∗-action on P1 defined as

C∗ × P1 −→ P1
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where

λ · [x0 : x1] = [λx0 : x1].

π is equivariant with respect to this C∗-action. Let T denote the preimage of
[0 : 1], i.e.

T = π−1
(
[0 : 1]

)
.

T is the fixed point set of the C∗-action on H.
H − T is isomorphic to (C∗/Z) × C under the map which sends < z,w > to
(< z, 0 >,w/z). Consider the bundle projection

pr : H − T −→ C∗/Z

where

pr
(
< z,w >

) −→< z, 0 > .

Let Γ denote the closure of the graph of pr in H × (C∗/Z), let Γ<z,0> denote
the points over < z, 0 > in Γ, i.e. if

p2 : H × (C∗/Z) −→ C∗/Z

is the natural projection then Γ<z,0> = p−1
2 (< z, 0 >). It can be shown that

Γ<z,0> =
{
(< z, t >, < z, 0 >) ∈ H × (C∗/Z)

∣∣ t ∈ C}

∪{
(< 0, λ >,< z, 0 >)

∣∣ λ ∈ C∗}

It is clear how to obtain the first component. To obtain the second component
consider

lim
n→∞

(< z, 2nλ >,< z, 0 >) = lim
n→∞

(< 2−nz, λ >,< 2−nz, 0 >).

But since < 2−nz, 0 >=< z, 0 > on C∗/Z, this final limit is (< 0, λ >, < z, 0 >)
which is our second component. If Γ is a subvariety then it must be irreducible.
But the second component

{
(< 0, λ >, < z, 0 >)

∣∣ λ ∈ C∗}

is a closed subvariety of H × (C∗/Z) whose dimension is equal to the dimension
of Γ. This composition shows that Γ is not analytic.

Recall that our Nash construction is also a graph closure. In the above example
the map pr can not be meromorphically extended across T whereas the data
that we supply for the Nash construction guarantees that the map constructed
there is always meromorphic.

Another such example using Hopf manifolds is given in [G, p29, eg4].
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4) A simple example of nonanalytic graph closure can be constructed by con-
sidering a holomorphic function

f : C∗ −→ C

with an essential singularity at the origin. Since by Picard’s theorem f attains
every value infinitely many times in any neighbourhood of the singularity, the
closure Γ of the graph of f in C × C can not be analytic. Otherwise we can
intersect the graph Γ with C×{γ} for any γ ∈ C and we should get an analytic
variety as the intersection. But by Picard’s theorem (C× {γ}) · Γ will have in-
finitely many isolated points, hence is not an analytic variety. This contradiction
shows that Γ is not analytic.

5) Let G be a connected compact Lie group and M a complex manifold. Let

Ψ : G×M −→ M

be a C∞ action of G by means of biholomorphisms. If V is a real vector field
induced by a 1-parameter subgroup of G and J is the complex structure tensor
of M , then V − iJV = W is a holomorphic vector field and the fixed point
set of Ψ is a complex submanifold which is the set of common zeros of all such
W , [CS1, page 50]. These W ’s generate a coherent integrable subsheaf F of the
tangent sheaf T of M , i.e. F is closed under bracket operation. By Richardson’s
theory G has a principal orbit type, i.e. on an open dense subset U of M all
orbits have the same rank, see [Rc]. The closure of an orbit picks up orbits of
smaller ranks. Singular set of F consists of the union of all orbits whose ranks
are less than the rank of the principal orbit. Let G be the integrable locally free
subsheaf of T |U defined by the principal orbits of G in U . Then

F ∣∣ U = G.

Hence the Nash construction defined by using the principal orbits coincide with
the Nash construction of M with respect to F and T , and consequently is
analytic.

6) Consider a C∗-action on Cn as

C∗ × Cn −→ Cn

where

λ · (X1, ..., Xn) = (λa(1)X1, ..., λ
a(n)Xn)

with a(i) ∈ Z. The Nash blow-up of Cn with respect to the orbits of this action
is a smooth submanifold M of Cn × Pn−1. Let

π : M −→ Cn
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be the usual projection. We can define a C∗-action on M which extends the
C∗-action on π−1(Cn − 0);

C∗ ×M −→ M

where for λ ∈ C∗ and p ∈ M define λ · p as follows:
1) If p =

(
(X1, ..., Xn), [a(1)X1 : · · · : a(n)Xn]

)
, then

λ · p =
(
(λa(1)X1, ..., λ

a(n)Xn), [a(1)λa(1)X1 : · · · : a(n)λa(n)Xn]
)
.

Clearly λ · p ∈ M .
2) If p =

(
0, [X1 : · · · : Xn]

)
, then λ · p =

(
0, [λa(1)X1 : · · · : λa(n)Xn]

)
.

This action is the restriction to M of the C∗-action of Cn×Pn−1 which is defined
as follows

λ · ((x1, ..., xn), [e1 : · · · : en]
)

=
(
(λa(1)x1, ..., λ

a(n)xn), [λa(1)e1 : · · · : λa(n)en]
)

where λ ∈ C∗, (x1, ..., xn) ∈ Cn and [e1 : · · · : en] ∈ Pn−1.

In this example the C∗-action on Cn is lifted up to the Nash blow-up that is
defined by the C∗-action. It can be conjectured that reductive group actions
can be lifted to the Nash blow-up that is defined in the previous example.

7) Let E and F be vector bundles on a complex space M Let rankE = r and
rankF = n. Let

Φ : E −→ F

be a vector bundle map. There exists a proper subvariety S of M such that

rankΦ
∣∣ M − S = k

rankΦ
∣∣ S < k

where k is some integer not greater than r. Then we can define a meromorphic
map

F : M −→ M ×G(k, F)

as

F(x) = (x, [x, [Φ(x)]).

The proof that F is meromorphic is quite analogous to the proof of theorem
1 therefore we do not repeat it here. If M is a complex manifold and F is its
tangent bundle then Φ(E) defines a distribution. If in addition to this, Φ(E) is
integrable then it defines a singular holomorphic foliation whose singularity set
is S, i.e. M − S is foliated with k-dimensional leaves and for any x ∈ M − S
the tangent space of the leaf that passes through x is Φx(E). We will return to
this approach to singular foliations in Chapter 3 and 4.
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5 Serre’s Extension Problem

In this section we will give an application of our theorem to Serre’s problem on
extending coherent sheaves. In 1966 Serre posed his famous extension problem,
[S]. Let M be a complex analytic space with a closed analytic subset Z and a
coherent analytic sheaf F defined on M − Z. If i : M − Z → M is the usual
inclusion then i∗F denotes the direct image of F , i.e. for any open subset of M
the sheaf of sections of the sheaf i∗F on U , Γ(U, i∗F), is defined to be equal to
Γ(U − Z,F). Serre’s problem is to determine if i∗F is coherent. This problem
has been successfully attacked by Siu, Trautmann and Thimm, see [ST], [T].
Serre himself proved the following, [S];

Theorem (Serre): If M is normal, F is torsion free and codim(Z) ≥ 2 then
the following are equivalent:
i) i∗F is coherent.
ii) There is an analytic coherent sheaf E on M which extends F .
iii) For all p ∈ Z, there is an open neighbourhood U of p such that for all
x ∈ U − Z the image of Γ(U − Z,F) generates Fx as an Ox-module, where O
is the structure sheaf of M .

Obviously (i) implies (ii). It is surprising however that (ii) does not imply (i)
without the assumptions of the theorem; for example i∗OM−Z is not coherent,
[S].

Definition: If i∗F is coherent then F is called extendible.

The set up being as above let G be a locally free sheaf on M and let F be a
coherent subsheaf of G on M − Z. Let M ′ be the Nash Blow-up of M with
respect to F and G. Since F is not defined everywhere theorem 1 of section 3
does not directly apply. In this case we have the following theorem.

Theorem 2: Assume that F is torsion free, M is normal and codim(Z) ≥ 2.
Then M ′ is analytic iff F is extendible as a coherent subsheaf of G.

Proof: If F is extendable, i.e. i∗F is a coherent subsheaf of G, then M ′ is
the Nash Blow-up of M with respect to i∗F and G, and hence is analytic by
theorem 1 of section 3. Assume then that M ′ is analytic. Let rankF = k and
rankG = n. Then let G(k,G) → M be the Grassmann bundle of k-planes in G.
Let τ → G(k,G) be that vector bundle which restricts to the tautological vector
bundle of G(k, n) on each fibre of G(k,G). Use the same notation τ → M ′ to
denote the restriction of this bundle to M ′. On M ′ we have the following short
exact sequence of bundles:

0 −→ τ −→ Cn −→ Q −→ 0 (∗)
where Q is the quotient bundle Cn/τ . Let π : M ′ → M be the usual projection.
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On M − Z there is a short exact sequence of sheaves:

0 −→ F −→ G −→ K −→ 0

where K is the quotient sheaf G/F . This sequence pulls back by π∗ to the se-
quence of sheaves corresponding to the sequence of bundles (∗) on M ′−π−1(Z).
Hence on M ′ the sheaf of sections of τ , which we denote by τ is a coherent sheaf
that extends π∗F . This extension lies in Cn = π∗G. Since π is a proper map
π∗τ is a coherent sheaf on M and since τ lies in π∗G the coherent sheaf π∗τ lies
in G. Then by Serre’s theorem i∗F is coherent. Hence F is extendable. QED

This result not only tells us when M ′ is analytic but also provides a solution
to Serre’s extension problem when F is torsion free. In general if F has torsion
then we can ask if there exists an analytic coherent subsheaf E of G which
extends F . In this case E need not be equal to i∗F .

Corollary 3: Let M be a complex analytic space with a proper analytic subset
Z. Let G be a locally free sheaf on M and F → M −Z be a coherent subsheaf of
G|M−Z. Then there exists an analytic coherent subsheaf E → M which extends
F iff the Nash construction M ′ of M with respect to F and G is analytic.

Proof: Using the notation of the above theorem if M ′ is analytic then E = π∗τ
extends F . If there exists a coherent E which extends F then the Nash Blow-up
of M with respect to F and G is precisely the Nash Blow-up of M with respect
to E and G and is therefore analytic by theorem 1 of section 3. QED

Other solutions to Serre’s problem provides us with further criteria in deciding
when M ′ is analytic. Let us revive our set up. M is an analytic space with
the proper closed analytic subset Z. There is a locally free sheaf G of M and
a coherent sheaf F of M − Z. Let F be a subsheaf of G on M − Z. Let
rankF = k, rankG = n and S be the singular set of F . Then on each point x of
Z ∪ S, Fx defines a k-plane in Gx and this defines an imbedding of M − Z ∪ S
into G(k,G). The closure of the image of this imbedding is denoted by M ′, and
π : M ′ → M is the usual projection. We know that M ′ − π−1(Z) is analytic.
However F need not extend coherently over Z and we cannot say much about
M ′ in general. Therefore we look for conditions on F which make it possible to
extend it coherently over Z. If F extends coherently then M ′ is analytic. The
following theorem is due to Siu and Trautmann. For the proof see [ST].

Theorem (Siu, Trautmann): Let M be a complex space and D an open
subset which is strongly r-concave at a point x0 ∈ M . Let G be a coherent
analytic sheaf on M and F a coherent analytic sheaf on D. Let F be a subsheaf
of G|D. If the r-th relative gap sheaf of F in G is equal to F , i.e. Fr = F , then
F can be extended coherently to an open neighbourhood of x0 as a subsheaf of
G.
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Corollary 4: Let M and D be as above, G be a locally free sheaf on M , F a
coherent sheaf defined on D. Let F be subsheaf of G|D. If Fr = F then M ′ is
analytic. QED

Let us briefly describe the terms used. A twice differentiable real valued function
f is said to be strongly r-convex on a subset D of Cn if at every point of D the
hermitian matrix

( ∂2f

∂zi∂zj

)

has at least n−r+1 positive eigenvalues. An open subset U of a complex space
M is strongly r-concave at a point x0 ∈ M if there is an open neighbourhood
V of x0 on which there is a strongly r-convex function f such that

f(x0) = 0 and U ∩ V = {y ∈ V
∣∣ f(y) > 0 }.

For a subvariety A of M the gap sheaf F [A] of F in G with respect to A is the
sheaf defined by the presheaf

U 7→ {s ∈ Γ(U,G)
∣∣ s|U −A ∈ Γ(U −A,F)}.

The r-th relative gap sheaf Fr of F in G is the sheaf defined by the presheaf

U 7→ lim
→
{Γ(U,F [A])

∣∣ A is a subvariety of U, dim A ≤ r}.

Finally before we close this chapter we give an alternate description of Nash
construction, borrowing an idea of Giraud [Gr]. Let F be a coherent sheaf on
M with S being the singular set of F . Let O be the structure sheaf of M .
Recalling that F is a sheaf of O-modules construct the sheaf

Proj(ΛkF) −→ M.

On M − S there is a natural imbedding of M into this sheaf. The closure of
the image of this imbedding can be called the intrinsic Nash construction on
M . See also Thimm [T] where he mentions Plückerian coordinates of F .



CHAPTER 2
GRASSMANN GRAPH CONSTRUCTION

0 Introduction

This chapter describes the Grassmann Graph construction of MacPherson in
the analytic category using C∗-actions. The details of the algebraic case can be
found in [BFM].

In section 1 we summarize the decomposition theorem of Bialynicki-Birula in
the compact Kaehler case, [BBc], [CS1]. Section 2 describes a C∗-action on
Grassmann manifolds and gives the corresponding Bialynicki-Birula decompo-
sition. Examples are given in the next section. In section 4 this C∗-action is
carried on to Grassmann bundles and Z∞, the cycle at infinity corresponding to
a bundle morphism, is defined. It is shown that in the compact Kaehler case Z∞
is an analytic cycle. The graph construction is finally accomplished in section
5. Examples are given in section 6.

1 Bialynicki-Birula Decomposition

The references for this section are [BBc] for the algebraic case and [CS1] for the
complex case. There is also a clear summary in [CS2, section Ic].

Let M be a compact Kaehler manifold with a C∗-action on it. Let this C∗-action
have nontrivial fixed point set B with components B1, . . . , Bm. The components
of the fixed point set are complex submanifolds of M . For λ ∈ C∗ and p ∈ M
let λ · p denote the action of λ on p. The C∗-action extends to a meromorphic
map

P1 × {p} −→ M

hence limλ→0 λ · p and limλ→∞ λ · p exist in M . Clearly these limits are in B.
There are two canonical decompositions of M into invariant complex submani-
folds. Define

M+
i = {p ∈ M | lim

λ→0
λ · p ∈ Bi}

for i = 1, ...,m. Each M+
i is a complex submanifold of M and

M =
⋃

M+
i , 1 ≤ i ≤ m.

25
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This is called the plus decomposition of M . Similarly the minus decomposition
is defined as

M−
i = {p ∈ M | lim

λ→∞
λ · p ∈ Bi}

for i = 1, ...,m. Each M−
i is a complex submanifold and similarly

M =
⋃

M−
i , 1 ≤ i ≤ m.

There are two distinguished components of the fixed point set B, say B1 and
Bm, which are determined by the property that M+

1 and M−
m are open and

dense in M . B1 is called the source and Bm is called the sink.

2 C∗-action on G(k, n).

In this section we describe a particular C∗-action on G(k, n), the Grassmann
manifold of k-planes in n-space. Fix a coordinate system on Cn. We will use the
representation of G(k, n) by matrices. Any point p ∈ G(k, n) can be represented
by a k× n-matrix A of rank k. Two such matrices A and B represent the same
point in G(k, n) if there is an invertible k × k-matrix g ∈ G(k,C) such that
gA = B. For a k × n-matrix A of rank k set [A] = the row space of A.

Given a k × n-matrix A = (aij), 1 ≤ i ≤ k, 1 ≤ j ≤ n define two submatrices

A1 = (aij), 1 ≤ i, j ≤ k

and

A2 = (aij), 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

A1 is a k × k-matrix and A2 is a k × (n − k)-matrix and A = (A1, A2) is a
partition of A.

Define a C∗-action on G(k, n)

C∗ ×G(k, n) −→ G(k, n)

by

λ · [A] = [(A1, λA2)].

To describe the behaviour of this action define a subset Xij of G(k, n) as the
set of all p in G(k, n) which can be represented by a k× n-matrix A = (A1, A2)
such that rankA1 = i and rankA2 = j, where k − min{k, n − k} ≤ i ≤ k and
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0 ≤ j ≤ min{k, n− k}. Let B = (B1, B2) be another k × n-matrix representing
p. Then there is an invertible k × k-matrix g such that gA = B.

gA1 = B1 and gA2 = B2.

Hence rankB1 =rank(gA1) =rankA1 = i and similarly rankB2 = j, and the
following definition of Xij is well defines:

Xij =
{
[A] ∈ G(k, n)

∣∣ rankA1 = i, rankA2 = j
}

where k − min{k, n − k} ≤ i ≤ k and 0 ≤ j ≤ min{k, n − k}. Necessarily we
have i + j ≥ k; to see this, recall that A represents a point in G(k, n) hence has
rank k, and if A1 has rank i then A2 must supply at least the remaining k − i
ranks.

To describe the behaviour of the C∗-action that is defined above we prove the
following lemmas.

Lemma 1. Xi k−i are the fixed point components of the C∗-action, k −
min{k, n− k} ≤ i ≤ k.

Proof: Let [A] ∈ Xi k−i, A = (A1, A2). We first show that λ · [A] = [A]. If
i = 0, then A1 = 0, and if i = k, then A2 = 0. In both cases λ · [A] = [A].
Assume 0 < i < k. Then there exists an invertible k× k-matrix g such that gA
is of the form

gA =
(

B1 0
0 B2

)

where B1 ∈ GL(i,C) and B2 ∈ GL(k − i,C). For λ ∈ C∗ define hλ to be the
diagonal matrix [1, . . . , 1, 1/λ, . . . , 1/λ], where the number of 1/λ’s is k− i. We
then have the following sequences of equalities:

λ · [A] = λ · [gA]

= λ ·
[(

B1 0
0 B2

)]

=
[(

B1 0
0 λB2

)]

=
[
hλ

(
B1 0
0 λB2

)]

=
[(

B1 0
0 B2

)]

= [A]

Thus we have proven that Xik−i is a subset of the fixed point set. That in fact
there are no other fixed points than ∪Xik−i, k −min{k, n− k} ≤ i ≤ k follows
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from the results of the following two lemmas.

Lemma 2. If [A] ∈ Xij, then limλ→0 λ · [A] ∈ Xik−i, where
k −min{k, n− k} ≤ i ≤ k, 0 ≤ j ≤ min{k, n− k} i + j ≥ k.
In particular Xm0 is the source where m = k −min{k, n− k}.

Proof: If i = 0 or i = k, then Xij is a component of the fixed point set as in
Lemma 1. Assume 0 < i < k. then there exists g ∈ GL(k,C) such that

gA =




... 0

B1

...

... B2

. . . . . . . . . .

0
... B3




where B1 ∈ GL(i,C), B3 ∈ GL(k− i,C) and B2 is a (i+ j−k)× (n−k)-matrix.
Let hλ be as in Lemma 1. then

hλλgA =




... 0

B1

...

... λB2

. . . . . . . . . . . .

0
... B3




and since limλ→0 λB2 = 0 we have

lim
λ→0

λ · [A] = lim
λ→0

[hλλgA]

=
[(

B1 0
0 B3

)]
.

This last matrix is clearly in Xik−i as claimed. QED

Lemma 3. If [A] ∈ Xij, then limλ→∞ λ · [A] ∈ Xk−jj, where
k −min{k, n− k} ≤ i ≤ k, 0 ≤ j ≤ min{k, n− k}.
In Particular Xk−mm is the sink, where m = min{k, n− k}.

Proof: If i = 0 or i = k, then Xij is a fixed point component. Assume
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0 < i < k. there exists g ∈ GL(k,C) such that

gA =




B1

... 0
. . . . . . . . . .

B2

...

... B3

0
...




where B1 ∈ GL(k − j,C), B3 ∈ GL(j,C) and B2 is a (i + j − k) × k-matrix.
Then

lim
λ→∞

λ · [A] = lim
λ→∞

[λhλgA]

= lim
λ→∞







B1 0
λ−1B2

B3

0







=
[(

B1 0
0 B3

)]
.

This last matrix is in Xk−jj as desired. QED

These last two lemmas show that Xik−i for k −min{k, n − k} ≤ i ≤ k are the
only fixed point components and thus complete the proof of lemma 1.

We can apply these lemmas to examine the behaviour of Schubert cells under
the action of C∗ on the Grassmann manifold. we will adopt the terminology of
Griffiths and Harris on Schubert cells. For details refer to [GH, pp. 195-196].

Let {e1, ..., en} be the standard basis for Cn and Vi = span{e1, ..., ei}. Then
{V1, ..., Vn} defines a flag. For any nonincreasing sequence of nonnegative inte-
gers between 0 and n− k define a cell

Wa =
{
[Λ] ∈ G(k, n)

∣∣ dim(Λ ∩ Vn−k+i−ai) = i
}

.

The sequence of nonincreasing integers a = (a1, ..., ak) with 0 ≤ ai ≤ n − k is
called a Schubert symbol. For [Λ] ∈ G(k, n), let A be a k × n-matrix such that
[A] = [Λ]. If [A] ∈ Wa for some Schubert symbol a = (a1, ..., ak), then the rank
of the first k× (n−k + i−ai) minor is i and the rank of the last k× (k− i+ai)
minor is k − i. The closure of Wa

Wa =
{
[Λ] ∈ G(k, n)

∣∣ dim(Λ ∩ Vn−k+i−ai) ≥ i
}

is called a Schubert variety. If A is a matrix representing [Λ] as above, then [Λ]
is in Wa iff the rank of the first k×(n−k+i−ai) minor of A is at least i and the
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rank of the last k× (k− i+ai) minor of A is at most k− i. It is well known that
Wa is an analytic subvariety of G(k, n) and the homology class of Wa, denoted
by σa, is independent of the flag used in its definition, [GH, p. 196]. σa is called
the Schubert cycle corresponding to a = (a1, ..., ak). Regarding the behaviour
of Schubert cycles under the C∗-action we give the following corollary to the
above lemmas:

Corollary 1. All Schubert cycles of positive codimension in G(k, 2k) lie in
Xij’s where j < k. In particular they do not flow to the sink, i.e. if p ∈ Wa

then limλ→∞ λ · p is not in the sink.

Proof: The codimension of Wa for a = (a1, ..., ak) is
∑

ai, [GH, p. 196]. It
suffices to prove the corollary for a = (1, 0, ..., 0). For [Λ] ∈ Wa let A = (A1, A2)
be a matrix representation where A is a k × n-matrix of rank k, and A1, A2

are k × k-matrices. The rank of the last k × k minor of A is at most k − 1.
Hence in particular the rank of A2 is not k, therefore [A] is not in Xik. Since
the only points that flow to the sink belong to the components of the form Xik,
[Λ] does not flow to the sink. In general if a = (a1, ..., ak) with a1 ≥ 1 then the
last k × (k + a1 − 1) minor has rank at most k − 1. Since k + a1 − 1 ≥ k, the
rank of A2 cannot be k. Hence Wa does not flow to the sink. If a1 = 0, then
a = (0, ..., 0) and Wa does not have positive codimension. QED

Using the same notation as in the previous corollary we can generalize as follows:

Corollary 2. Let Wa, a = (a1, ..., ak), be a Schubert variety in G(k, n), where
a1 ≥ n− 2k + 1. Then Wa does not flow to the sink if n ≥ 2k.

Proof: Let A = (A1, A2) be a k × n-matrix with rank k representing a point
[A] in Wa. A1 is a k × (n − k)-matrix and [A] will flow to the sink if rank A2

is maximal. Since n ≥ 2k means n − k ≥ k, the maximal rank of A2 is k. the
rank of the last k × (k + a1 − 1) minor of A is at most k − 1. By assumption
k + a1 − 1 ≥ n − k, therefore the rank of A2 cannot be k. Hence Wa does not
flow to the sink. QED

3 Examples

In examples 1 and 2 we assume that the C∗-action of the previous section is
defined on the spaces G(2, 4) and G(4, 9).
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1) G(2,4). In G(2, 4) we have defined the following sets:

X20, X21, X22, X11, X12, X02.

The first three sets are the fixed point sets. As λ → 0 the elements of X21 and
X22 flow to the source X20, and the elements of X12 flow to X11. As λ → ∞
the elements of X22 and X12 flow to the sink X02, and the elements of X21 flow
to X11.

See Figure 1 for the direction of these flows for each Xij as λ →∞.
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2) G(4,9). For the direction of flow as λ →∞ see Figure 2. From the decom-
position of G(4, 9) into Xij it can be seen that the points that lie in

X13 ∪X33 ∪X31 ∪X32 ∪X22 ∪X23

do not flow to the sink or the source under the action of C∗.

4 C∗-actions on Grassmann Bundles

This section defines in the compact Kaehler case the Grassmann Graph con-
struction of [BFM, pp. 120-121].

Let E, F be vector bundles of ranks k and n, respectively, on an analytic space
M . Let G(k, E ⊕ F) → M denote the Grassmann bundle whose fiber at each
x ∈ M is G(k, Ex ⊕ Fx), the Grassmannian of k-planes in Ex ⊕ Fx. Define a
C∗-action on G(k, E⊕ F) as the fibrewise C∗-action. Let

π1 : E⊕ F −→ E
π2 : E⊕ F −→ F

and

π : G(k, E⊕ F) −→ M

be the projections. Any p ∈ G(k, E ⊕ F) is represented by a k-plane H in
Ex ⊕ Fx where x = π(x). π1(H) and π2(H) are linear subspaces of Ex and Fx,
respectively. The total space G(k, E⊕F) can be decomposed into C∗-equivariant
subbundles

Xij =
{
[H] ∈ G(k, E⊕ F)

∣∣ dim π1(H) = i, dim π2(H) = j
}

where k −min(k, n) ≤ i ≤ k, 0 ≤ j ≤ min(k, n), and i + j ≥ k. It is easy to
see that

Xij
∼= G(i, E)×G(j, F) if i + j = k,

which are the fixed point sets of the C∗-action. Let

Hom(E,F) −→ M

be the bundle of morphisms from E to F and let

j : Hom(E,F) −→ G(k, E⊕ F)
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be the natural inclusion defined fibrewise as

jx(Φ) = graph(Φ
∣∣ Ex) =

{(
e, Φ(e)

) ∈ Ex ⊕ Fx

}
.

Recall that C can be imbedded into P1 as

C −→ P1

λ −→ [1 : λ],

[BFM, p. 120]. Define a C∗-action on G(k, E⊕ F)× P1

C∗ ×G(k, E⊕ F)× P1 −→ G(k, E⊕ F)× P1

as

(
λ, p, [λ0 : λ1]

) −→ (
λ · p, [λ0 : λλ1]

)

where λ · p is the C∗-action which is defined above. Also define the C∗-action
on M × C,

C∗ ×M × C −→ M × C

as

(
λ, x, t

) −→ (
x, λt

)
.

Every Φ ∈ Hom(E,F) defines an equivariant imbedding s(Φ) of M × C into
G(k, E⊕ F)× P1,

s(Φ) : M × C −→ G(k, E⊕ F)× P1

where

s(Φ)(x, λ) =
([

jx(λΦx)
]
, [1 : λ]

)
.

s(Φ)(M, λ) is the graph of λΦ. Now define

Z∞ = lim
λ→∞

s(Φ)(M,λ).

Theorem 1. If M is a compact Kaehler manifold, then for any Φ ∈ Hom(E,F)
the corresponding Z∞ is an analytic cycle.

Proof: Let ρ : C∗ × G(k, E ⊕ F) → G(k, E ⊕ F) be the C∗-action defined
above. Consider M as a subspace of G(k, E⊕F) by the imbedding s(Φ)(M,λ);
i.e. identify M and the graph of Φ. define a holomorphic map

A : M × C∗ −→ G(k, E⊕ F)
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as

A(m, t) = s(Φ)(m, t),

where m ∈ M and t ∈ C∗. This map is equivariant with respect to ρ and the
trivial action of C∗ on M × C∗, multiplication in the second component; for if
λ ∈ C∗ then

A(m,λ · t) = s(Φ)(m,λt)
= s(λΦ)(m, t)
= λ · s(Φ)(m, t)
= ρ(λ, s(Φ)(m, t))
= ρ(λ,A(m, t))

hence equivariance. But Sommese has shown that if ψ : Y × C∗ → X is a
holomorphic map equivariant with respect to the trivial action of C∗ on Y ×C∗
and the action of C∗ on X with fixed points then ψ extends meromorphically
to Y × P1, [So, p. 111 (Lemma II-B)]. Thus A extends meromorphically to

A′ : M × P1 −→ G(k, E⊕ F).

Let T be the closure of the graph of A in M × P1 ×G(k, E⊕ F).

By the definition of a meromorphic map, T is an analytic space. Since

Z∞ = T ∩ (
M × {∞} ×G(k, E⊕ F)

)
,

the intersection of two analytic spaces, then Z∞ is analytic as desired. QED

Z∞ is called the cycle at infinity corresponding to the map Φ. Notice that there
is an alternate definition of Z∞ see [BFM, p. 121]; define an imbedding of
M × P1 into M × P1 ×G(k, n)

i : M × P1 −→ M × P1 ×G(k, n)

as

i(m, [λ0 : λ1]) = [{(m, [λ0 : λ1], (e, f)) ∈ Em ⊕ Φm(Em)|λ0f = λ1Φ(e)}]

Let W be the closure of i(M × P1) in M × P1 ×G(k, n).

W = i(M × P1)

Then

Z∞ = W ∪ (
M × {∞} ×G(k, E⊕ F)

)
.
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In the algebraic category W is an algebraic variety but in the analytic category
the observation that W can be obtained through a C∗-action with fixed points
on a compact Kaehler manifold is crucial in concluding that it is analytic.

Clearly {Zλ = s(Φ)(M, λ)} defines a family of cycles which are algebraically
and hence homologically equivalent.

5 Graphs of Complexes

In this section we define the Grassmann Graph construction and the cycle at
infinity associated to a complex of vector bundles. This construction was first
introduced by MacPherson and used by Baum, Fulton and MacPherson to prove
Riemann-Roch theorem for singular algebraic varieties, [BFM] and [Mc].

Consider a complex of vector bundles on M ,

(E.) : 0 −→ Em −→ Em−1 −→ · · · −→ E0 −→ 0.

Denote the maps by γi, i.e.

γi : Ei −→ Ei−1

where i = 0, ..., m.

Assume that there is a subvariety S of M such that (E.) is exact on M − S.

Let

Gi = G(rankEi, Ei ⊕ Ei−1 ), i = 1, ..., m.

and let

τi −→ Gi the tautological bundle, i = 1, ...,m.

Define

G = G0 ×M · · · ×M Gm

where ×M denotes the bundle product on M . On G let τi denote the pull back
of τi → Gi by the projection pri : G → Gi of the i-th component, i = 0, ...,m.

Let

τ = τ0 − τ1 + · · ·+ (−1)mτm
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be the virtual tautological bundle on G. Recalling the definition of s from the
previous section, for any λ ∈ C define an imbedding

si
λ : M −→ Gi

as

si
λ(x) = s(γi)(x, λ)

where i = 0, ..., m. Then define for any λ ∈ C an imbedding

sλ : M −→ G

by

sλ(x) =
(
s0

λ(x), ..., sm
λ (x)

)
.

Let Z∞ again denote sλ(M) for λ ∈ C. Then define

Z∞ = lim
λ→∞

Zλ

to be the cycle at infinity corresponding to the complex (E.).

Let π : G → M be the natural projection. Recalling that S is the set off which
(E.) is exact we have the following result: (For proofs see [BFM, p. 121].)

Theorem (Baum, Fulton, MacPherson) The cycle Z∞ has a unique de-
composition Z∞ = Z∗ + M∗, where
1) π maps M meromorphically onto M .
2) π : M∗ − π−1(S) −→ M − S is a biholomorphism.
3) π maps Z into S.
4) τ restricts on M∗ to the zero bundle.

Remark. By Theorem 1 of the previous section, Z∞ is a product of analytic
cycles in the product bundle G, hence this theorem can be stated in the analytic
category as above. Any cycle can be written as a sum of irreducible cycles. the
decomposition of Z∞ is such a sum. For a proof of (4) see [BFM, p. 122].

Finally we define two residues on S. Let E be the virtual bundle E0−E1 + · · ·+
(−1)mEm on M . Then τ

∣∣ Z0 is isomorphic to E since Z0
∼= M . Since Z0 and

Z∞ are rationally equivalent

c(E) ∩ [M ] = c(τ) ∩ Z0 = c(τ) ∩ Z∞

where c(·) denotes the Chern class and ∩ denotes the cap product. Since Z∞
decomposes

ci(τ) ∩ Z∞ = ci(τ) ∩ (Z∗ + M∗)
= ci(τ) ∩ Z∗ + ci(τ) ∩M∗
= ci(τ) ∩ Z∗



Singular Holomorphic Foliations – UBC 1984 – Ali Sinan Sertöz 37

where i > 0 and the last equality follows since τ
∣∣ M∗ = 0 by (4) of the above

theorem.

Define

ci
S(E.) = π∗

(
ci(τ) ∩ Z∗

) ∈ H∗(S : C).

Similarly let ch(·) denote the Chern character, then

ch(E) ∩ [M ] = ch(τ) ∩ Z0

= ch(τ) ∩ Z∞
= ch(τ) ∩ Z∗ + ch(τ) ∩M∗
= ch(τ) ∩ Z∗.

Similarly define

chS(E.) = π∗
(
ch(τ) ∩ Z∗

) ∈ H∗(S;C).

For basic properties of ch(E.) in the algebraic category see [BFM, pp. 121-126].
We will use ci

S(E) for calculating the Baum-Bott residue of singular holomorphic
foliations in the next chapter.

6 Examples

1) Let M be a compact Kaehler manifold of dimension n with tangent bundle
T. Let L be a line bundle on M and let α ∈ Hom(L∗,T) with isolated zeros Z. α
is called a meromorphic vector field. Let p ∈ Z. Choose an open neighbourhood
U of p such that (i) there are coordinate functions z1, ..., zn on U and (ii) there
is a global generator l∗ of L on U and (iii) U ∩ Z = {p}. Then α(l∗) is a
holomorphic vector field on U given as

α(l∗)
∣∣ x =

n∑

i=1

ai(x)
∂

∂zi
|x, x ∈ U

where ai(·) are holomorphic functions on U . Any element of L∗|x is of the form
c · (l∗|x) for some c ∈ C, and

α(cl∗)|x =
n∑

i=1

cai(x)
∂

∂zi
|x, x ∈ U.

This defines a point in L∗ ⊕ T|x,

(cl∗, α(cl∗)|x) = (c, ca1(x), ..., can(x)) ∈ L∗ ⊕ T|x, x ∈ U.
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Hence for x ∈ U − p, the graph Γ of α in U × P(L∗ ⊕ T) ∼= U × Pn is given as

Γ = {(x, [1 : a1(x) : · · · : an(x)]) ∈ U × Pn.

Define a C∗-action on U × P(L∗ ⊕ T) ∼= U × Pn

C∗ × U × Pn −→ U × Pn

as

(λ, x, [y0 : · · · : yn]) = (x, [y0 : λy1 : · · · : λyn]).

Consider limλ→∞ λ · Γ = Z∞.

λ · Γ = {(x, [1 : λa1(x) : · · · : λan(x)]) ∈ U × Pn}.
If x ∈ U − p, then

lim
λ→∞

λ · Γ = {(x, [0 : a1(x) : · · · : an(x)]) ∈ U × Pn}

and hence Z∞|U − p ∼= U − p. To find Z∞|p, define a holomorphic function

F : U −→ Cn

as

F (x) = (a1(x), ..., an(x)).

Then F (p) = 0 and F (U) is an open neighbourhood of the origin. For any point
[c1 : · · · : cn] ∈ Pn−1, let D be the line in Cn that passes through (c1, ..., cn) and
the origin. Consider the set

C = {x ∈ U | F (x) ∈ U ∩D}.
Then C is a union of holomorphic curves {ζ1, ..., ζk} passing through p. We may
assume without loss of generality that these curves do not intersect in U − p.
The number k will be referred to as the degree of F at p. Let ζ be one of these
curves. Let {pm} ∈ ζ be a sequence of points such that

lim
m→∞

pm = p.

The graph of Γ on any one of these pm’s can be written as

Γ|pm = {(pm, [1 : a1(pm) : · · · : an(pm)]) ∈ U × Pn}
= {(pm, [1 : c1 : · · · : cn]) ∈ U × Pn}

since F (pm) ∈ D. Then

lim
m→∞

lim
λ→∞

λ · Γ
∣∣ pm = lim

m→∞
lim

λ→∞
{(pm, [1 : λc1 : · · · : λcn]) ∈ U × Pn}

= lim
m→∞

{(pm, [0 : c1 : · · · : cn]) ∈ U × Pn}
= {(p, [0 : c1 : · · · : cn]) ∈ U × Pn}.
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On the other hand

Γ
∣∣ p = {(p, [1 : 0 : · · · : 0])}

and

λ · Γ
∣∣ p = Γ

∣∣ p.

Therefore

Z∞
∣∣ p ∼= k · Pn−1 + {(p, [1 : 0 : · · · : 0])}

as cycles. Z∞ can be decomposed uniquely into two cycles

Z∞ = U∗ + Z∗,

where U∗ is bimeromorphic to U and Z∗ lies over p, i.e. if

π : Z∞ −→ U

is the usual projection induced by the natural projection

U × Pn −→ U,

then π(Z∗) = p. Hence Z∗ ∼= (k − 1)Pn−1 + {point} as cycles.

Let τ ′ be the tautological line bundle on Pn and let τ denote the pullback bundle
on U × Pn. Let w be a dual hyperplane class in H∗(Pn−1;C).

c(τ |U∗) = 1− w

since τ restricts to the tautological bundle on Pn−1, where c(·) is the total Chern
class. Let ch(·) denote the Chern character. Then

ch(τ) ∩ Z∗ = (e−w ∩ [(k − 1)Pn−1 + {point}])
= (e−w ∩ [(k − 1)Pn−1]) + (e−w ∩ {point}])

=
(
(
n−1∑

i=0

(−1)i

i!
wi) ∩ [(k − 1)Pn−1]

)
+ 1

=
( (k − 1)(−1)n−1

(n− 1)!
+ 1

)
+

(k − 1)(−1)n−2

(n− 2)!
wn−2 ∩ [Pn−1 + · · ·

+ (k − 1)[Pn−1].

Let

π∗ : H∗(Z∗;C) −→ H∗(p;C)

be the map induced by π on the homology classes. Notice that H∗({p};C) ∼= C
hence π∗ is zero on positive dimensional cycles and maps only the 0-cycles.
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Define a local residue

chp(α) = π∗
(
ch(τ) ∩ Z∗

)
.

Then

chp(α) = 1 +
(k − 1)(−1)n−1

(n− 1)!
(1)

Define the total residue as:

ch(α) =
∑

p∈Z

chp(α) (2)

It follows that

ch(α) =
∑

p∈Z

(
1 +

(k(p)− 1)(−1)n−1

(n− 1)!
)

= #Z +
(−1)n−1

(n− 1)!

∑

p∈Z

(k(p)− 1)

= #Z +
(−1)n−1

(n− 1)!
(∑

p∈Z

k(p)−
∑

p∈Z

1
)

= #Z − (−1)n−1

(n− 1)!
#Z +

(−1)n−1

(n− 1)!

∑

p∈Z

k(p)

=
[ (n− 1)!− (−1)n−1

(n− 1)!
]
#Z +

(−1)n−1

(n− 1)!

∑

p∈Z

k(p)

where k(p) is the degree of F at p as described above and #Z is cardinality of
Z, without counting multiplicity. But it is shown in [GH, page 663-666] that

∑

p∈Z

k(p) =
∑

p∈Z

res
{ det A

a1 · · · an

}

where A = (∂ai/∂zj) and res{·} is the Grothendieck residue symbol. It is also
known that

∑

p∈Z

res
{ det A

a1 · · · an

}
= cn(T− L∗).

This is the meromorphic vector field theorem of Baum and Bott, [BB1]. Since
n = dim M , we have

cn(T− L∗) = cn(L⊗ T).

Hence

ch(α) =
[ (n− 1)!− (−1)n−1

(n− 1)!
]
#Z +

(−1)n−1

(n− 1)!
cn(L⊗ T). (3)
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If L∗ imbeds into T by α, then Z∗ = 0 and Z = ∅. Hence ch(α) = 0 and
#Z = 0. Then equation (3) reduces to

0 = cn(L⊗ T)

which exhibits Bott’s vanishing theorem, [B2].

If L is trivial and α has only nondegenerate zeroes then k(p) = 1 for all p ∈ Z
and from equation (1) we find that

chp(α) = 1 for all p ∈ Z.

Hence by equation (2)

ch(α) = #Z.

Then equation (3) becomes

#Z = cn(T)

which is a consequence of the Hopf formula.

2) Let E, F be vector bundles on M and ψ ∈ Hom(E, F). Then the graph Γ(ψ)
of ψ gives rise to a cycle at infinity Z∞. We let B0, ..., Bm be the components of
the fixed point set B of G(k, E⊕F). Then (Z∞∩B)p = (Z∞∩B0)p∪(Z∞∩Bi)p

for p ∈ M , where i = rankψp. It is of course possible that (B0)p is empty at
that point. This is because Γ(ψ) and Z∞ intersect E in the same set, namely
the kernel of ψ. If i is the largest integer for any p ∈ M such that (Z∞ ∩B)p =
(Z∞ ∩ B0)p ∪ (Z∞ ∩ Bi)p, then we say that “ψ intersects the fixed point set
generically at i”. Then the generic rank of ψ is i. In particular let K be
the curvature of E, then K ∈ Hom(E, Λ2T ⊗ E) and we have its graph in
G(rankE, E ⊕ λ2T∗ ⊗ E). If K intersects the fixed point set generically at i
then cj(E) = 0 for j > i. Conversely if cj(E) = 0 for j > i for some i then K
intersects the fixed point set generically at t for some t ≤ i. This is because
(Z∞ ∩B)p contains (Bi)p iff rank ψp is i and rank is lower semicontinuous.

3) We want to show that the Hironaka Blow-up at a point can be recovered
as a Grassmann Graph construction. The problem is local so let M be an open
set in Cn. Define two trivial bundles L and F as

L = M × C and F = M × Cn.

Define a morphism θ ∈ Hom(L,F) as:

θ(p, t) = (p, tp) for p ∈ Cn, t ∈ C.

The cycle at infinity Z∞ corresponding to θ intersects the sink of G(1,L⊕F) in
M∗, that is Z∞ = M∗ + Z∗. M∗ is the Hironaka Blow-up of M at the origin.
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We can see this as follows. Let p = (p1, ..., pn) ∈ M = Cn. We also identify
P(L⊕ F) with Pn. There is a C∗-action

C∗ ×M × Pn −→ M × Pn

given as
(
λ, p, [y0 : y1 : · · · : yn]

) → (
p, [y0 : λy1 : · · · : λyn]

)
.

The graph of θ has the form

Γ(θ) =
{
(p, [1 : p1 : · · · : pn]) ∈ M × Pn

}
.

The C∗-action moves Γ(θ) as

λ · Γ(θ) =
{
(p, [1 : λp1 : · · · : λpn]) ∈ M × Pn

}
.

Consider the usual imbedding of C∗ in P1 as λ = [1 : λ] = [λ0 : λ1], where
λ = λ1/λ0. Since λ →∞ iff λ0 → 0 with λ1 6= 0, we have the following limit

Z∞ = lim
λ→∞

λ · Γ(θ)

= lim
λ0→0

{
(p, [λ0 : λ1p1 : · · · : λ1pn]) ∈ M × Pn

}

=
{
(p, [0 : λ1p1 : · · · : λ1pn]) ∈ M × Pn

}
.

Clearly [0 : λ1p1 : · · · : λ1pn] can be considered as a point [x1 : · · · : xn] in Pn−1

such that

pjxi = pixj , i 6= j, 1 ≤ i, j ≤ n.

From here it is easy to see that the intersection of Z∞ with the sink of the
C∗-action is the Hironaka blow-up of M at the origin.



CHAPTER 3
SINGULAR HOLOMORPHIC FOLIATIONS

0 Introduction

Foliations arise naturally in mathematics, such as in submersions, group actions
and differential equations. For an introduction to the subject we refer to the
expository article of Lawson on foliations, [L]. Lawson claims:

One of the reasons that foliations interest people in geometry
is that they constitute a class of structures on manifolds which is
complicated enough to shed light on the general situation but has
certain geometric aspects that make it tractable, [L].

In this chapter we will investigate residue properties of singular holomorphic
foliations. In Section 1 we summarize some of the basic ideas. In Section 2
we define Baum-Bott residues, see [BB2]. Section 3 gives Suwa’s recent con-
tribution, see [Su]. The main theme of residues is given in Section 4 where
we calculate Baum-Bott residues using Nash Blow-up and Grassmann Graph
construction.

1 Preliminaries

A holomorphic foliation L of rank k on a complex manifold M of dimension n
is a decomposition of M into disjoint connected sets L = {Lα}α∈A with α in
some indexing set A, satisfying the following conditions; for every point p ∈ M
there exists an open neighbourhood U of p with a holomorphic coordinate map

x = (x1, ..., xn) : U −→ Cn

such that for any α ∈ A, either Lα ∩ U = ∅ or

Lα ∩ U = {q ∈ U |xi(q) = tαi , k + 1 ≤ i ≤ n}

where (tαk+1, ..., t
α
n) ∈ Cn depends on α and U .

Each Lα is called a leaf of the foliation. A rank k foliation in a complex manifold
of dimension n is sometimes referred to as a codimension n − k foliation. The
local behaviour of a rank k foliation can be visualized as the fibres of a projection

pr : Cn −→ Cn−k

43
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where Cn is considered as Ck ⊕ Cn−k and pr is the projection on the second
component. Then for any c ∈ Cn−k, pr−1(c) is a leaf of a rank k foliation
{Lk

α}. Any foliation of rank k is locally isomorphic to {Lk
α}. The isomorphism

is established through the local coordinate system (U, x) which is described
above. Such coordinate systems are called distinguished. Let (U, x) and (U, y),
y = (y1, ..., yn) be two distinguished coordinates on U for the foliation {Lα}.
Let gxy be the transition function between x and y

x = (x1, ..., xn) = gxy · y = (g1
xy · y, ..., gn

xy · y).

Then

(∂gi
xy/∂yj) = 0 for k + 1 ≤ i ≤ n, i ≤ j ≤ k.

i.e. gi
xy(y1, ..., yn) = gi

xy(yk+1, ..., yn) for i = k + 1, ..., n. This property of
foliations lies at the heart of Bott’s vanishing theorem which we will mention
next and its generalization which we will give in the next chapter.

There is also a vector bundle approach to foliations. Let T be the tangent
bundle of M , and let E be a subbundle of T with rank k. In the classical
terminology C∞ subbundles of T are called smooth distributions. E is called
integrable if at each point p ∈ M , there exists a submanifold whose tangent
space at p is Ep. Each such submanifold is part of a leaf of a foliation on M .
It is easy to see that in this case E is closed under the usual bracket operation.
A subbundle of the tangent bundle is called involutive if it is closed under the
bracket operation. Integrable and involutive bundles are related to each other
by the following classical theorem of Frobenius.

Frobenius Theorem: A subbundle of the tangent bundle is integrable iff it
is involutive.

One of the questions asked about foliations was, whether given a rank k sub-
bundle E of the tangent bundle T, there is an integrable subbundle F of T such
that E can be deformed to F. A necessary condition is given by

Bott’s Vanishing Theorem [B2] : If a subbundle E of the tangent bundle
T is integrable, then the real Pontryagin classes of T/E generate a graded ring
Pont∗(T/E) such that

Ponti(T/E) = 0 if i > 2 · rankR(T/E).

Complex Case: If a holomorphic subbundle E of the holomorphic tangent
bundle T is integrable then the chern classes of T/E generate a graded ring
Chern∗(T/E) such that

Cherni(T/E) = 0 if i > rankC(T/E).

The proof of this theorem can be seen as an elegant exploitation of distinguished
coordinates, see [B2]. In the next chapter we will give a corollary to this theorem.
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In general M may not admit any foliation but one may find a closed subset S
of M such that M − S admits a foliation. R. Thom discusses possible ways of
choosing such S in [Th]. Obviously if the choice of S is not forced by the foliation
on M − S then this does not lead to an interesting mathematical concept. If S
in some intrinsic way depends on the foliation on M − S then it is natural to
expect that S will reflect some properties of the foliation. To this end we adopt
the definition of Baum and Bott for a singular holomorphic foliation;

Definition [BB2]: A singular holomorphic foliation is a coherent integrable
analytic subsheaf of the tangent bundle.

If F is a singular holomorphic foliation then S is the singular set of F as a
coherent sheaf. In the next section we will describe a residue on S coming from
the foliation as given by Baum and Bott, [BB2].

2 Baum-Bott Residues

This section presents a summary of Baum and Bott’s work on singular foliation
residues, [BB2]. At the end of the section a residue for vector bundles is defined
which is denoted by BRes and called the generalized Baum-Bott residue.

For any holomorphic vector bundle E we will use the notation that

E′ = sheaf of holomorphic sections of E.

Then E′x will denote the germs of holomorphic sections of E at x.

Let T be the holomorphic tangent bundle of a complex manifold M , and let
T be the tangent sheaf. With the above notation T =T’. Let ξ be a singular
holomorphic foliation of rank k. Then there exists a closed subvariety S of M
such that ξ|M − S is locally free, hence there is a vector bundle E → M − S of
rank k such that

E′ = ξ|M − S.

To avoid any artificial singularities for this foliation it is assumed that ξ is full,
i.e. for every open U in M and for every τ ∈ Γ(U,T), if τ(x) ∈ Ex for every
x ∈ U −U ∩ S, then the germ of the holomorphic vector field τ at x is in ξx for
every x ∈ U ∩ S, [BB2, p282].

Baum and Bott compute the chern polynomials Φ(T/ξ) in terms of local infor-
mation at S, where Φ ∈ C[X1, . . . , Xn] is a symmetric homogeneous polynomial
of degree d > n− k. Let Z be a connected component of S,

i : Z −→ M
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be the inclusion,

i∗ : H∗(Z;C) −→ H∗(M ;C)

be the natural map induced by i and let

PD′ : H∗(M ;C) −→ H∗(M ;C)

be the Poincare duality map.

For any symmetric homogeneous polynomial Φ ∈ C[X1, . . . , Xn] there exists a
unique polynomial Φ̃ such that

Φ̃(σ1(X1, . . . , Xn), . . . , σn(X1, . . . , Xn)) = Φ(X1, . . . , Xn)

where σi are the elementary symmetric polynomials. Let Q = T/ξ. Then the
chern polynomial is defined by

Φ(Q) = Φ̃(c1(Q), . . . , cn(Q))

where the ci(·) is the i-th chern class.

Then we have

Theorem (Baum, Bott): Assume that Z is compact. Then there exists

ResΦ(ξ, Z) ∈ Hn−d(Z;C)

such that
i) ResΦ(ξ, Z) depends only on Φ and the behaviour of ξ near Z.
ii) If M is compact then Σ PD′ · i∗(ResΦ(ξ, Z)) = Φ(Q) where the summation
is over all the connected components of Z of S, [BB2, pp312-313].

Let E be a vector bundle of rank k on a complex manifold m of dimension n.
Let U be an open subset of M . Let D be a connection of E|U and K a curvature
matrix for D. Define σ1(K), . . . , σn(K) by the equation

det(I + tK) = 1 + tσ1(K) + · · ·+ tnσn(K).

Each σi(K) is a 2i-form on U . It is well known that each σi(K) is a closed form
and defines a unique cohomology class [σi(K)] in H2i(M ;C). By the Chern-Weil
Theory

[σi(K)] =
(

2π√−1

)i

ci(E), i = 1, ..., n.

For a symmetric homogeneous polynomial Φ ∈ C[X1, ..., Xn] define

Φ(K) = Φ̃(ισ1(K), ..., ισn(K))
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where ι =
(√−1

2π

)
. Then

[Φ(K)] = Φ(E).

Assume that M is compact and there exists a closed subset S of M such that
E|M − S has a connection D1 with the property that for any symmetric homo-
geneous polynomial Φ(X) = C[X1, ..., Xn] with degΦ > d0 for some d0 > 0 we
have

Φ(K1) = 0 on M − S

where K1 is the curvature matrix of D1. Let Σ be a closed subset of M such
that S is contained in the interior of Σ and let D2 be a connection for E|Σ.
Then there exists a connection D for E on M such that D agrees with D1 on
M − Σ. To construct such a connection let f be a real valued C∞ function on
M such that f vanishes on a neighbourhood of S and f = 1 on M − S. Then
D is defined as

D = fD1 + (1− f)D2,

which extends D1, [BB2, p300, Lemma 4.41].

Let K be a curvature matrix for D. Then

Φ(K) = 0 on M − Σ.

Hence Φ(K) is a differential form with compact support and defines an element
in the cohomology with compact supports,

[Φ(K)] = Φ(E) ∈ H∗
c (M ;C).

Let Z be a connected component of S and U an open neighbourhood of Z which
deformation retracts to it. Define a residue

BResΦ(E, Z) = (i∗)−1 · PD · (Φ(E)).

We will call BRes the generalized Baum-Bott residue and use BRes in section 4
to describe the Nash residue. Also note that if F is a coherent sheaf and Φ(K)
is a differential form such that

[Φ(K)] = Φ(F )

and Φ(K) has compact support in U as above, then BRes is defined for F . In
particular if ξ is an integrable coherent subsheaf of T then such a differential
form exists for T/ξ, [BB2, p313, (7.11)]. Then note that

ResΦ(ξ, Z) = BResΦ(T/ξ).

Regarding the calculation of ResΦ, Baum and Bott give the following conjecture:
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Rationality Conjecture, [BB2, page 287] If Φ ∈ Q[X1, . . . , Xn] and deg Φ >
n− k + 1, then

ResΦ(ξ, Z) ∈ H∗(Z,Q).

In the next section we will summarize Suwa’s recent contribution to this conjec-
ture and we will relate his result to BRes. In section 4 we will give a calculation
for ResΦ when M is a compact Kaehler manifold.

3 Suwa’s Work

Let Ω denote the cotangent sheaf of M and let ψ be a subsheaf of Ω. Define

ξ = {θ ∈ T | ω(θ) = 0 for all ω ∈ ψ}.

Then ξ is an integrable subsheaf of the tangent sheaf iff ψ is closed under the
exterior differentiation. Note

0 → ξ → T → Q → 0 (1)

where Q is defined as T/ξ. Let Ωψ be defined by the exact sequence

0 → ψ → Ω → Ωψ → 0. (2)

Taking the dual, HomO(·,O), of (2) we obtain

0 → HomO(Ωψ,O) → HomO(Ω,O) → HomO(ψ,O) → η → 0 (3)

where η = Ext1O(Ωψ,O). In this sequence

HomO(Ωψ,O) = ψa = ξ

HomO(Ω,O) = T

HomO(ψ,O) = ψ∗ = dualof ψ.

Using these identifications (3) can be rewritten as

0 → ξ → T → ψ∗ → η → 0. (3’)

The kernel of the map T → ψ∗ is ξ by the exactness of (3’). From (1) T/ξ = Q,
hence these give an exact sequence

0 → Q → ψ∗ → η → 0. (4)

Assume that ψ is locally free of rank n−k, where k = rankξ and n = rankT , then
ψ is called a foliation of complete intersection type. In this case the sequence
(4) can be interpreted as resolving the coherent sheaf Q into a difference of a
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vector bundle ψ∗ and a skyscraper sheaf η which has support in S, the singular
set of ξ.

Let σ(i; X1, . . . , Xn) be the i-th elementary symmetric polynomial on X1, . . . , Xn.
For each coherent sheaf E let σ(i; E) denote the i-th elementary symmetric poly-
nomial on the chern characters of E.

Theorem (Suwa): Let ψ be a foliation of complete intersection type on M
with rank(ψ) = n − k. Let Z be a connected component of S, the singular
set, and U an open neighbourhood of Z which deformation retracts to Z. Let
Φ ∈ [X1, ..., Xn] be a homogeneous symmetric polynomial with degree m such
that

Φ(X1, ..., Xn) = σ(j1;X1, ..., Xn) · · ·σ(jr; X1, ..., Xn)

with

j1 + · · ·+ jr = m

and

jν > n− k for some ν. (∗)
Then

ResΦ(ξ, Z) = (i∗)−1 · PD(cj1(ψ
∗ − η) · · · cjr (ψ

∗ − η))

where i∗ and PD are as defined in section 2.

Proof: For details of the proof we refer to [Su]. Here we will concentrate on
the main argument. Let us restrict all the above sequences to U . From the
sequence (4) we have, as virtual bundles

Q = ψ∗ − η.

Define

1 + d1 + · · ·+ dn = (1 + σ(1; η) + · · ·+ σ(n; η))−1.

Then

(1 + σ(1; Q) + · · ·+ σ(n; Q)) = (1 + σ(1; ψ∗) + · · ·+ σ(n; ψ∗))(1 + d1 + · · ·+ dn).

From this it follows that for j = 1, . . . , n we have

σ(j; Q) = σ(j; ψ∗) + σ(j − 1; ψ∗)d1 + · · ·+ σ(1; ψ∗)dj−1 + dj (5)

and hence

Φ(Q) = σ(j1; Q) · · ·σ(jr;Q)
= σ(j1; ψ∗) · · ·σ(jr;ψ∗) + P (6)
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where P is a polynomial in

σ(1; ψ∗), . . . , σ(n− k; ψ∗), d1, ..., dn

such that each monomial of P has at least one di as a nontrivial factor for
1 ≤ i ≤ n. Since jν > n− k for some ν by condition (∗), we have σ(jν ;ψ∗) = 0
and hence

Φ(Q) = P.

By applying (i∗)−1 ·PD to both sides of this equation we get the required result.
QED

In this proof since each di already represents classes in H∗(Z;C), then P is
also in H∗(Z;C). Hence the rationality conjecture directly follows in this case
because one did not have to calculate residues; ResΦ(ξ, Z) is given by the image
of Φ(ψ∗ − η) in H∗(U ; Q) see [Su, corollary 3.8].

REMARK: The set up being as in Suwa’s theorem drop the condition (∗),
then

ResΦ(ξ;Z) = BResΦ(ψ∗, Z) + (i∗)−1 · PD(P )

where P is as in equation (6).
This can be seen as follows; since Φ is defined as

Φ(X1, ..., Xn) = σ(j1;X1, ..., Xn) · · ·σ(jr; X1, ..., Xn)

the first term on the left hand side of equation (6) is Φ(ψ∗). Applying (i∗)−1 ·PD
to both sides of equation (6) gives

(i∗)−1 · PD(Φ(Q)) = (i∗)−1 · PD(Φ(ψ∗)) + (i∗)−1 · PD(P )

where by definition

(i∗)−1 · (Φ(Q)) = ResΦ(ξ, Z)
and (i∗)−1 · (Φ(ψ∗)) = BResΦ(ψ∗, Z).

4 Nash Residue and Reduction

This section culls the results of the previous sections to give a new approach
to the calculation of Baum-Bott residues for singular holomorphic foliations on
compact Kaehler manifolds, where the Nash blow up gives a smooth manifold.
It will be shown that if in addition the foliation is defined by a bundle morphism
then the Rationality Conjecture of Baum and Bott holds.
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First the Nash Residue is defined for general singular holomorphic foliations.
Let M be a compact Kaehler manifold of dimension n with tangent sheaf T .
Let F be an integrable full coherent subsheaf of T with rankF = k, such that
the Nash Blow-up N of M with respect to F and T is smooth. On N there is
a short exact sequence of vector bundles

0 −→ τ −→ Cn −→ W −→ 0

where τ , the tautological bundle, restricts to the tautological bundle of each fibre
π−1(x) ∼= G(k, n), x ∈ M . Cn is the trivial n-bundle and W is the quotient
bundle which restricts to the universal quotient bundle of each fibre. This exact
sequence restricts to the following short exact sequence on N

0 −→ τ −→ π∗T −→ W −→ 0

where T is the tangent bundle on M and π∗T denotes the pull back bundle on
N . We use the same notation τ and W for the restriction of these bundles to
N since we will be working on N from now on and there will be no ambiguity
about the base space.

Let S be the singular set of F . On M − S there is a unique holomorphic
vector bundle Y such that Y ′ = Q|M − S. By Bott’s vanishing theorem Y
has a connection D1 such that if K1 is the corresponding curvature matrix and
Φ ∈ C[X1, ..., Xn] is a symmetric homogeneous polynomial with deg Φ > n− k
then

Φ(K1) = 0 on M − S.

Since π∗(Y ) and W agree on N −π−1(S), the connection D1 of Y pulls back to
a connection π∗D1 of W |N − π−1(S). There exist a connection D of W on N
and a compact subset Σ of N which contains π−1(S) in its interior such that

D|N − Σ = π∗D1|N − Σ,

[BB2,p300]. Let KW be the corresponding curvature matrix. Then as above

Φ(KW ) = 0 on N − Σ,

i.e. Φ(KW ) is a differential form on N with compact support.

Let Z be a connected component of S, U be an open neighbourhood of Z that
deformation retracts to Z,

δ : U −→ Z,

and choose Σ such that the connected component of Σ that contains π−1(Z) in
its interior is contained in π−1(U). Then Φ(KW )|π−1(U)) is a differential form
on π−1(U) with compact support. Hence the chern polynomial Φ(W |π−1(U))
is a cohomology class of U with compact support.
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Definition: The Nash Residue of F on Z is defined as

NResΦ(F , Z) = δ∗ · π ∗ ·PDπ−1(U)Φ(W |π−1(U)).

Remark: Let V be an open neighbourhood of M ′ such that V deformation
retracts to π−1(Z),

ρ : V −→ π−1(Z).

Then choose U to be π(V ) and choose δ such that

δ(x) = πρπ−1(x) if x ∈ U − S

δ(x) = if x ∈ S.

Then δ is a deformation retraction and

δ · π(y) = π · ρ(y) for y ∈ π−1(U) = V.

At the homology level this implies that

δ∗ · π∗ = π∗ · ρ∗.

Then we have

NResΦ(F , Z) = δ∗ · π∗ · PDπ−1(U)Φ(W |π−1(U))

= π∗ · ρ∗PDπ−1(U)Φ(W |π−1(U))

where

ρ∗ · PDπ−1(U)Φ(W |π−1(U)) ∈ H∗(π−1(Z);C)

is the BRes of W (see Section 2). Therefore

NResΦ(F , Z) = π∗ ·BResΦ(W,π−1(Z)).

Let us summarize this set up:

Let M be a compact Kaehler manifold of dimension n. Let E be a vector bundle
of rank k and

Ψ : E −→ T

be a bundle morphism of maximal rank.

Suppose that Ψ(E) generates an integrable coherent subsheaf F of the tangent
sheaf of M . Construct the Nash Blow-up

π : N −→ M
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corresponding to F .

Assume that N is smooth. Let S be the singular set of F and Z a connected
component of S.

Lemma 1: Let Ψ′ : E → T be the map induced by Ψ : E → T at the sheaf level.
Then Ψ′ is injective.

Proof: Let U be an open subset of M such that E and T are trivial on U .
Let e1, . . . , ek and t1, . . . , tn be local generators for E and T respectively. Then
Ψ can be defined in terms of these basis elements as:

Ψ(ei) = fi1t1 + · · ·+ fintn, i = 1, ..., k

where fij ∈ OU are holomorphic functions on U . If h is a section of E|U then

h = h1e1 + · · ·+ hkek

= (h1, ..., hk)

where hi are holomorphic functions on U . Ψ(h) can then be defined by

Ψ(h) = h1Ψ(e1) + · · ·+ hkΨ(ek)
= (h1f11 + · · ·+ hkfk1, ..., h1f1n + · · ·+ hkfkn).

If Ψ(h) = 0 then in particular Ψx(h(x)) = 0, i.e.

h1(x)f11(x) + · · ·+ hh(x)fki(x) = 0 for x ∈ U and i = 1, ..., k.

Since Ψ is injective as a bundle morphism on U − U ∩ S then h(x) = 0 for
x ∈ U − U ∩ S, i.e.

hi(x) = 0 for x ∈ U − U ∩ S and i = 1, ..., k.

Then hi are holomorphic functions on U vanishing on the open set U − U ∩ S
and consequently are identically zero on U . This proves that Ψ′ is injective.

QED
Theorem 1:

ResΦ(E, Z) = NResΦ(E, Z) + π∗β̃

where β̃ ∈ H∗(π−1(Z);C) and is calculated by a Grassmann Graph construction.
Moreover NResΦ(E, Z) and π∗β̃ are rational, hence ResΦ(E, Z) is rational.

Proof: On M there is the exact sequence of sheaves

0 −→ E −→ T −→ Q −→ 0 (1)

where E → T is induced by Φ. This sequence pulls back to a sequence of sheaves
on N

0 −→ π∗E −→ π∗T −→ π∗Q −→ 0. (2)
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On N there is also the sequence of vector bundles

0 −→ τ −→ π∗T −→ W −→ o (3)

where τ is the tautological bundle and W is the universal quotient bundle.

Let X = π−1(S) and W ′ =the sheaf of holomorphic sections of W . On N −X
the sheaves π∗Q and W ′ are equal. Hence the sequence of sheaves on N

0 −→ π∗E −→ π∗T −→ W ′ −→ 0 (4)

is exact on N − X. The underlying vector bundles of this sequence give a
complex of bundles on N

0 −→ π∗E −→ π∗T −→ W −→ 0 (5)

which is exact on N −X.

Consider on N the virtual bundle γ

γ = π∗T− π∗E−W.

The chern class of this virtual bundle is

c(γ) = c(π∗T− π∗E−W )
= c(π∗(T− E)−W )
= c(π∗(T− E))/c(W ). (6)

From the exactness of equation (2) the chern class of π∗Q is

c(π∗Q) = c(π∗(T− E)) (7)

Combining the results of (6) and (7) one gets

c(γ) = c(π∗Q)/c(W ). (8)

This equation will be used with the Graph construction on (5); construct the
Grassmann Graph corresponding to the complex of vector bundles (5) on N ,

p : G −→ N. (9)

Let ξ → G be the virtual tautological bundle on G and let {Zλ}λ∈P1 be the
family of rationally equivalent cycles in G obtained by the Graph construction.
Then

ξ|Z0 = p∗(γ) (10)

since Z0 is isomorphic to N . The cycle at infinity Z∞ decomposes as

Z∞ = N∗ + Z∗ (11)
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where N∗ is bimeromorphic to N and Z∗ is the fibre above S. It is known that

ξ|N∗ = 0 (12)

[BFM,p122], [Fu,pp340-341].

Since Z0 is rationally equivalent to Z∞ we get the following equalities

ci(ξ) ∩ Z0 = ci(ξ) ∩ Z∞
= ci(ξ) ∩N∗ + ci(ξ) ∩ Z∗
= ci(ξ) ∩ Z∗, i > 0 (13)

where the last equation follows from (12) and ci(ξ) ∩ Z∗ ∈ H∗(Z∗;C). Using
(10) and (13) gives

ci(γ) ∩ [N ] = p∗(ci(ξ) ∩ Z0)
= p∗(ci(ξ) ∩ Z∗) (14)

where p∗(ci(ξ) ∩Z∗) ∈ H∗(X;C). Define a localized chern class ci
X ∈ H∗(X;C)

as

ci
X = p∗(ci(ξ) ∩ Z∗), i > 0. (15)

Equation (14) can be rewritten in this notation

ci(γ) ∩ [N ] = ci
X , i > 0. (14’)

The total chern class of γ is then given by

c(γ) ∩ [N ] = (1 + c1(γ) + · · ·+ cn(γ)) ∩ [N ]
= [N ] + c1

X + · · ·+ cn
X (16)

where the last equation is written using (14’) and [N ] is the fundamental cycle
of N . Substitute equation (8) to the LHS of equation (16)

{c(π∗Q)/c(W )} ∩ [N ] = [N ] +
n∑

i=1

ci
X . (16’)

Cap both sides of (16’) by c(W )

c(W ) ∩ ({c(π∗Q)/c(W )} ∩ [N ]) = c(W ) ∩ [N ] +
n∑

i=1

c(W ) ∩ ci
X . (17)

The LHS of (17) can be written:

(c(W ) ∪ {c(π∗Q)/c(W )}) ∩ [N ] (18)
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[Sp, p254, (18)]. In this expression the c(W )’s cancel each other since the total
chern class of a vector bundle is invertible. Hence (17) takes the form

c(π∗Q) ∩ [N ] = c(W ) ∩ [N ] +
n∑

i=1

c(W ) ∩ ci
X . (19)

To simplify the notation define βi ∈ H2n−2i(X;C) as

β1 + · · ·+ βn =
n∑

i=1

c(W ) ∩ ci
X . (20)

Then from (19) and (20) the dual of the i-th chern class of π∗Q becomes:

ci(π∗Q) ∩ [N ] = ci(W ) ∩ [N ] + βi, i = 1, ..., n. (21)

This will be used to calculate Φ(π∗Q) which is defined as

Φ(π∗Q) = Φ̃(c1(π∗Q), ..., cn(π∗Q))

where Φ̃ was defined before. To calculate Φ(π∗Q) first assume that

Φ(π∗Q) = ci(π∗Q)cj(π∗Q) (22)

for some i, j, 0 < i, j < n. Cap both sides of (22) by [N ]

Φ(π∗Q) ∩ [N ] = {ci(π∗Q)cj(π∗Q)} ∩ [N ]. (23)

The RHS can be written as

{ci(π∗Q)cj(π∗Q)} ∩ [N ] = (ci(π∗Q) ∩ [N ]) · ((cj(π∗Q) ∩ [N ]) (24)

where · is the cycle intersection, [GH,p59]. The RHS (24) can be rewritten using
(21)

RHS(24) = (ci(W ) ∩ [N ] + βi) · ((cj(W ) ∩ [N ] + βj)
= (ci(W ) ∩ [N ]) · ((cj(W ) ∩ [N ]) + (ci(W ) ∩ [N ]) · βj

+βi · (cj(W ) ∩ [N ]) + βi · βj . (25)

To shorten the notation define βij ∈ H∗(X;C) as

βij = (ci(W ) ∩ [N ]) · βj + βi · (cj(W ) ∩ [N ]) + βi ∩ βj . (26)

That βij is a cycle in X follows from the fact that each βi is a cycle in X, see
the definition of βi in (20). Then (25) can be rewritten as

RHS(24) = (ci(W ) ∩ [N ]) · (cj(W ) ∩ [N ]) + βij . (25’)



Singular Holomorphic Foliations – UBC 1984 – Ali Sinan Sertöz 57

Use the same computation as in (24) for the first term on the RHS of (25’);

(ci(W ) ∩ [N ]) · (cj(W ) ∩ [N ]) = {ci(W )cj(W )} ∩ [N ] (27)

Using the assumption of (22) that

Φ(∗) = ci(∗)cj(∗)
the RHS of (27) can be written

{ci(W )cj(W )} ∩ [N ] = Φ(W ) ∩ [N ]. (28)

These calculations can be put together as follows;

Φ(π∗Q) ∩ [N ] = {ci(π∗Q) · cj(π∗Q)} ∩ [N ] from 23
= (ci(π∗Q) ∩ [N ]) · (cj(π∗Q) ∩ [N ]) from 24
= (ci(W ) ∩ [N ]) · (cj(W ) ∩ [N ]) + βij from 25’
= {ci(W )cj(W )} ∩ [N ] + βij from 27
= Φ(W ) ∩ [N ] + βij from the definition of Φ

Hence by induction on the size of Φ we obtain for general Φ

Φ(π∗Q) ∩ [N ] = Φ(W ) ∩ [N ] + β (29)

where β ∈ H∗(X;C). Apply π∗ to both sides of (29),

π∗(Φ(π∗Q) ∩ [N ]) = π∗(Φ(W ) ∩ [N ]) + π∗β. (30)

In the following three steps the terms of this equation will be examined and will
be shown to be related to Baum-Bott and Nash Residues.
1) Notice that

Φ(π∗Q) = π∗Φ(Q). (31)

Since each term in Φ(π∗Q) is a product of chern classes of π∗Q and as is well
known

c(π∗Q) = π∗c(Q) (32)

Then the LHS of (30) can be simplified;

π∗(Φ(π∗Q) ∩ [N ]) = π∗(π∗Φ(Q) ∩ [N ])
= Φ(Q) ∩ π∗[N ]
= Φ(Q) ∩ (deg π)[M ]
= Φ(Q) ∩ [M ] (33)

where the first equation follows from (31), the second equation is a property
of cap products, [Sp, p254, (61)]. The third equation holds by definition since
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deg π = 1. Using the Baum-Bott construction more can be said about Φ(Q).
Let Z1, ..., Zm be the connected components of S. For each Zi choose an open
neighbourhood Ui of Zi such that Ui deformation retracts to Zi

δi : Ui −→ Zi (34)

and Ui ∩ Uj = ∅, i, j = 1, ...,m. In each Ui choose a compact set Σi such that
Zi is contained in the interior of Σi, i = 1, ..., m. Let

Σ = Σ1 ∪ · · · ∪ Σm. (35)

There exists a closed differential form ω on M with support on Σ such that

[ω] = Φ(Q) (36)

where [·] denotes the cohomology element defined by that form, [BB2, p312-313].
Let ωi be defined as follows:

ωi|Ui = ω|Ui and ωi|M − Ui = 0, i = 1, ..., m. (37)

Then ω = ω1 + · · ·+ ωm and [ω] = [ω1] + · · ·+ [ωm], hence

[ω] ∩ [M ] = [ω1] ∩ [M ] + ·+ [ωm] ∩ [M ]. (38)

But since ωi is a differential form whose support is compact and is in Ui then

[ωi] ∩ [M ] = [ωi] ∩ [Ui], i = 1, ...,m. (39)

Then the LHS of (30) can be written, using (33), (36) and (38) as

π∗(Φ(π∗Q) ∩ [N ]) = Φ(Q) ∩ [N ] from 33
= [ω] ∩ [M ] from 36
= [ω1] ∩ [M ] + · · ·+ [ωm] ∩ [M ]. (40)

Substituting (39) into (40) gives

π∗(Φ(π∗Q) ∩ [N ]) = [ω1] ∩ [U1] + · · ·+ [ωm] ∩ [Um]. (41)

Hence the global expression on the left splits up as the sum of local expressions.

2) To calculate the first term on the RHS of (30) first recall that T/Ψ(E) is
a vector bundle on M − S and since Ψ(E)|M − S is integrable T/Ψ(E) has a
basic connection, i.e. if K = K(D) is the curvature matrix for this connection
on M − S, then the differential form Φ(K) = 0 on M − S for deg Φ > n − k,
[BB2, p295].

Since W |N − X = π∗(T/Ψ(E))|N − X, pull the connection D by π∗ to a
connection on W |N −X. Then there exists a connection D̃ for W on N such
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that D̃ agrees with π∗D on N − π−1(Σ), [BB2, p330, (4.41)]. If K̃ = K̃(D̃) is
the curvature matrix for D̃, then

Φ(K̃) = 0 on N − π−1(Σ) (42)

since D and D̃ agree on N − π−1(Σ). From (42) it follows that we can define
closed forms Φi on N by

Φi|π−1(Ui) = ιΦ(K̃)|π−1(Ui), where ι = (1/2π
√−1)deg Φ (43a)

and

Φi|N − π−1(Ui) = 0, i = 1, ..., m. (43b)

Then

ιΦ(K̃) = Φ1 + · · ·+ Φm (44)

where ι is as in (43a). By definition

ι[Φ(K̃)] = Φ(W ) (45)

Using (44) and (45) together gives

Φ(W ) = ι[Φ(K̃)]
= [Φ1] + · · ·+ [Φm]. (46)

Cap both sides of (46) by [N ],

Φ(W ) ∩ [N ] = [Φ1] ∩ [N ] + · · ·+ [Φm] ∩ [N ]. (47)

Each Φi is a closed form with compact support, whose support lies in π−1(Ui) =
Vi, i = 1, ...,m. Hence

[Φi] ∩ [N ] = [Φi] ∩ [Vi], i = 1, ...,m. (48)

Then (47) can be written as

Φ(W ) ∩ [N ] = [Φ1] ∩ [V1] + · · ·+ [Φm] ∩ [Vm]. (49)

Notice that D̃|Vi is a connection for W |Vi and K̃|Vi is a curvature matrix for
W |Vi. If deg Φ > n− k, then

Φ(K̃|Vi) has compact support in Vi

and

ι[Φ(K̃|Vi)] = Φ(W |Vi). (50)
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Using (50), (43a) and (43b) gives

Φ(W |Vi) = [Φi]. (51)

Each [Φi] is a cohomology class with support in π−1(Σi), hence has compact
support and is the chern class of a vector bundle, W |Vi, i = 1, ..., n. Then [Φi]
is in the image of cohomology with rational coefficients on Vi. Using (49) and
(51) gives

Φ(W ) ∩ [N ] = Φ(W |V1) ∩ [V1] + · · ·+ Φ(W |Vm) ∩ [Vm]. (52)

Apply π∗ to both sides of (52),

π∗(Φ(W ) ∩ [N ]) = Σm
i=1π∗(Φ(W |Vi) ∩ [Vi]) (53)

where π∗(Φ(W |Vi) ∩ [Vi]) ∈ H∗(Ui;C) for i = 1, ..., m.

3) The last element on the right hand side of (30) is π∗β. From the construction
of β it follows that β naturally splits as

β = β̃1 + · · ·+ β̃m (54)

where β̃i ∈ H∗(X;C) for i = 1, ..., m. Since β̃i is obtained by capping chern
classes of W with the residue obtained from Grassmann Graph and by inter-
section of these, it follows that β̃i is in the image of homology with rational
coefficients in X, see equations (20), (26) and (29).

Apply π∗ to both sides of (54)

π∗β = π∗β̃1 + · · ·+ π∗β̃m (55)

where π∗β̃i ∈ H∗(Zi;C), i = 1, ..., m.

This completes the examination of the terms of (30).

Putting equations (41), (53) and (55) into (30) gives

Σm
i=1[ωi] ∩ [Ui] = Σm

i=1π∗(Φ(W |Vi) ∩ [Vi]) + Σm
i=1π∗β̃i. (56)

From (56) we can now write

[ωi] ∩ [Ui] = π∗(Φ(W |Vi) ∩ [Vi]) + π∗β̃i, (57)

since each summand in (56) is in H∗(Ui;C), i = 1, ..., m.

The deformation retraction δi of (34) induces an isomorphism

δi∗ : H∗(Ui;C) −→ H∗(Zi;C) (58)
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for i = 1, ...,m. Apply δi∗ to both sides of (57)

δi∗([ωi] ∩ [Ui]) = δi∗π∗(Φ(W |Vi) ∩ [Vi]) + δi∗π∗β̃i (59)

for i = 1, ...,m. For the first term on the LHS of (59) we have

δi∗([ωi] ∩ [Ui]) = ResΦ(E, Zi), i = 1, ...,m (60)

[BB2, p313, (7.14)]. The first term on the RHS of (59) is the Nash Residue by
definition

δi∗π∗(Φ(W |Vi) ∩ [Vi]) = NResΦ(E, Zi), i = 1, ...,m. (61)

Since π∗β̃i is already in H∗(Zi;C) by (55), δi∗ does not change it;

δi∗π∗β̃i = π∗β̃i, i = 1, ..., m. (62)

Substituting (60), (61) and (62) into (59) gives

ResΦ(E, Zi) = NResΦ(E, Zi) + π∗β̃i (63)

for i = 1, ...,m as required.

By appealing to the discussions that follow equations (51) and (54) we conclude
that the RHS of (63) is rational, and hence the LHS is rational,

ResΦ(E, Zi) ∈ H∗(Zi;Q), i = 1, ...,m.

QED

REMARKS: 1) Let M be a compact complex manifold with a positive line
bundle. Then M is algebraic by Kodaira embedding theorem, [GH, p181]. Hence
N , being a subvariety of M ×G(k, T ), is also algebraic. On algebraic manifolds
coherent sheaves have global syzygies, [GH, p701]. Then π∗(F ) will have global
syzygies on N assuming that the Nash blow-up N is smooth. Thus theorem 1
will hold for rich foliations on algebraic manifolds for which the Nash Blow-up
is smooth without the further assumption that F be generated by a bundle
morphism.

2) If F is generated by a bundle morphism Ψ : E → T but rankE > rankF , then
Ψ′ is not injective. To make theorem 1 work in this case some restrictions must
be imposed on the kernel of Ψ. For example for every connected component Z
of S assume that there exist an open neighbourbood U of Z and a vector bundle
H on U with a bundle morphism

η : H|U − Z −→ E|U − Z

such that η is injective. Then theorem 1 holds for F . Note that η need not be
defined on all of U but H should be defined on U to ensure the construction of
Grassmann Graph.
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3) Notice that theorem 1 holds for a subclass of rich foliations. Call a rich
foliation very rich if for every connected component Z of S there exists an open
neighbourbood U of Z such that to F |U there exists a complex of O-modules on
U which give a locally free resolution on U −Z. Then theorem 1 holds for very
rich foliations for which the Nash Blow-up is smooth. It is natural to conjecture
that all rich foliations are very rich.



CHAPTER 4
OBSTRUCTION CLASSES

0 Introduction

This final chapter pursues a problem that arises when singular holomorphic
foliations are considered as integrable images of bundle morphisms. Section 1
defines obstruction classes in terms of Pontryagin classes which obstruct the
imbedding of a vector bundle into the tangent bundle. Other topological ob-
structions in terms of Stiefel-Whitney classes can be found in the literature, in
particular see Sundararaman [Sr]. Section 2 very briefly summarizes immediate
future research projects to which this work leads. We propose to study the
problem of Riemann-Roch as explained in section 2 as a consequence of this
work.

1 Obstruction Classes

Most well known examples of singular holomorphic foliations are meromorphic
vector fields. A meromorphic vector field is defined as follows: let M be a
complex manifold of dimension n with tangent bundle T and let ÃL be a line
bundle on M . Assume that there is a bundle morphism Ψ

Ψ : ÃL −→ T.

Ψ is called a meromorphic vector field. Ψ(ÃL) generates a 1 dimensional subsheaf
of the tangent sheaf T . By dimension considerations this coherent subsheaf is
integrable, therefore it defines a singular foliation, the singularity set being S,
where

S = {x ∈ M |Ψx = 0}.
To generalize this concept let E be a vector bundle of rank k on M and assume
that there is a morphism

β : E −→ T.

If β(E) is integrable then it defines a singular foliation whose singularity set is

S = {x ∈ M |rank(βx) < max .rank(β)}
If S = ∅ then β(E) defines a foliation if it is integrable. If max .rank(β) =
rank(E) and S = ∅ then β is an imbedding of E into T. For an arbitrary E clearly
no such β exists. This section answers a natural question: “Are there differential

63
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geometric obstruction classes for the existence of an imbedding β : E → T?”
For an answer see theorem 2.

First in the following theorem we collect a few facts about splitting manifolds,
[H, I.4.2, III.13.2.1].

Theorem (Hirzebruch) : Let E be a vector bundle of rank k on a complex
manifold M with tangent bundle T. There exists a complex manifold Ms and a
holomorphic map

Φ : Ms −→ M

with the following properties:
i) Ms is a fibre bundle over M with the flag manifold F (k) = GL(k,C)/∆(k,C)
as fibre, where ∆(k,C) is the subgroup of GL(k,C) consisting of triangular ma-
trices.
ii) Φ∗E splits as a sum of line bundles on Ms.
iii) Φ∗T is a quotient bundle of Ts, the tangent bundle of Ms;

Ts = (Φ∗T)⊕ E∆

where E∆ is the bundle along the fibres. Here the direct sum need not be holo-
morphic, it is in general a C∞ direct sum.
iv) The map induced by Φ

Φ∗ : H∗(M ;C) −→ H∗(Ms;C)

is a monomorphism.

Remark: To construct Ms, consider the complex analytic principle bundle

F −→ M

associated to E. Then

Ms = F/∆(k,C).

The proof of theorem 2 will need a generalized version of Bott’s vanishing the-
orem, which is given next; assume that M is a complex manifold of dimension
n + m with tangent bundle T.

Theorem 1: Let T = A ⊕ B and E be a subbundle of A. If E and B
are integrable, then the graded Chern ring Chern∗(A/E) vanishes beyond the
corank of E in A, i.e.

Cherni(A/E) = 0 if i > rankA− rankE.

Proof: Let rankA = n, rankB = m and rankE = k. It suffices to show that if
P is a symmetric, homogeneous ad-invariant polynomial on GL(k,C) of degree
greater than n− k, then P applied to a curvature matrix of (A/E)∗ is zero.
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Let {U} be an open covering of M such that all the above bundles are trivial on
each U , and there is a partition of unity {λU} corresponding to this covering.
On U let

xU
1 , . . . , xU

n , yU
1 , . . . , yU

m

be local coordinates such that

A∗ is generated by dxU
1 , . . . , dxU

n

B∗ is generated by dyU
1 , . . . , dyU

m.

Let V be another element of {U}. Then similarly there are coordinates

xV
1 , . . . , xV

n , yV
1 , . . . , yV

m

On V such that

A∗ is generated by dxV
1 , . . . , dxV

n

B∗ is generated by dyV
1 , . . . , dyV

m.

If U ∩ V 6= ∅ then there is a transition function hA
UV for A∗ such that

(dxU
1 , ..., dxU

n ) = hA
UV (dxV

1 , . . . , dxV
n , dyV

1 , . . . , dyV
m).

B is integrable so by Frobenius

hA
UV (dxV

1 , . . . , dxV
n , dyV

1 , . . . , dyV
m) = hA

UV (dxV
1 , . . . , dxV

n ).

Since E is integrable we may assume that the covering is fine enough so that E∗

is generated by

dxU
n−k+1, . . . , dxU

n on U

and by

dxV
n−k+1, . . . , dxV

n on V

Then (A/E)∗ is generated by

dxU
1 , . . . , dxU

n−k on U

and by

dxV
1 , . . . , dxV

n−k on V.

If U ∩ V 6= ∅ then there is a transition function gUV such that

(dxU
1 , . . . , dxU

n−k) = gUV (dxV
1 , . . . , dxV

n ).
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E is integrable so by Frobenius

gUV (dxV
1 , . . . , dxV

n ) = gUV (dxV
1 , . . . , dxV

n−k).

Let

dxU = (dxU
1 , . . . , dxU

n−k) and dxV = (dxV
1 , . . . , dxV

n−k).

From here on the proof of Bott’s vanishing theorem applies, see [B1]. For
completeness we include the main parts of the proof.

Let DU be a connection for (A/E)∗ on U defined as

DU dxU
i = 0 i = 1, . . . , n− k.

Then

D = ΣUλUDU

is a connection for (A/E)∗. The associated connection matrix θU on U is calcu-
lated as follows;

θU = D dxU = ΣV λV DV dxU

= ΣV λV DV (gUV dxV )
= ΣV λV (dgUV dxV + gUV DV dxV )
= ΣV λV dgUV dxV

= ΣV λV dgUV gV UdxU .

We then have to investigate the nature of dgUV to find where the curvature
matrix dθU − θU ∧ θU lies. Differentiating both sides of

dxU = gUV dxV

gives

0 = dgUV dxV

which implies that dgUV lies in the ideal generated by

dxV
1 , . . . , dxV

n−k.

Consequently the curvature matrix lies in the same ideal. Any i-fold product of
this ideal with i > n− k is clearly zero. Hence the theorem. QED

Notice that when B = 0 this theorem reduces to Bott’s vanishing theorem. Also
note that the above proof shows that if Pont∗(A/E) is the graded Pontryagin
ring of A/E generated by the real Pontryagin classes of A/E then

Ponti(A/E) = 0 if i > 2(rankRA− rankRE).
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Before defining obstruction classes let us develop some notation. Let

a = (a1, . . . , an)

be an n-tuple of nonnegative integers and define

|a| = a1 + 2a2 + · · ·+ nan.

For any vector bundle E, define

ca(E) = (c1(E))a1 · · · (cn(E))an

and

pa(E) = (p1(E))2a1 · · · (pn(E))2an

where ci(·) is the i-th Chern class in Hi(M ;C) and pi(·) is the i-th Pontryagin
class in H2i(M ;C). Also recall that for any two vector bundles E and F, the
Chern class of the virtual bundle E− F is defined as

c(E− F) = (c(E)/c(F)).

Theorem 2: Let E be a vector bundle of rank k on a complex manifold M
of dimension n with tangent bundle T. If E can be imbedded into T then the
following obstruction classes in the cohomology of the splitting manifold Ms are
zero:

pa(Φ∗T− Li) = 0, i = 1, . . . , k, |a| = 2n,

where Φ : Ms → M is the natural projection, and Li are line bundles such that

Φ∗E = L1 ⊕ · · · ⊕ Lk on Ms.

Proof: Recall that Ts = Φ∗T ⊕ E∆ where E∆ is the bundle along the fibres
on Ms and hence is integrable. If E can be imbedded into T then

Φ∗E = L1 ⊕ · · · ⊕ Lk

can be imbedded into Φ∗T and hence each Li can be imbedded into Φ∗T. By di-
mension considerations each Li is integrable in Ts. By theorem 1 the Pontryagin
rings Pont∗(Φ∗T/Li) vanish above twice the corank of Li in Φ∗T,

Ponti(Φ∗T/Li) = 0 if i > 2(n− 1).

This then completes the proof. QED

In particular observe that if there are classes γi ∈ H∗(M ;C) such that Φ∗(γi) =
p1(Li), then the graded ring P ∗ generated in H∗(M ;C) by {γ1, . . . , γk} and the
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Pontryagin classes of T vanish in the top dimension. This is because Φ∗ is a
monomorphism at the cohomology level.

Example: Let M be a complex manifold of dimension n. Let

V = M × C, and π : V −→ M

be the projection on the first component. Let L be a line bundle on M . Define
two line bundles on V as

L1 = π∗L
L2 = the line bundle along the fibres.

Then L2 is the trivial line bundle. Let E be a coherent sheaf on M defined by
the presheaf

Γ(E, U) = Γ(L1 ⊕ L2, π
−1(U))

for U open in M . Let T be the tangent sheaf of M . If E can be imbedded into
T then

cn(T )− cn−1(T )c1(T ) + · · ·+ (−1)nc1(E)n = 0.

To see this note that π∗E splits on V and

c1(π∗E) = c1(L1 ⊕ L2) = c1(L1) + c1(L2) = c1(L1),

and

cn(π∗T− L2) = 0

by the meromorphic vector field theorem of Baum and Bott, see [BB2], or see
theorem 1 above.

2 Future Research Projects

The results of this work naturally lead to new possibilities which are briefly
mentioned here.

i) MacPherson has defined Chern classes for singular varieties using Chern-
Mather type of characteristic classes with correction factors, see [Mc]. One
interesting problem is to define a local Euler obstruction for a coherent subsheaf
F of a locally free sheaf G using the associated Nash Blow-up as MacPherson
defines a local Euler obstruction using the Nash construction corresponding
to the tangent sheaf of a singular variety. This will define homological Chern
classes for F and it will be interesting to check if these classes correspond to
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the usual Chern classes of F obtained through a resolution by locally free real
analytic sheaves.

ii) It was conjectured for some time that the Meromorphic Vector Field theorem
of Baum-Bott would imply the Riemann-Roch theorem as the Holomorphic
Vector Field theorem of Bott did, see [BB1] and [B2]. It will be interesting to see
how far the Grassmann Graph construction can be used towards a settlement
of this conjecture. In the algebraic case Baum-Fulton-MacPherson used this
construction to prove a Riemann-Roch theorem for singular varieties, see [BFM].
Using the graph of a meromorphic vector field in the compact Kaehler case
promises to be the right way to attack the above conjecture.

iii) It will be an interesting problem to concentrate on calculating Baum-
Bott residues using the degeneracy cycles of the universal quotient bundle W
on the Nash Blow-up N . It is natural to conjecture that the intersection cycles
corresponding to Φ̃(c1(W ), . . . , cn−k(W )) will be homologous to the sum of some
rational cycles that lie in π−1(S). This will then solve the Rationality conjecture
in the compact Kaehler case.

iv) Using the knowledge that the Nash Blow-up corresponding to coherent
subsheaves of a locally free sheaf is analytic one can approach the work of Aznar
who in the algebraic category generalizes MacPherson’s local Euler obstruction,
see [Az]. A future project is to study Aznar’s generalization in the analytic
case in terms of Segre classes as mentioned by Fulton in his 1983 Regional
Conference.

v) The obstruction classes defined in this chapter are open for further investi-
gation. One particular direction to continue is to recover the obstruction classes
in terms of the Chern classes of E and T. For this it will be necessary to classify
those cases where on Ms the tangent bundle Ts accepts Φ∗T as a holomorphic
factor in the direct sum Ts = Φ∗T⊕ E∆.
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