
An Iterated Dynasearch Algorithm for
the Single-Machine Total Weighted
Tardiness Scheduling Problem

Richard K. Congram • Chris N. Potts • Steef L. van de Velde
Faculty of Mathematical Studies, University of Southampton, Southampton, SO17 1BJ, UK
Faculty of Mathematical Studies, University of Southampton, Southampton, SO17 1BJ, UK
Department of Decision and Information Sciences, Rotterdam School of Management,

Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
Richard.Congram@paconsulting.com • C.N.Potts@maths.soton.ac.uk • S.Velde@fac.fbk.eur.nl

This paper introduces a new neighborhood search technique, called dynasearch, that uses
dynamic programming to search an exponential size neighborhood in polynomial time.

While traditional local search algorithms make a single move at each iteration, dynasearch
allows a series of moves to be performed. The aim is for the lookahead capabilities of
dynasearch to prevent the search from being attracted to poor local optima. We evaluate
dynasearch by applying it to the problem of scheduling jobs on a single machine to mini-
mize the total weighted tardiness of the jobs. Dynasearch is more effective than traditional
first-improve or best-improve descent in our computational tests. Furthermore, this superi-
ority is much greater for starting solutions close to previous local minima. Computational
results also show that an iterated dynasearch algorithm in which descents are performed
a few random moves away from previous local minima is superior to other known local
search procedures for the total weighted tardiness scheduling problem.
(Production Scheduling: Single Machine, Sequencing; Analysis of Algorithms; Dynamic Program-
ming)

1. Introduction
A descent or iterative improvement algorithm is a
simple and practical type of local search method for
obtaining near-optimal solutions for a wide variety
of NP-hard combinatorial optimization problems. The
main idea is to improve a feasible solution by per-
forming a series of transformations or moves. The
transformations are normally specified by a neighbor-
hood structure, that defines which solutions can be
generated by a single move. Given a feasible solu-
tion, the algorithm searches its neighborhood for a
better solution. If a better solution exists, then one
such solution is selected as the current solution and
the search repeats; if there is no better solution, then

the algorithm terminates. There are two main types
of descent algorithms: first-improve, in which the cur-
rent solution is replaced with the first better solution
found in the neighborhood; and best-improve, in which
the current solution is replaced with a best solution
in the neighborhood. Subsequently, we refer to first-
improve and best-improve as traditional descent algo-
rithms. By definition, any type of descent algorithm
terminates in a local optimum. Furthermore, the qual-
ity of the final solution as compared with the global
optimum depends on the size and the structure of the
neighborhood.
The main handicap of a descent algorithm is its

myopic nature: it looks only one single move ahead,

INFORMS Journal on Computing © 2002 INFORMS
Vol. 14, No. 1, Winter 2002 pp. 52–67

0899-1499/02/1401/0052$5.00
1526-5528 electronic ISSN

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

and any move can lead to a “bad” solution where the
search becomes trapped in a local optimum that may
be substantially worse than a global optimum. This
is the reason that traditional descent algorithms gen-
erally cannot compete with more sophisticated local
search methods, such as simulated annealing, tabu
search, and genetic algorithms, in terms of solution
quality. On the positive side, descent algorithms are
generally much faster and easier to implement.
A well-known approach for improving the solution

quality of a descent algorithm is to adopt a multi-
start approach in which several independent runs of
descent, each using a different randomly generated
starting solution, are performed, and then the best
of the resulting solutions is selected. However, a far
more effective approach is to allow dependent runs
by generating the new starting solution from one
of the previous local optima by a suitable perturba-
tion method. Such an approach is known as iterated
descent, and is a widely-recognized method of obtain-
ing high solution quality at relatively low computa-
tional cost, without resorting to more intricate local
search algorithms. To stress the power of this type
of approach, we note that the iterated Lin-Kernighan
algorithm, as implemented by Applegate et al. (1999),
is a state-of-the-art local search algorithm for the trav-
eling salesman problem—and this problem provides
the single most competitive stage for testing new local
search algorithms.
In this paper, we introduce dynasearch as a new

approach for overcoming the myopic nature of tradi-
tional descent algorithms. In traditional descent, lex-
icographic search is used to find either a better or
a best solution in a neighborhood that is usually of
polynomial size. On the other hand, dynasearch uses
dynamic programming in a local search algorithm, so
that a neighborhood of exponential size is explored in
polynomial time. Specifically, the generic key idea of
dynasearch is to consider a neighborhood of the type
used in a traditional descent algorithm, but to allow
several moves of a certain type to be made in a single
iteration. Dynamic programming is used to find the
best combination of moves. Thus, each neighbor in
a dynasearch algorithm corresponds to one or more
moves in traditional descent.

Algorithms that explore exponential neighborhoods
in polynomial time have been known for many
years, tracing back to the work by Sarvanov and
Doroshko (1981a, 1981b) for the traveling salesman
problem (TSP). In the TSP, a salesman must perform
a tour of shortest length, visiting each of n cities
exactly once and then returning to the starting city.
For an overview of research on such neighborhoods,
we refer to the review of Deı̆neko and Woeginger
(2000) for the TSP, and to the general survey of Ahuja
et al. (1999) which covers various problem areas. From
these surveys, the main techniques that are identi-
fied for performing a search of an exponential num-
ber of solutions in polynomial time are matching (or
linear assignment) algorithms, cyclic exchange tech-
niques, and dynamic programming (or shortest path
algorithms).
We briefly discuss the previous studies that use

dynamic programming to explore a neighborhood
of exponential size in polynomial time, since this
relates most closely to our work on dynasearch. A
pyramidal neighbor for the TSP passes through a
subset of cities in the original order, and then the
remaining cities in the reverse order. Sarvanov and
Doroshko (1981a) and Carlier and Villon (1990) give
a dynamic programming algorithm that explores in
O�n2� time the pyramidal neighborhood, which has
size ��2n�. Thus, this neighborhood differs from one
comprising multiple moves as used in dynasearch.
Balas (1999) and Balas and Simonetti (2001) consider
a neighborhood for the TSP in which, for some given
k, the sequence of cities can be rearranged subject
to the constraint that if one city precedes another
by more than k positions in the original sequence,
then it must also precedes the other city in the rear-
ranged sequence. A dynamic program finds the best
of the ����k− 1�/e�n−1� neighbors in O�k22kn� time.
Again, this neighborhood is not built from multi-
ple moves. A twisted sequence neighborhood for the
TSP allows certain non-overlapping sections of the
sequence representing the current tour to be reversed.
Congram (2000) shows that the size of this neighbor-
hood is ���3+2

√
2�n�. Moreover, Deı̆neko and Woeg-

inger (2000) provide a dynamic programming algo-
rithm that finds the best twisted sequence neighbor in

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 53

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

O�n7� time. The twisted sequence neighborhood con-
tains all multiple 2-opt moves (a 2-opt move replaces
two edges of the tour with two new edges) that would
be produced by dynasearch. However, the high time
complexity to search the twisted sequence neighbor-
hood means that it is only of theoretical interest.
In parallel with our work on dynasearch,

Hurink (1999) has developed a neighborhood that
employs multiple moves for a problem of scheduling
a single machine to minimize the total weighted
completion time in which batching decisions have to
be made. More precisely, each batch of jobs requires
a setup time, and all jobs of the same batch have a
common completion time, namely the time at which
the batch completes its processing. The solution of
this problem is represented by a sequence of jobs,
since there is an efficient dynamic programming
algorithm to form the batches that minimize the
total weighted completion time when the sequence is
known. Hurink’s neighborhood uses multiple trans-
poses of jobs in the sequence. His computational
results indicate that this neighborhood is not particu-
larly effective at exploring the solution space relative
to one that removes a job from its current position
and inserts it elsewhere. Forming a neighborhood
from multiple insert moves appears difficult due to
the complex relationship between the sequence and
the batches produced by the dynamic programming
algorithm.
Thus, existing studies in the literature that use

a polynomial-time dynamic programming algorithm
to search a neighborhood of exponential size are
strictly limited. In this respect, our work offers a novel
contribution.
This paper also studies the application of

dynasearch to the single-machine total weighted
tardiness scheduling problem. This work forms part
of a research program to evaluate dynasearch as a
technique for generating high-quality solutions to
a variety of combinatorial optimization problems.
The total weighted tardiness problem is an NP-hard
archetypal machine scheduling problem for which
many local search algorithms have been developed
and tested; for an overview see Anderson et al. (1997).
By showing that an iterated dynasearch algorithm

outperforms the state-of-the-art local search algo-
rithms, namely the multi-start tabu search algorithm
of Crauwels et al. (1998), we are able to demonstrate
the value of the dynasearch approach.
The organization of the paper is as follows. In

Section 2, we give a formal description of the single-
machine total weighted tardiness scheduling prob-
lem. Section 3 presents the dynasearch concept for the
total weighted tardiness problem: it includes a discus-
sion of the structure of the dynasearch neighborhood,
the presentation of a polynomial-time dynamic pro-
gramming algorithm to find the best solution in this
neighborhood, the description of a simple dynasearch
algorithm without re-starts, and finally some speed-
ups to reduce the computation time. In Section 4, we
present the iterated dynasearch algorithm. Here, we
first discuss the general principles of multi-start and
iterated local search, and then pay special attention
to the concept of restarting the local search close to
a local optimum. A detailed description of our iter-
ated dynasearch algorithm follows. Section 5 reports
on our computation experience. After discussing the
design of our computational experiments, we com-
pare multi-start and iterated versions of dynasearch
with the corresponding multi-start and iterated ver-
sions of first-improve and best-improve descent.
We observe that, although multi-start dynasearch is
marginally superior to multi-start descent, the per-
formance of iterated dynasearch clearly dominates
that of both iterated descent algorithms. Then, we
compare iterated dynasearch with the state-of-the-
art multi-start tabu search algorithm of Crauwels
et al. (1998), and conclude that iterated dynasearch is
significantly better. Finally, some concluding remarks
are contained in Section 6.

2. The Total Weighted
Tardiness Problem

The single-machine total weighted tardiness schedul-
ing problem can be stated as follows. Each of n jobs
(numbered 1
 � � �
n) is to be processed without inter-
ruption on a single machine that can handle no more
than one job at a time. Job j �j = 1
 � � �
n� becomes
available for processing at time zero, requires process-
ing during an uninterrupted positive processing time

54 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

pj , has a positive weight wj , and has a due date dj
by which time it should ideally be completed. For a
given processing order of the jobs, the earliest com-
pletion time Cj and the tardiness Tj =max�Cj −dj
0�
of each job j can readily be computed. The problem is
to find a processing order of the jobs with minimum
total weighted tardiness

∑n
j=1wjTj .

This total weighted tardiness scheduling problem is
not only NP-hard in the strong sense (Lawler 1977,
Lenstra et al. 1977), but is also very difficult from
a practical point of view: the state-of-the-art branch
and bound algorithm of Potts and Van Wassenhove
(1985) runs into severe troubles when trying to
solve instances with more than 50 jobs to optimality.
Approximation also appears difficult, since there are
no polynomial-time algorithms in the literature that
are guaranteed to provide a solution with a value that
is no more than a constant times the optimal solution
value.
In a computational study, Crauwels et al. (1998)

compare the performance of multi-start versions of
simulated annealing, threshold accepting, tabu search
and genetic algorithms. For each algorithm, one vari-
ant uses the “natural” representation of solutions as
a permutation of the integers 1
 � � �
n to specify the
processing order of jobs, and another variant uses a
binary representation in which jobs are indicated as
late or non-late, from which a decoding heuristic con-
structs a processing order of the jobs. Their results
show that the best-quality solutions are provided by
a multi-start tabu search algorithm with the permu-
tation representation. Moreover, this is the champion
local search algorithm, since it is superior to the simu-
lated annealing algorithm of Matsuo et al. (1987), and
to the descent and simulated annealing algorithms of
Potts and Van Wassenhove (1991).

3. Dynasearch
Potts and Van Wassenhove (1991) and Crauwels
et al. (1998) find that for the natural permutation
representation, the swap neighborhood is preferred
to other neighborhoods for the total weighted tardi-
ness scheduling problem. In this section, we present
the principles of our dynasearch algorithm. We com-
pare the swap neighborhood with its dynasearch

counterpart (Section 3.1), present a dynamic pro-
gramming algorithm to search this neighborhood
(Section 3.2), sketch the dynasearch algorithm with-
out restarts (Section 3.3), and finally introduce some
speed-ups that reduce the empirical running time of
the dynasearch algorithm (Section 3.4). Note that the
presentation of the iterated dynasearch algorithm is
deferred to Section 4.

3.1. Swap and Dynasearch Swap Neighborhoods
For many combinatorial optimization problems
whose solutions can be represented as sequences,
partitions, or assignments, some type of k-exchange
neighborhood structure �k ≥ 2� is usually adopted,
since it is both effective and easy to search. The
k-exchange neighborhood contains all solutions that
can obtained by exchanging k elements in the
sequence, partition, or assignment. For a sequenc-
ing problem, swap is a 2-exchange neighborhood
that interchanges any two elements, irrespective of
whether they are adjacent. As an example, the
permutation �3
2
1
4
5
6� is a swap neighbor of
�1
2
3
4
5
6�, that is obtained by swapping elements
1 and 3. Verifying local optimality for a k-exchange
neighborhood requires ��nk� time, where n is the
total number of elements. For small values of k, a
k-exchange neighborhood can be searched quickly
but, when used in a traditional descent algorithm,
the resulting solutions are only of average quality.
As k increases, the computational effort required to
search the neighborhood grows quickly, so that select-
ing larger values of k is often impractical. There-
fore, a common choice is k = 2, which for sequencing
problems corresponds to the swap neighborhood.
Let � = ���1�
 � � �
��n�� be a permutation or

sequence that defines the current processing order
of the jobs, where ��i� is the job in position i,
for i = 1
 � � �
n. The swap neighborhood of a given
permutation � comprises all sequences that can be
obtained by interchanging any two jobs ��i� and
��j�, where 1 ≤ i < j ≤ n. The size of the swap
neighborhood is n�n−1�/2.
The dynasearch swap neighborhood of � allows a

new permutation to be obtained by a series of swaps.
To specify which swaps are allowed, we need a
definition. The two moves that swap job ��i� with

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 55

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

job ��j�, and job ��k� with job ��l�, respectively,
are said to be independent if max�i
 j� < min�k
 l� or
min�i
 j� >max�k
 l�. The dynasearch swap neighbor-
hood consists of all solutions that can be obtained
from � by a series of pairwise independent swap
moves. We claim that the dynasearch swap neighbor-
hood has size 2n−1− 1. To justify our claim, we note
that any dynasearch neighbor is defined by specifying
which of the jobs in the first n−1 positions is involved
in a swap move (since there are an even number of
swapped job, it can be deduced whether the job in
position n is to be swapped). Since there are 2n−1 ways
of selecting the positions of the swapped jobs, and one
of these corresponds to the situation where no jobs are
swapped, we obtain the claimed neighborhood size.
Dynasearch uses a best-improve strategy: a

dynasearch swap move is equivalent to a best series
of independent swaps. Consequently, if a solution is
a local optimum with respect to the dynasearch swap
neighborhood, then it is also a local optimum with
respect to the swap neighborhood, and vice versa.
We now present an example to illustrate the dif-

ference between the swap and dynasearch swap
neighborhoods.
Example. Consider the 6-job instance that is spec-

ified in Table 1. Suppose the initial sequence is
�1
2
3
4
5
6�.
Table 2 shows the moves that are made by a best-

improve descent algorithm with the swap neighbor-
hood. With this traditional approach, we observe that
the search becomes trapped in a local minimum with
a total weighted tardiness of 70.
Table 3 shows the ability of dynasearch to make

multiple independent swaps to move to the next
solution. The example may suggest that, by defi-
nition, dynasearch necessarily yields a better result
than best-improve (or first-improve) descent, for any
instance. This is not the case: there may be instances
for which traditional descent is better. Our claim,

Table 1 Data for the Problem Instance

Job j 1 2 3 4 5 6

Processing time pj 3 1 1 5 1 5
Weight wj 3 5 1 1 4 4
Due date dj 1 5 3 1 3 1

Table 2 Swaps Made by Best-Improve Descent

Total Weighted
Iteration Current Sequence Tardiness

1 2 3 4 5
�

6 109

1 1 2 3 5 4 6
�

90

2
�
1 2 3 5 6 4 75

3 5 2 3 1 6 4 70

which is substantiated by the computational results in
Section 5.2, is that dynasearch is better on average.

3.2. Finding the Best Set of Independent Swaps
To find the best set of independent swaps that
can be obtained from a permutation � , we employ
a dynamic programming algorithm. This algorithm
uses a forward enumeration scheme in which jobs
are appended to the end of the current partial
sequence and are possibly swapped. We define a par-
tial sequence to be in state �k
��, for k = 0
1
 � � �
n,
if it can be obtained from the partial sequence
���1�
 � � �
��k�� by applying a series of independent
swaps. Of course, to find the best possible sequence
in the dynasearch swap neighborhood of � , which
by definition must be in state �n
��, we only need
to consider a sequence that has minimum objective
value among all sequences in this state.
Let �k be a partial sequence with minimum total

weighted tardiness for jobs ��1�
 � � �
 ��k� among par-
tial sequences in state �k
��. Further, let F ��k� be the
total weighted tardiness for jobs ��1�
 � � �
��k� in �k.
This partial sequence must be obtained from a partial
sequence �i that has minimum objective value from
all partial sequences in some previous state �i
��,
where 0 ≤ i < k, by appending job ��k� if i = k−
1, or by first appending jobs ��i+ 1�
 � � �
��k� and

Table 3 Dynasearch Swaps

Total Weighted
Iteration Current Sequence Tardiness

1 2 3
�

4 5
�

6 109

1 1
�
3 2 5 4 6

�
89

2 1 5
�

2 3 6 4 68

3 5 1 2 3 6 4 67

56 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

then interchanging jobs ��i+ 1� and ��k� if 0 ≤ i <

k− 1. These two possibilities are considered in detail
below.
• i = k− 1. In this case, job ��k� is not involved in
any swap, and ��k� is simply appended to a partial
sequence �k−1; hence, �k = ��k−1
��k��. Accordingly,

F ��k�= F ��k−1�+w��k��P��k�−d��k��+

where �x�+ = max�x
0� for any real x, and P��k� =∑k

i=1 p��i�.
• 0 ≤ i < k − 1. Here, jobs ��k� and ��i + 1�
are swapped, so that �k can be written as �k =
��i
��k�
��i+2�
 � � �
��k−1�
��i+1��, and the total
weighted tardiness F ��k� is readily computed as

F ��k� = F ��i�+w��k��P��i�+p��k�−d��k��+

+
k−1∑
j=i+2

w��j��P��j�+p��k�−p��i+1�−d��j��+

+w��i+1��P��k�−d��i+1��+�
Since all possibilities are considered, a recursion that
computes the smaller of the two candidate values
F ��k� can be used in a dynamic programming algo-
rithm to find the best set of independent swaps.
We are now ready to present our dynamic program-

ming algorithm. The initialization is

F ��0� = 0

F ��1� = w��1��p��1�−d��1��+

and the recursion for k = 2
 � � �
n is

F ��k�=min

F ��k−1�+w��k��P��k�−d��k��+

min

0≤i≤k−2

{
F ��i�+w��k��P��i�+p��k�−d��k��+

+ k−1∑
j=i+2

w��j��P��j�+p��k�−p��i+1�
−d��j��++w��i+1��P��k�−d��i+1��+

}
�

The optimal solution value is then equal to F ��n�, and
the corresponding sequence can be found by back-
tracking. For example, if the value of F ��n� is given
by the first term in the minimization, then job ��n� is
not swapped, and we proceed to find how the value
F ��n−1� is determined. Alternatively, if the value of
F ��n� is given by the second term for some index i,

then jobs ��n� and ��i+ 1� are swapped, and we
proceed to find how the value F ��i� is determined.
We continue in this way until F ��0� or F ��1� appears
on the right-hand side of the recursion equation, in
which case all independent swaps are identified and
the backtracking procedure terminates.
This dynamic programming algorithm runs in

O�n3� time and requires O�n� space. Hence,
dynasearch requires O�n3� time to verify local opti-
mality, which is the same time requirement as for a
traditional descent algorithm.
Finally, we note that a backward dynamic program-

ming algorithm can be derived. However, it does
not offer any computational advantages, since the
backward algorithm has the same time and space
requirements as the forward scheme.

3.3. A Basic Dynasearch Algorithm
In a straightforward implementation of the
dynasearch algorithm with the swap neighborhood,
we start with an initial permutation ��0� as the current
solution, where ��0� is obtained by some construc-
tive heuristic. At this stage, it is irrelevant as to
how this initial solution is obtained. During iteration
t
��t−1� is the current permutation, which we attempt
to improve by making a move in the dynasearch
swap neighborhood. Using the dynamic program
of Section 3.2, we compute the values F ���t−1�k � for
k= 1
 � � �
n, and then apply a backtracking procedure
to find a corresponding permutation ��t�.
The solution defined by ��t� is a local optimum

in the dynasearch swap neighborhood if F ���t−1�n � =
F ���t−2�n �, where we set F ���−1�n � to be the objective
value of the initial permutation ��0�. In this case, the
algorithm terminates. On the other hand, if F ���t−1�n � <

F���t−2�n �, then a further iteration with ��t� as the
current permutation is executed.

3.4. Speedups
There are several tricks that can be employed to
reduce the computation time for traditional descent
and dynasearch algorithms. We refer to a swap move
that strictly reduces the total weighted tardiness as
improving; otherwise, it is non-improving. Speedups
that reduce the computation time for determining
whether a move is non-improving, or is dominated

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 57

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

by some other move, are useful for both descent and
dynasearch. (However, they would not be useful for
a simulated annealing algorithm.) Another category
of speedups applies to the dynamic programming
algorithm that is used in dynasearch. These two cat-
egories of speedups are discussed in the following
subsections.

3.4.1. Speedups for Total Weighted Tardiness
Comparisons. Before providing details of our
speedups, we first present some preprocessing that
allows these speedups to be implemented efficiently.
As indicated in Section 3.2, we compute for the
current sequence � the partial sums of processing
times

P��k� =
k∑
i=1
p��i�

for k = 1
 � � �
n. Additionally, we compute the partial
sums of weighted tardiness values

V��k� =
k∑
i=1
w��i��P��i�−d��i��+

and the partial sums of weights for late jobs

W��k� =
k∑
i=1
w��i�U��i�

for k = 1
 � � �
n, where

U��i� =
{
1 if P��i� > d��i�,
0 otherwise.

We now describe some tests which, if successful,
indicate that interchanging jobs ��i + 1� and ��k�,
where 0 ≤ i ≤ k− 2, of the current permutation � ,
cannot reduce the total weighted tardiness by more
than some specified value . In descent, such a test is
used to reject a potential move that swaps jobs ��i+1�
and ��k�. Specifically, for first-improve descent, we
set = 0, so that non-improving moves are rejected.
For best-improve descent, we set = 0 at the start of
the neighborhood search for � , and then update as
appropriate so that is the best improvement found
thus far. In this case, the test rejects non-improving
moves, and moves that cannot achieve an improve-
ment that exceeds . For dynasearch, the computation
of F ��k� by dynamic programming uses minimiza-
tion to compare candidate values that are obtained

for different values of i. From the recursion, an ini-
tial candidate value is F̂ ��k� = F ��k−1�+w��k��P��k�−
d��k��

+. The candidate value for i, where 0 ≤ i ≤ k−
2, is equal to F ��i� plus the total weighted tardiness
for jobs ��i+1�
 � � �
��k� that results from swapping
jobs ��i+ 1� and ��k�. We set = F ��i�+ �V��k� −
V��i��− F̂ ��k�, where F̂ ��k� is the best candidate value
found thus far. Thus, the test rejects the candidate
value corresponding to i when it cannot provide a
better candidate value than F̂ ��k�.
Under the most straightforward implementation, to

evaluate the interchange of the jobs in positions i+1
and k requires the total weighted tardiness of k−i jobs
in positions i+ 1
 � � �
 k to be computed. We describe
below a pre-testing procedure that, although avoiding
the computation of k− i weighted tardiness values,
may indicate that the swap move cannot improve the
total weighted tardiness by more than . For cases
in which the result of this pre-testing is inconclusive,
we present a method of reducing the computational
effort in evaluating the total weighted tardiness of the
relevant k− i jobs.
We now present our pre-testing procedure which, if

successful, guarantees that interchanging jobs ��i+1�
and ��k� cannot reduce the total weighted tardiness
by more than . First, suppose that p��k� ≥ p��i+1�.
If the combined weighted tardiness of jobs ��i+ 1�
and ��k� increases, or decreases by an amount that
does not exceed as a result of the swap, then
the required improvement is not achieved. Alterna-
tively, suppose that p��k� ≤ p��i+1�. An upper bound
on the reduction in the total weighted tardiness of
jobs ��i+ 2�
 � � �
��k− 1� is given by min�V��k−1� −
V��i+1�
 �p��i+1�− p��k���W��k−1�−W��i+1���. Therefore, if
the combined weighted tardiness of jobs ��i+1� and
��k� increases by an amount that exceeds or is equal
to this upper bound minus as a result of the swap,
then the required improvement is not achieved.
We now describe our method of computing the

total weighted tardiness of jobs ��i + 1�
 � � �
��k�.
At the start of each iteration, we partition the cur-
rent sequence � into runs of non-late and late jobs,
where a run of non-late (late) jobs is a maximal set
of adjacent non-late (late) jobs. Our motivation is
that if p��k� ≤ p��i+1�, then all the jobs in positions i+
2
 � � �
 k−1 are completed at the same time or earlier

58 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

after swapping jobs ��i+1� and ��k�. Hence, there is
no delay to any run of non-late jobs within positions
i+ 2
 � � �
 k− 1, so that their contribution to the total
weighted tardiness remains zero. Similarly, if p��k� ≥
p��i+1�, then the total weighted tardiness of any run of
late jobs within positions i+ 2
 � � �
 k− 1 increases by
�p��k�− p��i+1��W as a result of the swap, where W is
the total weight of jobs in the run.
To use the above speedups for runs of non-late

and late jobs, we associate a string with the current
sequence of jobs, where the string is constructed as
follows. If the first run of jobs is late, then the string
starts with a 1; otherwise, it starts with a 0. Whenever
a new run starts, the position of the first job in the
run is added to the string. The final number in the
string is n+ 1. For example, for an instance with 40
jobs, the string 0 2 7 40 41 means the job in position
1 is non-late, the jobs in positions 2 to 6 are late, the
jobs in positions 7 to 39 are non-late, and the job in
the last position is late.

3.4.2. Speedups for the Dynamic Program in
Dynasearch. We now describe a speedup that avoids
computing F ���t−1�k � for values of k corresponding to
positions at the start of the sequence. Specifically, if
the jobs in the first few positions of the sequences
��t−1� = ��t−2� are identical, then the computation of
F ���t−1�k � is identical to that of F ���t−2�k � for the values
of k corresponding to these initial positions.
Presenting this argument more formally, consider

the computation of F ���t−1�k � for k = 1
 � � �
n. Let ht
denote the largest index such that

��t−1��k�= ��t−2��k� for k = 1
 � � �
 ht�

Then we must have that

F ���t−1�k �= F ���t−2�k � for k = 1
 � � �
 ht�

Accordingly, for iteration t of the dynasearch algo-
rithm, we need to perform the recursion only for k =
ht+1
 � � �
n.

4. Iterated Dynasearch
This section addresses the issue of how to design
an iterated version of the dynasearch algorithm pre-
sented in the previous section. In Section 4.1, we

discuss the general design of iterated local search
algorithms that use restarts near local minima. In
Section 4.2, we present the implementation details of
the iterated dynasearch algorithm that we use in our
computational experiments.

4.1. Iterated Local Search
A simple but effective procedure to explore multi-
ple local minima, which can be implemented in any
type of local search algorithm, is to perform multiple
runs with the algorithm, each using a different start-
ing solution. In the simplest form of this approach,
these starting solutions are generated randomly, and
do not rely on the results of previous runs of the local
search algorithm. Typically, the starting solutions are
chosen randomly, or by applying some constructive
heuristic but with varying values of its parameters.
We refer to this approach as multi-start local search.
A promising but relatively unexplored idea is to

restart near a local minimum, rather than from a ran-
domly generated solution. Under this approach, the
next starting solution is obtained from the current
local optimum (where the current local optimum is
usually either the best local optimum found thus far,
or the most recently generated local optimum) by
applying a prespecified type of random move to it.
We refer to such a move as kick, and to the approach
as iterated local search. In this way, not all the good
characteristics from previously found solutions are
lost. Although some of the basic ideas of iterated local
search appear in a study by Baxter (1981) for a depot
location problem, the use of a randomized kick traces
back to Baum (1986a, 1986b), who presents iterated
2-opt and 3-opt algorithms for the traveling salesman
problem, in which a single random 2-opt move is
used as a kick to move away from the current local
optimum to the next starting solution. Although his
computational results are discouraging, more recent
research (for example, see Johnson 1990, Johnson and
McGeoch 1997, Johnson et al. 2001, Martin et al. 1991,
1992, Martin and Otto 1996, Brucker et al. 1996, 1997,
Lourenço 1995, and Lourenço and Zwijnenburg 1996)
shows that iterated local search can be extremely
competitive.
An iterated local search algorithm essentially per-

forms a local search on the local optima. Following

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 59

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

the generation of an initial current solution, a tradi-
tional descent or dynasearch algorithm is applied to
find a solution S which is a local optimum. If S is the
first local optimum that is generated, then we define
SC = S to be the current solution. When appropriate,
the current best solution found thus far, which we
denote by SB, is updated.
The general form of the algorithm allows backtrack-

ing to occur. For backtracking, the current solution is
set to be the best solution found thus far. The jus-
tification of backtracking is to ensure that much of
the search is performed in “interesting” regions of the
solution space. Thus, backtracking can help overcome
decisions that direct the search towards inferior local
optima. In cases where backtracking is not used, a
decision is made as to whether to adopt the new local
optimum S as the current solution, or to retain SC .
Having decided on a current solution, a kick is

applied. If the solution resulting from the kick has
some unsatisfactory features, then it can be rejected
before applying traditional descent or dynasearch to
find a local optimum. In this case, another kick is exe-
cuted, and the process is repeated until the kick is
accepted. Then, a local optimum is found, and the
entire procedure is repeated until a stopping criterion
(usually based on computation time or the total num-
ber of iterations) is satisfied. Figure 1 displays the
main features of iterated local search.
To date, backtracking does not appear to be used

in iterated local search. Various criteria for accept-
ing S are possible: accept S if it has a better objec-
tive value than SC , as suggested by Johnson (1990); or
adopt a simulated annealing acceptance criterion, as
suggested by Martin et al. (1991, 1992).
Regarding the choice of kick, there is ample com-

putational evidence that iterated local search is com-
petitive only if the kick is sufficiently large to move
to a solution that is not too close to the local opti-
mum. If it is not, then the effect of the kick might
be reversed in a single or small number of itera-
tions, and the kick would literally lead nowhere—
this is the most likely explanation of Baum’s disap-
pointing results. On the other hand, the kick should
not be too large, or else the good characteristics of
the previous local optimum are lost, and the proce-
dure is then effectively multi-start rather than iterated

Figure 1 Overview of Iterated Local Search

local search. For a k-exchange neighborhood, an effec-
tive kick would then be a single (or several) �k+ 1�-
exchange, or several k-exchanges. As an example, for
the traveling salesman problem, both Johnson (1990)
in his iterated 3-opt and iterated Lin-Kernighan algo-
rithms, and Martin et al. (1991, 1992) in their iterated
simulated annealing algorithm with the 3-opt neigh-
borhood structure, use a specific 4-opt move as a kick.

4.2. Implementation of Iterated Dynasearch
In this section, we present our iterated dynasearch
algorithm for the total weighted tardiness schedul-
ing problem. To fully evaluate the effectiveness of the
dynasearch concept, we compare the empirical perfor-
mance of iterated dynasearch not only with the per-
formance of the state-of-the-art multi-start tabu search
algorithm of Crauwels et al. (1998), but also with iter-
ated first-improve and iterated best-improve descent.
In our implementation of these three iterated algo-

rithms, a kick is a series of random swap moves
(that in general are not independent) from a pre-
viously generated local minimum. Even though the
same underlying neighborhood is used for the kicks,

60 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

for a sufficiently long series of moves, the random
swaps invariably produce a solution that is outside
the region of attraction of the local minimum. We use
the parameter $ to denote the number of random
swap moves in a kick. Based on the results of initial
experiments, we use the parameter value $= 6.
Our algorithms backtrack to the best solution found

thus far every % iterations, where an iteration refers to
finding a local optimum following a kick, and % is a
parameter. For iterations in which backtracking does
not occur, we always accept the new solution S to be
the current solution. Our initial experiments indicate
that %= 5 is a suitable value.
The performance of the algorithms is not partic-

ularly sensitive to small changes in the values of
parameters $ and %, and in some of the other design
features. For instance, by varying $, we observe
that using a kick with six, rather than five or
seven random swap moves, produces only slightly
better results. Moreover, for kicks based on ran-
dom 3-exchanges, a single random 3-exchange is not
very effective, but a kick comprising two random
3-exchanges is a reasonable alternative to six random
swaps.
We have not yet exploited a known property of

the total weighted tardiness problem: there exists an
optimal solution in which non-late jobs are sequenced
in non-decreasing order of due dates, or EDD order.
In an attempt to reduce the computation time for
dynasearch descents, we transpose adjacent non-late
jobs if they are not in EDD order, during a number
of iterations at the beginning of the algorithm. Then,
for the remaining iterations, we diversify the search
by transposing non-late jobs so that they no longer
appear in EDD order. Specifically, for the first 100 iter-
ations, we search the sequence from the beginning,
transposing adjacent non-late jobs if they are not in
EDD order. After the first 100 iterations, a similar
procedure transposes adjacent non-late jobs, either if
they are not currently in EDD order, or with proba-
bility 1/3 if they are currently in EDD order and their
interchange would not cause either one to become
late. All transposes are performed immediately prior
to the kick.
Finally, we discuss the heuristic that is used to pro-

duce a starting solution for the iterated local search

algorithms. For non-iterated versions of descent or
dynasearch in which a single local minimum is to be
generated, a better starting solution often leads to a
better local minimum. However, when multiple local
minima are generated, as in iterated local search algo-
rithms, the quality of the starting solution has less
effect on the quality of the final solution.
In our implementation, all searches start from the

heuristic solution that is generated by the so-called
Apparent Urgency (AU) rule. The AU rule is a
constructive heuristic that is presented by Morton
et al. (1984). It is selected for two reasons: first, it is
used by Crauwels et al. (1998) so that using the AU
rule makes comparisons easier; second, Potts and Van
Wassenhove (1991) and Morton and Pentico (1993)
find that the AU rule compares favorably with other
constructive heuristics for the total weighted tardiness
problem. The AU rule is a dynamic list scheduling
heuristic that selects an unscheduled job j with the
smallest AUj value to occupy the first unfilled posi-
tion of the sequence, where AUj is defined by

AUj =
wj

pj
exp

(
−max�0
dj− t−pj�

kp̄

)
�

In this expression, t is the sum of the processing times
of the scheduled jobs, p̄ is the average processing time
of the jobs, and k is the so-called lookahead parame-
ter, which is preset according to the tightness of the
due dates. In our implementation, we follow Potts
and Van Wassenhove (1991) by using k= 0�5 for TF=
0�2, k= 0�9 for TF= 0�4, and k= 2�0 for TF> 0�4, where
TF= 1−∑n

j=1 dj/�n
∑n

j=1 pj� is a parameter of the prob-
lem instance that is known as the tardiness factor (see
Section 5.1 for the values of TF that are used in our
test instances).

5. Computational Experience
This section reports on our computational experi-
ence with randomly generated instances to evaluate
and compare the empirical performance of the var-
ious local search algorithms. In Section 5.1, we dis-
cuss the design of the computational experiments,
including the random instance generator. Section 5.2
compares the performance of multi-start first-improve

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 61

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

descent, multi-start best-improve descent, and multi-
start dynasearch, as well as iterated versions of these
algorithms. Finally, in Section 5.3, we compare iter-
ated dynasearch with the multi-start tabu search
algorithm of Crauwels et al. (1998).

5.1. Experimental Design
We use exactly the same set of randomly generated
problem instances as Crauwels et al. (1998), who
adopted the generation scheme proposed by Potts
and Van Wassenhove (1985). Instances with n = 40,
n = 50 and n = 100 were randomly generated, and
for each job j (j = 1
 � � �
n), an integer processing
time pj was generated from the uniform distribution
'1
100(and an integer processing weight wj was gen-
erated from the uniform distribution '1
10(. Different
instance classes of different “hardness” were gener-
ated by using different uniform distributions for gen-
erating the due dates. For a given relative range of due
dates RDD �RDD = 0�2
0�4
0�6
0�8
1�0� and a given
average tardiness factor TF �TF = 0�2
0�4
0�6
0�8
1�0�,
an integer due date dj was randomly generated from
the uniform distribution 'P�1− TF −RDD/2�
P�1−
TF +RDD/2�(, where P =∑n

j=1 pj . Five instances were
generated for each of the 25 pairs of values of RDD
and TF, yielding 125 instances for each value of n.
These instances are available electronically at the OR
library that is run by Beasley (1990).
In their study, Crauwels et al. (1998) attempt to

solve the instances with n = 40 and n = 50 by apply-
ing the branch and bound algorithm of Potts and Van
Wassenhove (1985). The algorithm successfully solves
124 and 103 problems out of 125 for the 40- and 50-
job instances, respectively, on an HP 9000-G50 com-
puter within a time limit of two minutes for each
instance. There were no attempts to solve the 100-job
instances since prohibitively large computation times
were anticipated. To evaluate our results, we com-
pare the solution values generated by the local search
algorithms with the optimal solution values. How-
ever, for instances where the optimal solution value
is unknown (which is the case for all of the 100-job
instances), the comparison is with best known solu-
tion value, which is used as though it was the optimal
value.

All of our descent and dynasearch algorithms were
coded in C and run on a SPARC 5/110 server station.
However, Crauwels et al. (1998) ran their algorithms,
which were coded in C, on a HP 9000-G50 computer.
The information collected by the Standard Perfor-
mance Evaluation Corporation (1992) indicates that
the HP 9000-G50 is a factor of 1.276 faster than the
SPARC 5/110, and accordingly we use this conversion
factor to make a direct comparison of computation
times. As with any comparison between algorithms
that are run on different machines, conversion factors
for computation times only give a rough guide. Con-
sequently, any conclusions that use the computation
times obtained with our conversion factor of 1.276 are
only valid if performance differences are sufficiently
large.
We compare the performance of the various local

search algorithms on basis of the following statistics:

ARPD = the average relative percentage
deviation of the solution value
found by the local search algo-
rithm from the optimal (or best
known) solution value;

MRPD = the maximum relative percent-
age deviation of the solution
value found by the local search
algorithm from the optimal (or
best known) solution value;

NO = the number of optimal (or best
known) solution values found
out of 125;

ACT + SPARC = the average computation time
in seconds on a SPARC 5/110
server station;

ACT +HP = the average computation time in
seconds on a HP 9000-G50 com-
puter;

NI = the number of iterations per-
formed in multi-start and iter-
ated descent and dynasearch,
where an iteration refers to
descending to a local minimum,
and the number of moves per-
formed for each start in the
multi-start tabu search algo-
rithm of Crauwels et al. (1998).

62 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

Table 4 Computational Results for Multi-Start Local Search Algorithms

First-improve Descent Best-improve Descent Dynasearch
ACT:

n SPARC NI ARPD MRPD NO NI ARPD MRPD NO NI ARPD MRPD NO

40 2 117 0�245 7�756 77�8 33 0�165 6�617 99�6 70 0�087 5�289 116�9
50 4 133 0�503 11�197 65�8 32 0�270 6�750 83�1 74 0�162 5�394 95�1

100 20 87 0�573 14�640 33�4 13 0�437 20�070 44�6 39 0�360 20�070 47�3

During our experimental work, we obtained better
solutions for eight of the 100-job instances than those
generated by Crauwels et al. (1998). Nevertheless,
to facilitate a direct comparison of results, the best
known solution values of Crauwels et al. (1998) are
used when computing the above statistics. When we
obtain a solution value that is better than the previous
best known value, it is then treated as if the optimum
or best known solution value of Crauwels et al. (1998)
has been found, except that its relative percentage
deviation is not zero but negative—so, such a solu-
tion actually reduces the average relative percentage
deviation statistics for the local search algorithm. A
further consequence of obtaining new best known
solution values is that the numbers of optimal or
best known solution values, as listed by Crauwels
et al. (1998), are sometimes higher than would be the
case if they were recalculated with respect to the new
values.

5.2. Multi-Start and Iterated Dynasearch vs.
First-Improve and Best-Improve Descent

This subsection compares the empirical perfor-
mance of multi-start versions and iterated ver-
sions of first-improve descent, best improve descent
and dynasearch. All results are obtained with the
parameter values $ = 5 and % = 5 (see Section 4.2
for the definition of $ and %), and without the trans-
pose of adjacent jobs according the EDD criteria, as
described in Section 4.2. Also, identical speedups (see
Section 3.4) are applied in each algorithm, but they
appear to be most effective in reducing the compu-
tation time of multi-start first-improve descent. All
multi-start algorithms are run for 2, 4 and 20 seconds
for the 40-, 50- and 100-job instances, respectively,
and for the iterated algorithms these times are halved.
(More computation time is allocated to the multi-start
algorithms, since each descent requires many more

moves to reach a local optimum than is the case for
the iterated algorithms.) In each case, the results are
obtained from the average of 10 independent runs.
Table 4 gives our computational results for

multi-start versions of first-improve descent, best-
improve descent, and dynasearch. Although multi-
start dynasearch provides the best quality solutions,
its superiority over multi-start best-improve descent
is not substantial. Each descent in first-improve exe-
cutes on average only about 6, 7 and 10 moves
for the 40-, 50- and 100-job instances, respectively.
By contrast, corresponding numbers of best-improve
descent moves are 32, 40 and 86, and correspond-
ing numbers of dynasearch moves are 15, 18 and 31,
respectively. Note that a dynasearch move may cor-
respond to several descent moves, so the numbers
of moves for dynasearch are not directly compara-
ble to those for descent. The small number of moves
per descent for first-improve indicates that the search
often becomes trapped in a local minimum fairly
quickly, which explains the relatively poor perfor-
mance of this algorithm. However, for best-improve
descent and dynasearch, the numbers of moves tends
to be sufficiently large to allow the search to find
better quality local minima.
For iterated versions of the algorithms in which

the restarts are not from random starting sequences
but are obtained from kicks, the results are shown
in Table 5. These results exhibit different charac-
teristics from those in Table 4. Specifically, iterated
dynasearch can be seen to outperform iterated first-
improve and iterated best-improve descent on all per-
formance measures: it achieves significantly lower
ARPD and MRPD values, and it finds considerably
more optimal (or best) solutions than the two iterated
descent algorithms.
For all iterated algorithms and all instance sizes, the

average numbers of moves per descent are between

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 63

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

Table 5 Computational Results for Iterated Local Search Algorithms

First-improve Descent Best-improve Descent Dynasearch
ACT:

n SPARC NI ARPD MRPD NO NI ARPD MRPD NO NI ARPD MRPD NO

40 1 109 0�080 2�350 95�0 115 0�090 6�018 108�3 119 0�049 5�338 121�2
50 2 111 0�386 10�686 74�2 140 0�181 6�800 88�9 143 0�044 2�776 111�5

100 10 78 0�447 15�851 36�0 123 0�291 18�391 47�1 122 0�041 1�834 82�5

5 and 8, which is slightly more than the number of
random moves in the kick ($= 5). The average num-
bers of moves per descent are less for best-improve
than for dynasearch, which suggests that dynasearch
allows more searching before becoming trapped in a
local minimum, and is consistent with the better qual-
ity solutions found by dynasearch. Although the aver-
age number of moves per descent for first-improve is
more than for best-improve and dynasearch for the
100-job instances, the higher quantity of moves cannot
compensate for their lower quality.
One reason for the impressive performance of

iterated dynasearch is its apparent ability to move
between local minima. The dynasearch swap neigh-
borhood is much larger than the traditional swap
neighborhood, containing different basins of attrac-
tion around the same set of local minima. For the
instances with 100 jobs, iterated dynasearch detects
about six times more local minima with distinct

Table 6 Computational Results for Iterated Dynasearch and Multi-Start Tabu Search

Iterated Dynasearch Multi-Start Tabu Search

n NI ARPD MRPD NO ACT:HP NI ARPD MRPD NO ACT:HP

40 50 0�0150 1�8594 123�7 0�20
100 0�0001 0�0166 124�8 0�40
150 0�0000 0�0000 125�0 0�62

2n2/5 0�00 0�33 118 1�32
4n2/5 0�00 0�17 123 2�64

50 100 0�0021 0�1738 122�3 0�64
200 0�0006 0�0754 124�1 1�33
450 0�0002 0�0193 124�8 2�86 2n2/5 0�01 0�28 113 2�95
900 0�0000 0�0000 125�0 5�76 4n2/5 0�00 0�16 118 5�92

100 100 0�0077 0�4117 107�2 2�80
200 0�0031 0�2357 116�6 5�72
500 0�0012 0�1410 120�9 13�95
1300 0�0001 0�0534 123�2 36�40 2n2/5 0�04 4�39 103 37�6

objective values than iterated first-improve or iterated
best-improve descent.

5.3. Iterated Dynasearch vs. Tabu Search
In this subsection, we report on our computational
results that compare the empirical performance of
iterated dynasearch with that of the state-of-the-art
local search algorithm for the total weighted tar-
diness scheduling problem, namely the multi-start
tabu search method of Crauwels et al. (1998). All
information regarding the performance of the tabu
search algorithm with five starts is taken directly from
Crauwels et al. (1998). Table 6 provides results for the
two algorithms. The iterated dynasearch algorithm is
run with our recommended parameter values $ = 6
and %= 5 (note the change from the value $= 5 that
is used in the previous subsection to obtain our initial
results), and results are obtained from the average of
10 independent runs. To allow a fair comparison with

64 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

tabu search using a similar computation time, iterated
dynasearch is run for different numbers of iterations.
The rows of the table are aligned according to the
average computation time values. Note that our com-
putation times are converted to equivalent times on
the HP 9000-G50 computer by multiplying by a factor
1.276 to account for our slower computer.
Table 6 clearly shows that iterated dynasearch gen-

erates better solutions than the tabu search algo-
rithm, in considerably shorter computation times. The
speedups of Section 3.4 contribute significantly to the
reduced computation times. From our computational
results, we conclude that iterated dynasearch is supe-
rior to all other known local search algorithms for the
total weighted tardiness scheduling problem.
Even without the speedups, we claim that

dynasearch is preferred. Typically, the speedups
reduce the run times of dynasearch for the instances
with 40, 50 and 100 jobs by factors of 2.6, 3,4 and 5.5,
respectively. However, a tabu search algorithm with
the appropriate speedups must yield smaller reduc-
tion factors, since some of saving in computation time
can only be achieved with a search for improving
moves. Even allowing for reduced computation times
for tabu search, the quality of solutions produced by
tabu search remains lower than that for dynasearch
under similar run times.

6. Concluding Remarks
The contribution of this paper is twofold. First, a gen-
eral contribution is the introduction of a new local
search technique known as dynasearch. Through its
use of dynamic programming, dynasearch explores
a neighborhood of exponential size in polynomial
time. Since each dynasearch move corresponds to a
series of moves in a traditional local search algo-
rithm, dynasearch has a lookahead capability that is
not present in these previous methods.
Dynasearch is applicable to a variety of prob-

lems for which solutions are naturally represented
as sequences. Congram (2000) reports on dynasearch
algorithms for the traveling salesman problem and
the linear ordering problem that use multiple 2-opt
and 3-opt moves, and multiple insert moves, respec-
tively. For each problem, the overall improvement to

the objective function that results from the indepen-
dent moves is equal to the sum of the improvements
from the individual moves. When defining indepen-
dent moves for a particular problem, the definition
of independence should be chosen so that individual
improvements sum in this way. When we cannot find
a suitable definition of independence that produces
individual improvements which can be summed,
dynasearch cannot be used. A common feature of the
total weighted tardiness scheduling problem, the trav-
eling salesman problem and the linear ordering prob-
lem is that each can be solved to optimality by a
dynamic programming algorithm, although the algo-
rithms have an exponential number of states. Another
way of viewing dynasearch is that these dynamic pro-
grams are modified according to the current sequence
so that some state transitions are forbidden and some
states are merged so that a polynomial number of
states remains.
For a given problem type, a variety of neighbor-

hoods can be used a dynasearch. For example, in the
total weighted tardiness scheduling problem, inde-
pendent insert moves (an insert move removes a job
from its current position and inserts it elsewhere) can
be used instead of independent swap moves. More
significantly, the flexibility of the approach allows
independent swap and insert moves to be used in
combination.
The second contribution relates specifically to the

application of dynasearch to the single-machine total
weighted tardiness scheduling problem. An iterated
dynasearch algorithm for this problem performs sig-
nificantly better than all other known local search
algorithms, including the state-of-the-art tabu search
algorithm of Crauwels et al. (1998), with respect
to both solution quality and computation time. The
explanation for iterated dynasearch finding better
solutions is that, after performing a sufficiently large
number of random moves from a local minimum,
dynasearch stands a much better chance of descend-
ing into a different local minimum than traditional
descent algorithms. In this way, iterated dynasearch is
able to explore more distinct local minima. This per-
formance is entirely attributable to the much larger
size of the dynasearch neighborhood: the dynasearch
neighborhood contains an exponential number of

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 65

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

solutions, while the traditional descent neighborhood
contains only a polynomial number of solutions. One
explanation for iterated dynasearch being faster is the
use various speedups that sometimes reject a move
without a complete evaluation of the total weighted
tardiness.
In a recent study that was undertaken in parallel

with our work, Stützle et al. (1999) apply an ant
colony approach to the total weighted tardiness
scheduling problem. Essentially, the ant colony gen-
erates sequences of jobs through the use of a priority
rule with changing parameters. These sequences form
the input into a descent algorithm that uses the swap
and insert neighborhoods in combination. Although
their solutions are of slightly better quality than the
ones obtained with our dynasearch algorithm, this is
at the expense of extra computation time. As observed
above, it is straightforward to extend dynasearch so
that independent swap moves and insert moves are
used in combination. A fairer comparison of the ant
colony approach would be with such an extended
dynasearch algorithm.
This paper provides convincing evidence that iter-

ated dynasearch is a powerful new local search tech-
nique for a variety of combinatorial optimization
problems. One topic for future research is to charac-
terize the types of problems to which dynasearch can
be applied. Another topic is to obtain further empir-
ical evidence on the ability of iterated dynasearch
to find high-quality solutions of other combinatorial
optimization problems, and on its ability to compete
with, or outperform, other local search algorithms for
these problems.

Acknowledgment
The authors are grateful to two anonymous referees whose
comments have helped in the presentation of our work.

References
Ahuja, R. K., O. Ergun, J. B. Orlin, A. Punnen. 1999. A survey

of very large-scale neighborhood search techniques. Working
Paper, Operations Research Center, Massechusetts Institute of
Technology, Cambridge, MA.

Anderson, E. J., C. A. Glass, C. N. Potts. 1997. Machine scheduling.
E. H. L. Aarts, J. K. Lenstra, eds. Local Search in Combinatorial
Optimization. Wiley, Chichester, UK, 361–414.

Applegate, D., R. Bixby, V. Chvatal, W. Cook. 1999. Finding tours
in the TSP. Report No. 99885, Forschungsinstitut für Diskrete
Mathematik, Universität Bonn, Bonn, Germany.

Balas, E. 1999. New classes of efficiently solvable generalized
traveling salesman problems. Annals of Operations Research 86
529–558.

Balas, E., N. Simonetti. 2001. Linear time dynamic-programming
algorithms for new classes of restricted TSPs: a computational
study. INFORMS Journal on Computing 13 56–75.

Baum, E. B. 1986a. Iterated descent: a better algorithm for
local search in combinatorial optimization problems. Technical
Report, Caltech, Pasadena, CA.

Baum, E. B. 1986b. Towards practical ‘neural’ computation for
combinatorial optimization problems. J. S. Denker, ed. Neu-
ral Networks for Computing. Proceedings AIP Conference 151,
American Institute of Physics, New York, 53–58.

Baxter, J. 1981. Local optima avoidance in depot location. Journal of
the Operational Research Society 32 815–819.

Beasley, J. E. 1990. OR library: distributing test problems by
electronic mail. Journal of the Operational Research Society 41
1069–1072.

Brucker, P., J. Hurink, F. Werner. 1996. Improving local search
heuristics for some scheduling problems—I. Discrete Applied
Mathematics 65 97–122.

Brucker, P., J. Hurink, F. Werner. 1997. Improving local search
heuristics for some scheduling problems. Part 2. Discrete
Applied Mathematics 72 47–69.

Carlier, J., P. Villon. 1990. A new heuristic for the traveling salesman
problem. RAIRO Recherche Opérationelle 24 245–253.

Congram, R. K. 2000. Polynomially searchable exponential neigh-
bourhoods for sequencing problems in combinatorial optimi-
sation. Ph.D. thesis, University of Southampton, UK.

Crauwels, H. A. J., C. N. Potts, L. N. Van Wassenhove. 1998. Local
search heuristics for the single machine total weighted tardi-
ness scheduling problem. INFORMS Journal on Computing 10
341–350.

Deı̆neko, V., G. J. Woeginger. 2000. A study of exponential neighbor-
hoods for the traveling salesman problem and for the quadratic
assignment problem. Mathematical Programming 87 519–542.

Hurink, J. 1999. An exponential neighborhood for a one-machine
batching problem. OR Spektrum 21 461–476.

Johnson, D. S. 1990. Local optimization and the traveling salesman
problem. M. S. Paterson, ed. Automata, Languages and Program-
ming. Lecture Notes in Computer Science 443, Springer, Berlin,
Germany, 446–461.

Johnson, D. S., L. A. McGeoch. 1997. The traveling salesman prob-
lem: a case study. E. H. L. Aarts, J. K. Lenstra, eds. Local Search
in Combinatorial Optimization. Wiley, Chichester, UK, 215–310

Johnson, D. S., J. L. Bentley, L. A. McGeoch, E. E. Rothbergh. 2001.
Near-optimal solutions to very large traveling salesman prob-
lems. Monograph in preparation, AT&T Labs, Florham Park,
NJ.

Lawler, E. L. 1977. A “pseudopolynomial” algorithm for sequencing
jobs to minimize total tardiness. Annals of Discrete Mathematics
1 331–342.

66 INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002

CONGRAM, POTTS, AND VAN DE VELDE
Dynasearch Algorithm for the Tardiness Scheduling Problem

Lenstra, J. K., A. H. G. Rinnooy Kan, P. Brucker. 1977. Complexity
of machine scheduling problems. Annals of Discrete Mathematics
1 343–362.

Lourenço, H. R. 1995. Job-shop scheduling: computational study
of local search and large-step optimization methods. European
Journal of Operational Research 83 347–364.

Lourenço, H. R., M. Zwijnenburg. 1996. Combining the large-
step optimization with tabu-search: application to the job-
shop scheduling problem. I. H. Osman, J. P. Kelly, eds.
Meta-Heuristics: Theory and Applications, Kluwer, Norwell, MA,
219–236.

Martin, O., S. W. Otto. 1996. Combining simulated annealing with
local search heuristics. Annals of Operations Research 63 57–75

Martin, O., S. W. Otto, E. W. Felten. 1991. Large-step Markov chains
for the traveling salesman problem. Complex Systems 5 299–326.

Martin, O., S. W. Otto, E. W. Felten. 1992. Large-step Markov chains
for the TSP incorporating local search heuristics. Operations
Research Letters 11 219–224.

Matsuo, H., C. J. Suh, R. S. Sullivan. 1987. A controlled search
simulated annealing method for the single machine weighted
tardiness problem. Working Paper 87-12-2, Department of
Management, University of Texas, Austin, TX.

Morton, T. E., D. W. Pentico. 1993. Heuristic Scheduling Systems
with Applications to Production Systems and Project Management.
Wiley, Chichester, UK.

Morton, T. E., R. M. Rachamadugu, A. Vepsalainen. 1984. Accu-
rate myopic heuristics for tardiness scheduling. GSIA Working

Paper No. 36–83–84, Carnegie-Mellon University, Pittsburgh,
PA.

Potts, C. N., L. N. Van Wassenhove. 1985. A branch and bound
algorithm for the total weighted tardiness problem. Operations
Research 33 363–377.

Potts, C. N., L. N. Van Wassenhove. 1991. Single machine tardiness
sequencing heuristics. IIE Transactions 23 346–354.

Sarvanov, V. I., N. N. Doroshko. 1981a. The approximate solution
of the travelling salesman problem by a local algorithm that
searches neighborhoods of exponential cardinality in quadratic
time (in Russian). Software: Algorithms and Programs 31 Math-
ematical Institute of the Belorussian Academy of Sciences,
Minsk, Belarus, 8–11.

Sarvanov, V. I., N. N. Doroshko. 1981b. The approximate solution
of the travelling salesman problem by a local algorithm with
scanning neighborhoods of factorial cardinality in cubic time
(in Russian). Software: Algorithms and Programs 31 Mathemat-
ical Institute of the Belorussian Academy of Sciences, Minsk,
Belarus, 11–13.

Standard Performance Evaluation Corporation. 1992. Perfor-
mance results. 10754 Ambassador Drive, Suite 201, Manassas,
VA 20109. http://performance.netlib.org/performance/html/
new.spec.cint92.col0.html

Stützle, T., M. den Besten, M. Dorigo. 1999. Ant colony opti-
mization for the weighted tardiness problem. Technical
Report IRIDIA/99-16, Université Libre de Bruxelles, Brussels,
Belgium.

Accepted by Jan Karel Lenstra; received January 2000; revised March 2001, July 2001; accepted August 2001.

INFORMS Journal on Computing/Vol. 14, No. 1, Winter 2002 67

