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Dealing with stationarity remains an unsolved problem. Some of the time series data, especially crude palm
oil (CPO) prices persist towards nonstationarity in the long-run data. This dilemma forces the researchers
to conduct first-order difference. The basic idea is that to obtain the stationary data that is considered as
a good strategy to overcome the nonstationary counterparts. An opportune remark as it is, this proxy may
lead to overdifference. The CPO prices trend elements have not been attenuated but nearly annihilated.
Therefore, this paper presents the usefulness of autoregressive fractionally integrated moving average
(ARFIMA) model as the solution towards the nonstationary persistency of CPO prices in the long-run
data. In this study, we employed daily historical Free-on-Board CPO prices in Malaysia. A comparison
was made between the ARFIMA over the existing autoregressive-integrated moving average (ARIMA)
model. Here, we employed three statistical evaluation criteria in order to measure the performance of the
applied models. The general conclusion that can be derived from this paper is that the usefulness of the
ARFIMA model outperformed the existing ARIMA model.

Keywords: crude palm oil prices; first-order differencing; fractionally integrated; overdifference;
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1. Introduction

One of the most significant issues amongst researchers and econometrician is the evidence of
persistence towards nonstationary time series data. Relying on the assumption of the Box and
Jenkins methodology, the time series is assumed to be stationary. With regard, most of the time
series data are nonstationary and it is considered the norm. Where such an assumption is not
met, then the necessary procedures, such as differencing (�Yt = Yt − Yt−1), are performed in
order to achieve the stationary time series data [26]. The effort of differencing seems to be a
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good solution towards the nonstationary counterparts. An opportune remark as it is, this proxy
may lead to overdifference [16]. The difference stationary is eliminating too far of the trend like
characteristics and the value of the level difference indicates that there is no influence that is
close to zero frequency. The power of frequency elements has not been attenuated but nearly
annihilated.

Overdifference could also form unintentional issues of differencing which could significantly
contribute a problem in the parameter estimation. Hurvich and Ray [20] revealed that the time
series which potentially consisted of overdifference would be biased in long-memory time series
analysis. As a result, the time series prediction could be insubstantial and lose its effectiveness on
parameters estimation. Worse come worse, the forecasting performance one-step-ahead degrades
[16]. Another important finding found by Xiu and Jin [35] is that the problem of overdifference
is also accountable for the tendency of loss of important information of the time series and this
problem also affects the model construction. With regard to this matter, the existing method of the
autoregressive moving average (ARMA), models which is extremely important in many years,
has gradually given way to the model, in this manner the autoregressive fractionally integrated
moving average (ARFIMA) model has been emphasised to deal with the time series which persist
towards the nonstationary time series data.

It is important to give special attention towards the ARFIMA package introduced by Doornik
and Ooms [13], which has the capability to adopt the maximum likelihood estimation (MLE) to
the long-memory time series data. Prior studies have noted the main weakness of adopting the
MLE towards the ARFIMA estimation procedure and the problem has essentially been solved
by Hosking [19] and Sowell [32]. However, Ooms and Doornik [28] list the reason why some
problems remain unsolved. There will be problems in variance matrix into account which is
totally inappropriate for extensions with regression parameters. This is the explanation why MLE
estimation is difficult to be adopted in the ARFIMA model.

The purpose of the current study was to compare the predictability power of each forecasting
techniques for ARFIMA and autoregressive-integrated moving average (ARIMA) models to pre-
dict the past historical value of crude palm oil (CPO) prices in Malaysia which consist the long
memory. Additionally, this study sets out to establish the use of fractionally integrated ARMA to
be an alternative in treating the time series which persist towards nonstationarity in long-memory
high-frequency time series data.

The paper is organised as follows. Section 2 deals with the literature review which highlights
the general reference to previous scholarly activity such as reference to current state of knowledge
and research gap. Section 3 provides the material and methods. Section 4 deals with establishing
the ARFIMA and ARIMA models, including the results and discussion. Finally, the last section
offers the concluding explanations for this study.

2. Literature review

Most of the time series especially in the high-frequency data exhibits the long memory and it is vital
to focus and further study it. The previous study reported the main limitation of existing ARMA
models which are incapable to portray long-run time series data precisely [2,16,21,22,27,35]. The
possible explanation for this is that the ARMA model is good in capturing short-run prediction,
while ARIMA models can be better options for nonstationary series with small sample sizes
[4]. Difficulties arise such as: How the large sample sizes of series indicate the nonstationarity?
Is the ARIMA model prediction still reliable? With regard to this matter, the study might have
been far more convincing if we adopted the ARFIMA model. The long-memory models such
as ARFIMA provide better predictions especially when dealing with long-run time series data.
The rudimentary knowledge of the ARFIMA model was first originated by Granger and Joyeux
[18] and the extension and profound effect of this study were done by Granger [17]. However,
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far too little attention has been paid to ARFIMA until Baillie [5] conducted in a process the
whole assessment of both the long-memory and the ARFIMA model, and this extension attracted
substantial attention in econometrics time series studies.

A large number of literature deliberate the contradictions betweenARFIMA andARMA models
in time series forecasting. Baillie and Chung [6] found that the ARFIMA model is superior and
remarkably successful in predicting time series data compared with the ARMA model. Consistent
with the previous findings, Reisen and Lopes [31] found that the ARFIMA model is efficient when
compared with the ARMA model in terms of the mean square error (MSE) and outperformed up
to five steps ahead. There are similarities between the characteristics expressed by ARFIMA in
the study of Erfani and Samimi [16] and those described by Baillie and Chung [6] and Reisen and
Lopes [31]. The application of ARFIMA has been found to be successful when compared with the
ARMA model. However, it also depends on the memory parameters. The long-memory models,
such as the ARFIMA, do not show adequately the mechanism that operates with short-memory
parameters.

The paper of Ellis and Wilson [15] probably is the best-known critic of the ARFIMA models.
They mainly argue the applicability of the ARFIMA models in conducting the out-of-sample
forecasting. This might be explained by the fact that they found that the ARFIMA model produced
the poor out-of-sample result, since it fails to outperform well in forecasting based from the last
pragmatic value or generally known as a random walk model. At the same time, the application
of ARFIMA produces high prediction variance. Therefore, they confirm that the ARFIMA model
turns out to be poor out-of-sample performance. This assertion of the finding is supported by
Xiu and Jin [35]. The ARFIMA model was found to be poor and ineffective in predicting the
Hang Sheng Index. However, the matters of characteristics of nonlinear systems might put the
time series analysis into ineffectiveness. There is a possibility if initial conditions were slightly
different, which can produce completely different outcomes.

Ellis and Wilson’s analysis has been criticised by a number of authors. Wang and Wu [34], for
example, point out that the ARFIMA model, which takes long memory into account, can outper-
form based on out-of-sample forecasting. These findings are in agreement with those founded
by Bhardwaj and Swanson [7] that is the ARFIMA model does not produce poor out-of-sample
performance. Basically, considering the Diebold and Mariano [12] perspective about the MSE, the
ARFIMA model sometimes progresses much better using out-of-sample forecast when compared
with the alternative forecasting techniques. The ARFIMA model is not going to descend into
the ‘empty box’. With regard, Bhardwaj and Swanson [7] pointed out that the ARFIMA model
generally outperforms for simple linear process at a longer prediction scope. Additionally, the
matters of d are totally useful when constructing the prediction models by fine data sets such as
the estimators based on minimising the loss of the predictive error.

The evidence provided by Ellis and Wilson has been devastatingly critiqued by Chortareas
et al. [8]. They found that the out-of-sample forecasting by theARFIMA model for high-frequency
data outperforms when compared with other alternative forecasting techniques. The ARFIMA
model is said to be more accurate when the time series data are observed on the basis of min-
utes. These findings seem to be consistent with research done by Koopman et al. [23], which
applied the ARFIMA model to data of the S&P100 stock index, and the result of the forecast
via out-of-sample indicated to be more accurate than its rivals. These findings further support
the idea of Chu [9], where the ARFIMA model performs well for time series which comprises
the economic and political shocks, and yet the model is found to be successful amongst the
rival models during a tranquil period. Hence, the ARFIMA model is said to be better than
the ARIMA model because d is treated as a noninteger number as 0.0 ≤ d ≤ 0.5 when mod-
elling nonstationary time series data. Therefore, the ARFIMA model progresses the prediction
accuracy by more than a few percentage points depending on the lead which rival models are
compared with.
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3. Materials and methods

In this paper we use the daily CPO prices in FOB MYR/US$ per metric tonne from 1 January
2004 to 31 December 2011, where FOB (abbreviation of Free-on-Board) and MYR (abbreviation
of Malaysian Ringgit) are the currency in Malaysian. This time series is presented in Figure 1.

The ARFIMA and ARIMA models were used for modelling and forecasting these data. The
strategy of Box and Jenkins’s modelling can be seen from Figure 2.

3.1 Autoregressive fractionally integrated moving average

The ARFIMA model is very useful for the time series data that have a strong persistency level
towards nonstationarity [27]. The time series data Yt considers the ARFIMA (p, d, q) model if it
was stationary and fulfils noninteger value of integrated based on the following formula:

�(L)(1 − L)d(Yt − μt) = �(L)εt , t = 1, . . . , T , (1)

where μt represents the mean of Yt , while L and εt are the lag operator and the white noise at time
t, respectively. Also from Equation (1), the autoregressive is given by

�(L) = (1 − φ1L − · · · − φpLP), (2)

and the moving average operator is given by

�(L) = (1 + θ1L + · · · + θqLq), (3)

where p and q are integers while the d is real. The major player in this model is (1 − L)d which
the fractional difference operator is defined as the binomial equation (4) as follows:

(1 − L)d =
∞∑

j=0

δjL
j =

∞∑
j=0

(
d
j

)
(−L)j. (4)

However, in empirical studies, it is hard to adopt the ARFIMA model that allows the MLE in
estimating long-memory time series data. Therefore, special attention is given towards a pack-
age introduced by Doornik and Ooms [13], whereby the ARFIMA model allows the MLE for
long-memory time series data. The ARFIMA model (with 0.0 ≤ d ≤ 0.5) is good to capture the
time series data with persistence towards nonstationarity and has been considered by number of
literature in many field of time series study. Please refer to Doornik and Ooms [13] for a complete
explanation on MLE.
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Figure 1. Plot of the original time series of CPO prices from 1 January 2004 to 30 December 2011.
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Figure 2. Flowchart of the Box and Jenkins model-building strategy.

3.2 Autoregressive-integrated moving average

If the original time series of CPO (denoted by Yt) fails to meet the stationary assumption, we will
consider to adopt the ARIMA model, where it is necessary to conduct one or two differences,
generally. The general representation of the model isARIMA (p, d, q), where p denotes the number
of autoregressive term. Meanwhile, q represents the number of moving average term. The main
player in the ARIMA model is the value of d which represents the order of the difference for the
nonstationary solutions. Therefore, the general formulation of theARIMA model can be expressed
as Equation (5) as follows:

wt = μ + φ1wt−1 + φ2wt−2 + · · · + φpwt−i − θ1εt−1 − θ2εt−2 · · · θqεt−q + εt , (5)

where, for example, wt represents the first-order difference (Yt − Yt−1) of the time series data
which is assumed to be stationary. The constant term is denoted by μ. The φp, i = 1, . . . , p, are
the autoregressive coefficients to be estimated, and wt−i, i = 1, . . . , p, is the stationary time series
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Table 1. Some descriptive statistics of the original series of the
CPO prices (from 1 January 2004 to 31 December 2011).

Statistics CPO prices

Mean RM2284.55
Median RM2220.96
Maximum RM4300.67
Minimum RM1272.50
Standard deviation RM753.24
Skewness 0.3702
Kurtosis 1.9155

lagged by i. In addition, the terms denoted as θq and εt−q represent the qth coefficient of moving
average to be estimated, and the qth error term, respectively. Also, the errors are uncorrelated for
nonzero lags.

3.3 Statistical evaluation criteria

In this study, we utilised three statistical evaluation criteria in order to measure the performance
of the applied models. These criteria are the root mean square error (RMSE), coefficient of
determination (R2) and Scatter Index. Their expressions are given by

RMSE =
√∑n

t e2
t

n
, (6)

where et equals to Yt − Ŷt . In particular, the terms of Yt and Ŷt present the actual observation at
the point and fitted value at time t, respectively

R2 = 1 −
∑

e2
t∑

Y 2
t

, (7)

where
∑

Y 2
t is the total sum of squares and

∑
e2

t is the residual sum of squares.

4. Results and discussion

The present study aims to compare the predictability power of the ARFIMA and ARIMA models
to forecast daily historical CPO prices in Malaysia. Additionally, this study also sets to establish
the use of fractionally integrated to be an alternative in treating the time series which persist
towards the nonstationarity.

Table 1 shows some descriptive statistics of the CPO prices in Malaysia. The mean of CPO prices
is equal to RM2284.55 tonne. The result of the Jarque–Bera test confirms that the null hypothesis
of the normal distribution is rejected. Before we proceed to forecast daily CPO prices, it is vital
to inspect the autocorrelation function (ACF) and partial autocorrelation function (PACF).

4.1 The ACF and PACF inspections

Figure 3 presents the results obtained from the ACF and PACF from the preliminary analysis
of the CPO prices. As can be seen from Figure 3(a), we found that a covariance stationary of
the CPO prices exhibits a statistically significant dependence between the observations. The
illustration from the ACF inspection indicates that it decays at a hyperbolic rate (or sluggish)
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Figure 3. Plots of (a) ACF and (b) PACF of the original time series of CPO prices.

than the short-memory time series data. In this case, the time series presents the evidence of long
memory [3,11,24,29,33,35].

4.2 The unit root and stationarity tests

The ARFIMA and ARIMA models assume that the time series is stationary. The inspection of
the ACF and PACF of the CPO prices suggests a strong evidence of long memory. Therefore, it
is necessary to do tests to assess such behaviour, as tests of unit root and stationarity.

There are numerous approaches to indicate the unit root and stationarity for the time series data.
Thus, there are no predetermined rules as to which approach needs to be adopted in a particular
condition. Therefore, for the CPO prices, we test the unit root based on augmented Dickey and
Fuller [10] (ADF), Phillips and Perron [30] (PP) and Elliott et al. [14] Dickey Fuller test statistic
using generalised least squares (DF GLS) tests, where the null hypothesis is that there is a unit
root. To test the stationarity we use the Kwiatkowski, Phillips, Schmidt and Shin [25] (KPSS)
test, where the null hypothesis is the stationarity around a constant.

Analysing the results of Table 2, we conclude that (a) the ADF, PP and DF GLS tests are not
significant at 1%, 5% and 10% levels, and then we do not reject the null hypothesis of unit root,
and (b) the KPSS test is significant at 1% level, that is, we reject the null hypothesis of stationarity
at 99% confidence level.

Therefore, we consider transforming the original series of the CPO prices into a stationary
series by applying both the procedures of fractionally integrated and first- (or second-) order
differencing.

Table 2. Results of the tests of unit roots and stationarity for original series of the CPO prices
(from 1 January 2004 to 31 December 2011).

Test Value of statistic 1% Critical value 5% Critical value 10% Critical value

ADF −1.882636 −3.962451 −3.411965 −3.127886
PP −1.965649 −3.962447 −3.411963 −3.127885
KPSS 0.236970∗∗∗ 0.216000 0.146000 0.119000
DF GLS −1.859572 −3.480000 −2.890000 −2.570000

Note: The critical values are based on percentage levels of 1%, 5% and 10%, which correspond to 99%, 95%
and 90% of confidence level.
∗Significant at levels of 10%.
∗∗Significant at levels of 5%.
∗∗∗Significant at levels of 1%.
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4.3 Establishing the ARFIMA and ARIMA models

Relying from the fact that both of the ACF and PACF inspections and the results of the unit root
and stationarity tests indicate that the original series must be transformed into stationary series
about mean, calculating differences of order d with 0 ≤ d ≤ 0.5 for ARFIMA models and d
integer (equals 1 or 2, generally) for ARIMA models. For the ARFIMA models, we estimate the
value of d through the package introduced by Doornik and Ooms [13], the result of which was
equal to d = 0.0016, that is, �(L)(1 − L)0.0016(Yt − μt) = �(L)εt .

The resulting series is depicted in Figure 4(a), from which we can observe that there is not
much loss of information from the original series. This might be explained by the fact that the
fractionally integrated time series is still displaying characteristic like the trend. However, we
need to be very circumspect about the stationarity of the resulting time series data after applying
the fractional differencing parameter of d = 0.0016. With regard to this matter, it is needed to
conduct the stationarity test.

Therefore, the results of the unit root and stationarity tests for the series with fractional dif-
ferencing are presented in Table 3. This table is quite revealing in several ways. We found that
the ADF test is significant at the 10% level, that is, with a confidence level of 90% we reject
the null hypothesis that the fractionally integrated time series with d = 0.0016 have unit root.
However, the PP test is not significant at 1%, 5% and 10% levels, and that we do not reject their
null hypothesis of unit root with 99% of confidence. The DF GLS test is significant at the 5%
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Figure 4. Plots of the (a) fractionally integrated (with d = 0.0016) and (b) first order difference of the original
time series of CPO prices.

Table 3. Results of the tests of unit roots and stationarity for the fractionally integrated (with
d = 0.0016) time series of the CPO prices (from 1 January 2004 to 31 December 2011).

Test Value of statistic 1% Critical value 5% Critical value 10% Critical value

ADF −3.392763∗ −3.962620 −3.412050 −3.127940
PP −2.471755 −3.962450 −3.411960 −3.127890
KPSS 0.133418∗ 0.216000 0.146000 0.119000
DF GLS −3.247697∗∗ −3.480000 −2.890000 −2.570000

Note: The critical values are based on percentage levels of 1%, 5% and 10%, which correspond to 99%, 95%
and 90% of confidence level.
∗Significant at levels of 10%.
∗∗Significant at levels of 5%.
∗∗∗Significant at levels of 1%.
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level and we reject their null hypothesis of unit root with 95% of confidence. With null hypothesis
that the series is stationary, the KPSS test was significant at the 10% level, and then with 90%
of confidence we reject that the series is stationary. Therefore, considering these results, of the
four tests, we conclude at 95% of confidence that the fractionally integrated time series with
d = 0.0016 does not have unit root and/or is stationary.

Now for the ARIMA models, Figure 4(b) shows the series of the first-order difference (d = 1)

of the original series of the CPO prices, which seems to have a stationary pattern but also seems
too far because the characteristics of trend, for example, were not attenuated but was nearly
annihilated. The series of the first-order difference indicates that the characteristic like the trend
has no influence and fluctuates around the zero value. Besides, Figure 4(b) when compared with
Figure 1 indicates that there is an evidence of overdifference. In this case, the resulting series
differenced by d = 1 seems to be stationary, but it is responsible for a loss of information in daily
CPO prices record.

As an effort to ensure that the time series of the first-order difference is stationary, we employed
the unit root and stationarity tests whose results are illustrated in Table 4. From it, we found that
the tests of ADF, PP and DF GLS are significant at the level of 1%, that is, with 99% of confidence
level we reject the null hypothesis of unit root.

Turning now to the KPSS test, we see that it is not significant at 1%, 5% and 10% levels.
Therefore, we do not reject the null hypothesis that the referred time series is stationary. Thus, all
of the reported tests indicate that the series of first-order difference is stationary.

However, we also found that the reported results in Table 4 for the ADF, PP and DF GLS tests
indicate large values of their statistics, while the KPSS shows small value of statistic. This can be
explained by the possible overdifference of the original time series as illustrated in Figure 4(b).

As we have achieved, the obtained series are stationary considering both the fractionally inte-
grated and first-order difference. Then we proceed with determining the order of p and q of the
models ARFIMA and ARIMA. Prior studies have noted that it is not easy to identify precisely an
appropriate order ofAR and MA based on theACF and PACF spikes [26]. Therefore, we employed
the ‘trial-and-error’ method as one effort to reduce the risks of wrong model identification [1,21].
For this reason, we applied the Akaike’s information criterion (AIC) to determine the appropriate
models, and the results are summarised in Table 5. As the results show, for the ARFIMA models,
we found that the ARFIMA (1,0.0016,0) is the most adequate model since the criterion is min-
imum for the model. Furthermore, for the ARIMA models, the ARIMA (1,1,0) shows the best
criterion for the model. Interestingly, the results from Table 5 present the evidence that the two of
the models have met the concept of the model simplicity (parsimony), which also points towards
the model type. However, the result from the ARFIMA (1,0.0016,0) model is slightly better than
that of ARIMA (1,1,0) model.

Table 4. Results of the tests of unit roots and stationarity for the first-order difference of the time
series of the CPO prices (from 1 January 2004 to 31 December 2011).

Test Value of statistic 1% Critical value 5% Critical value 10% Critical value

ADF −30.66420∗∗∗ −3.962451 −3.411965 −3.127886
PP −48.81139∗∗∗ −3.962449 −3.411964 −3.127885
KPSS 0.072322 0.216000 0.146000 0.119000
DF GLS −30.65360∗∗∗ −3.480000 −2.890000 −2.570000

Note: The critical values are based on percentage levels of 1%, 5% and 10%, which correspond to 99%, 95%
and 90% of confidence level.
∗Significant at levels of 10%.
∗∗Significant at levels of 5%.
∗∗∗Significant at levels of 1%.
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Table 5. Results of the AIC for the ARFIMA and
ARIMA models.

Model AIC

ARFIMA (1,0.0016,0) 4.000003
ARFIMA (1,0.0016,1) 6.000003
ARFIMA (2,0.0016,0) 6.000001
ARFIMA (2,0.0016,1) 8.000001
ARFIMA (2,0.0016,2) 10.000001
ARIMA (1,1,0) 4.000671
ARIMA (1,1,1) 6.000000
ARIMA (2,1,0) 6.602374
ARIMA (2,1,1) 8.000000
ARIMA (2,1,2) 10.000000

Table 6. Performance of the forecasting errors.

Model RMSE R2

ARFIMA (1,0.0016,0) 0.017034 0.997384
ARFIMA (1,0.0016,1) 0.017036 0.997383
ARFIMA (2,0.0016,0) 0.017040 0.997381
ARFIMA (2,0.0016,1) 0.017042 0.997381
ARFIMA (2,0.0016,2) 0.017182 0.997339
ARIMA (1,1,0) 0.025257 0.995126
ARIMA (1,1,1) 0.027003 0.994305
ARIMA (2,1,0) 1.064019 0.995128
ARIMA (2,1,1) 0.042292 0.984907
ARIMA (2,1,2) 0.042349 0.984852

Note: Using the Diebold and Mariano [12] prospective stat ranging (−1.2 to
+1.0) shows that all of the reported of RMSE are statistically significant apart
from for ARIMA (2,1,0).

Comparisons between the two models ARFIMA and ARIMA were made using the RMSE and
R2, and the results are illustrated in Table 6. In particular, the forecasting is then used to select the
best ARFIMA model and the best ARIMA model. As we can observe, for ARFIMA models, the
best fit is given by ARFIMA (1,0.0016,0), whose parameters’ estimates are:

�(L)(1 − L)0.0016(Yt − μt) = �(L)εt , (8)

with the autoregressive given by

�(L) = 1 + 0.9987L (0.0001) (9)

and the values of RMSE and R2 are 0.017034 and 0.997384, respectively. We found that the values
of RMSE will increase and R2 will decrease as the order of autoregressive and moving average
element increases. Looking into the ARIMA model, it is clearly stated that the ARIMA (1,1,0)
given by

wt = 0.0106 − 0.0013wt−1 (0.0120) (10)

with the value of RMSE being equal to 0.025257 and being slightly better than the other ARIMA
models. The values in parentheses are the p-values that indicate the ARFIMA (1,0.0016,0) and
ARIMA (1,1,0) models’parameters are significant (or non-null). Overall, Table 6 is quite revealing
that the ARFIMA models are superior compared with the ARIMA models.
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Interestingly, the results from Table 6 present evidence that the first-order difference should
be responsible for the loss of important information since it eliminates too far of the trend like
characteristics which leads to the increase in errors in CPO prices forecasting. The plots of the
graphs between the observed and forecasted value by ARFIMA (1,0.0016,0) and ARIMA (1,1,0)
models, respectively, are shown in Figures 5 and 6. Comparing the two depicted graphs, it can be
seen that the best predictions are presented by the ARFIMA model. The forecasted values from
the ARFIMA model are more close to the observed CPO prices than those of the ARIMA model.
The depicted graphs are consistent with the results reported in Table 6.

Further analyses on the prediction errors (et) generated by both of the models are displayed
in Figure 7. The term (et) is equal to Yt − Ŷt , which are the actual observation at the point and
the fitted value at time t, respectively. It is apparent from graph (b) of Figure 7 that the ARIMA
model shows an increasing level of noise when compared with its rival model. Consistent with
the previous statistical analysis, the prediction errors prove that the ARFIMA model is the best-fit
model to represent the daily CPO prices.

In Figure 8, the scatter plots were used to compare the predicted and observed CPO prices
values for the models ARFIMA (1,0.0016,0) and ARIMA (1,1,0). These two graphs display the
positive relationship between the forecasted and observed CPO prices. Looking at the scatter
plots, we can see that both of the models present close fits towards the imaginary regression
line. In particular, the ARFIMA model presents the closer fits around them than those of ARIMA
model. A part of it, the ARIMA model presents more scatter compared with its rival model. The
coefficient of determination is one indication that the ARFIMA model has a slightly better fit
than the ARIMA model, R2 = 0.997 and R2 = 0.995, respectively. Therefore, considering all the
numerical results, graph and analysis, we can conclude that the ARFIMA model is highly better
than the ARIMA model for the case of CPO prices.
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Figure 5. Plot of the original time series of CPO prices and predicted time series using ARFIMA (1,0.0016,0)
model.
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Figure 6. Plot of the original time series of CPO prices and predicted time series using the ARIMA (1,1,0)
model.
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Figure 7. Plots of the prediction errors of the (a) ARFIMA (1,0.0016,0) and (b) ARIMA (1,1,0) models.
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Figure 8. Scatter plots of the (a) original time series of CPO prices with predicted time series using the
ARFIMA (1,0.0016,0) model and (b) original time series of CPO prices with predicted time series using the
ARIMA (1,1,0) model.

5. Conclusion

The foregoing sections dealt with the time series data towards the persistence of nonstationarity. In
this case, daily CPO prices in Malaysia consist of strong long memory. Therefore, the necessary
procedure proposed was the fractionally integrated and also the first-order difference towards
achieving adequate stationarity of the series. We found that the forecasting performance of the
ARFIMA (1,0.0016,0) model produced high-quality prediction and outperformed than that of the
ARIMA (1,1,0) model by considering some statistical evaluation criteria, graphics and Diebold
and Mariano [12] prospective. With this, the obtained ARFIMA model, also possible due to
package of MLE introduced by Doornik and Ooms [13], is superior than the adjusted ARIMA
model to forecast daily CPO prices in Malaysia whose series has long memory.

In addition, from the results of the CPO prices prediction, we found that the performance of the
ARIMA is not fit as the ARFIMA model. This perhaps might be explained by the fact that from
an effort of detrended (or differencing) probably degrades the performance of the ARIMA model.
However, it is hard to absolutely certain that the overdifference will degrade the performance
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of the ARIMA model, since this study just refers to one time series. Therefore, it is far more
convincing to further study this by simulation.
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