Expected Scott-Suppes Utility Representation

Nuh Aygün Dalkıran Oral Ersoy Dokumacı Tarık Kara

February 7, 2018

Outline

1 Introduction Motivation

2 Preliminaries

- Semiorders Uncertainty Continuity Independence Utility Representations
- 3 The Representation Theorem Expected Scott-Suppes Utility Representation
- **4** On Epsilon Equilibrium
- **5** Independence of the Axioms
- 6 Conclusion
- 7 Appendix

3/51

Jules Henri Poincaré (1905) in The Value of Science:

Sometimes we are able to make the distinction between two sensations while we cannot distinguish them from a third sensation. For example, we can easily make the distinction between a weight of 12 grams and a weight of 10 grams, but we are not able to distinguish each of them from a weight of 11 grams. This fact can symbolically be written: $\mathbf{A} = \mathbf{B}, \mathbf{B} = \mathbf{C}, \mathbf{A} < \mathbf{C}$.

....

Example (Luce(1956))

Suppose an individual prefers a cup of coffee with one cube of sugar to a cup of coffee with five cubes of sugar. We can make four hundred and one cups of coffee, label each cup with $i = 0, 1, \ldots, 400$, and add (1 + i/100) cubes of sugar to the i^{th} cup. Since the increase in the amount of sugar from one cup to next is **too small to be noticed**, the individual would be indifferent between cups i and i + 1. However, he is not indifferent between cups 0 and 400.

- Psychophysics: The branch of psychology that deals with the relationship between **physical stimulus** and **mental phenomenon**:
 - No two physical stimuli are absolutely identical, although they may seem to be.
 - The question of interest is how large must the difference be between two stimuli in order for us to detect it.
 - The amount by which two stimuli must differ in order for us to detect the difference is referred to as the JND **just noticeable difference.**
- The Weber Fechner Law (1850s): A small increase in the physical stimulus may not result in a change in perception.

- Apple with 0.2712
- Banana with 0.5399
- Carrot with 0.1888

- Apple with 0.2713
- Banana with 0.5398
- Carrot with 0.1889

Allais on Psychophysics

ECONOMETRICA

VOLUME 21 OCTOBER, 1953 NUMBER 4

LE COMPORTEMENT DE L'HOMME RATIONNEL DEVANT LE RISQUE: CRITIQUE DES POSTULATS ET AXIOMES DE L'ECOLE AMERICAINE¹

PAR M. Allais²

ENGLISH SUMMARY

The most important points of this article can be summarized as follows:

(1) Contrary to the apparent belief of many authors, the concept of cardinal utility, $\bar{s}(x)$, can be defined in an operational manner either by considering equivalent differences of levels of satisfaction or by use of the Weber-Fechner minimum sensible or psychological threshold.

Thus one can associate a psychological value $\bar{s}(x)$ with each monetary value x.

Is indifference transitive? Armstrong (1939, 1948, 1950, 1951) has repeatedly questioned this question:

That indifference is not transitive is indisputable, and a world in which it were transitive is indeed unthinkable. [Armstrong 1948, p3]

Definition

Let > and \sim be two binary relations on X.

The pair $(>, \sim)$ is a *weak-order* on X if for each $x, y, z, t \in X$,

- W1. exactly one of x > y, y > x, or $x \sim y$ holds,
- W2. \sim is an equivalence relation,
- W3. > is transitive.

Equivalently, " \gtrsim " := " > " \cup " \sim " is complete and transitive.

- x > y means "x is (strictly) preferred to y".
- $x \sim y$ means "x is indifferent to y".

Definition

Let P and I be two binary relations on X. The pair (P, I) is a **semiordering** on X if for each $x, y, z, t \in X$,

S1. exactly one of x P y, y P x, or x I y holds

S2. x I x,

S3. x P y, y I z, z P t implies x P t,

S4. x P y, y P z, and y I t imply not both t I x and t I z.

Definition

Let P and I be two binary relations on X. The pair (**P**, **I**) is a **semiorder** on X if for each $x, y, z, t \in X$,

- x I x (reflexivity),
- exactly one of x P y, y P x, or x I y holds (trichotomy),
- $x P y I z P t \implies x P t$ (strong intervality),
- $x P y P z I t \implies x P t$ (semitransitivity).

Definition

Let P and I be two binary relations on X. The pair (**P**, **I**) is a **semiorder** on X if for each $x, y, z, t \in X$,

- x I x (reflexivity),
- exactly one of x P y, y P x, or x I y holds (trichotomy),
- $x P y I z P t \implies x P t$ (strong intervality), (PIP \Rightarrow P)
- $x P y P z I t \implies x P t$ (semitransitivity). (**PPI** \Rightarrow **P**)

Definition

Let *P* and *I* be two binary relations on *X*. The pair (**P**, **I**) is a **semiorder** on *X* if for each $x, y, z, t \in X$,

- x I x (reflexivity),
- exactly one of x P y, y P x, or x I y holds (trichotomy),
- $x P y I z P t \Rightarrow x P t$ (strong intervality), (**PIP** \Rightarrow **P**)

• $xIyPzPt \Rightarrow xPt$ (reverse semitransitive).(IPP \Rightarrow P)

Semiorders - Canonical Example

Example

Let $x, y \in \mathbb{R}$ and define (P, I) on \mathbb{R} as follows:

- x P y if x > y + 1,
- x I y if $|x y| \leq 1$.

Scott-Suppes Representation

(日) (周) (日) (日) (日)

Theorem (Scott and Suppes (1958))

Let X be a finite set. (P, I) is a semiorder on $X \iff$ there exists $u : X \longrightarrow \mathbb{R}$ such that for each $x, y \in X$,

$$x P y \iff u(x) > u(y) + \mathbf{1},$$

 $x I y \iff |u(x) - u(y)| \leq \mathbf{1}.$

Scott-Suppes Representation

Let R be a reflexive binary relation on X and $x, y \in X$. The **asymmetric part of** R, denoted P, as

$$x P y \iff x R y \land \neg(y R x).$$

The symmetric part of R, denoted I, as

$$x I y \iff x R y \land y R x.$$

Definition

Let R be a reflexive binary relation on $X, u : X \longrightarrow \mathbb{R}$, and $k \in \mathbb{R}_{++}$. The pair (u, k) is an **SS representation** of R if for each $x, y \in X$,

$$x P y \iff u(x) > u(y) + \mathbf{k},$$

$$x I y \iff |u(x) - u(y)| \leq \mathbf{k}.$$

Order Theoretic Definitions

Definition

Let $x, y, z \in X$. A binary relation R on X is

- reflexive if x R x,
- *irreflexive* if $\neg(x R x)$,
- complete if $[x R y] \lor [y R x]$,
- symmetric if $x R y \implies y R x$,
- asymmetric if $x R y \implies \neg(y R x)$,
- transitive if $x R y R z \implies x R z$.

Immediate Observations on Semiorders

Let (P, I) be a semiorder on X.

- P is irreflexive.
- *I* is symmetric.
- P is asymmetric.
- P is transitive. $x P y P z \implies x P y I y P z \implies x P z$
- x I y if and only if $\neg(x P y)$ and $\neg(y P x)$.
- Every weak order induces a natural semiorder.

Auxiliary Relations

Definition Let (P, I) be a semiorder on X and $x, y \in X$.

- $x\mathbf{R}y$ if $\neg(y P x)$ (i.e., x P y or x I y),
- $x P_0 y$ if $\exists z \in X$ s.t. $[x P z R y] \lor [x R z P y]$,
- $x \mathbf{R}_0 y$ if $\neg (y P_0 x)$,
- xI_0y if $x R_0 y \wedge y R_0 x$.

On R_0

• $x R_0 y$ if and only if for each $z \in X$, $[y R z \Rightarrow x R z]$ and $[z R x \Rightarrow z R y]$.

The contrapositive of $[y R z \Rightarrow x R z]$ is $[z P x \Rightarrow z P y]$. The contrapositive of $[z R x \Rightarrow z R y]$ is $[y P z \Rightarrow x P z]$.

• $x R_0 y$ if and only if for each $z \in X$, $[y P z \Rightarrow x P z]$ and $[z P x \Rightarrow z P y]$.

Some Useful Results

From now on, $\mathbf{R} = \mathbf{P} \cup \mathbf{I}$:

Lemma

Let R be a semiorder on X and $x, y, z \in X$. If $x R_0 y P z$ or $x P y R_0 z$, then x P z.

Proposition (Luce (1956) Theorem 1)

If R is a semiorder on X, then R_0 is a weak order on X.

 $\therefore R_0$ is the **natural** weak order induced by the semiorder R.

Uncertainty

- $X = \{x_1, x_2, \dots, x_n\}, n \in \mathbb{N}.$
- A lottery on X is a list $p = (p_1, p_2, ..., p_n)$ such that $\sum p_i = 1$ and for each $i \in \{1, 2, ..., n\}$, we have $p_i \ge 0$.
- **L**: the set of all lotteries on X. For each lottery $p, q \in L$ and $\alpha \in (0, 1), \alpha p + (1 - \alpha)q \in L$.

vNM Expected Utility Theorem

Theorem (von Neumann and Morgenstern (1944)) A binary relation R on L is complete, transitive, continuous, and satisfies independence if and only if there exists a linear utility function $u: L \to \mathbb{R}$ such that

$$pRq \iff \mathbb{E}[u(p)]) \ge \mathbb{E}[u(q)]$$

Furthermore, $u: L \to \mathbb{R}$ is unique up to affine transformations.

Continuity

Definition

A reflexive binary relation R on L is

• **continuous** if for each $q \in L$, the sets

UC(q) := { $p \in L : p R q$ } and LC(q) := { $p \in L : q R p$ } are closed (with respect to the standard metric on \mathbb{R}^n),

• **mixture-continuous** if for each $p, q, r \in L$, the sets $IIMC(q; p, r) := \{ \alpha \in [0, 1] : [\alpha p + (1 - \alpha)r] B q \}$

$$UMC(q; p, r) := \{ \alpha \in [0, 1] : [\alpha p + (1 - \alpha)r] R q \}$$
and

$$LMC(q; p, r) := \{ \alpha \in [0, 1] : q R \left[\alpha p + (1 - \alpha)r \right] \}$$

are closed (with respect to the standard metric on \mathbb{R}).

Lemma

If a semiorder R on L is continuous, then it is mixture-continuous.

Continuity: R vs R_0

R is continuous but R_0 is **not** mixture-continuous.

Example

Define R on [0, 1] such that:

- for each $p \in [0, 1]$, we have 0.5 I p,
- for each $p, p' \in (0.5, 1]$ and $q, q' \in [0, 0.5)$, we have $p \ I \ p'$, $p \ P \ q$, and $q \ I \ q'$.

Let $p \in (0.5, 1], q \in [0, 0.5)$.

 $\mathrm{UC}(p) = [0.5, 1]; UC(q) = UC(0.5) = [0, 1]$

Since p P q, we have $p P_0 q$. Moreover, p P q I 0.5, we have $p P_0 0.5$ for each $p \in (0.5, 1]$. This means $1 P_0 0.5$.

 $\therefore \text{ UMC}_{0}(1;1,0) := \{ \alpha \in [0,1] : [\alpha 1 + (1-\alpha)0] R_{0} 1 \} = (0.5,1],$

Continuity: R_0 vs R

R is **not** mixture-continuous but R_0 is continuous.

Example

Let L be the set of lotteries on $X := \{x_1, x_2, x_3\}$ and $\epsilon \in (0, 0.5]$. For each $p = (p_1, p_2, p_3), q = (q_1, q_2, q_3) \in L$,

•
$$p P q$$
 if $p_1 \ge q_1 + \epsilon$,
• $p I q$ if $|p_1 - q_1| < \epsilon$.
 $p R_0 q$ if and only if $p_1 \ge q_1$.
 $UMC((1, 0, 0); (1 - \epsilon, \epsilon/2, \epsilon/2), (1, 0, 0)) = [0, 1)$.

Independence

Definition

A reflexive binary relation R on L satisfies

- **independence** if for each $p, q, r \in L$ and each $\alpha \in (0, 1)$, p P q if and only if $[\alpha p + (1 - \alpha)r] P [\alpha q + (1 - \alpha)r]$,
- midpoint indifference¹ if for each $p, q, r \in L$, p I q implies [1/2p + 1/2r] I [1/2q + 1/2r].

If a semiorder R on L satisfies independence then it also satisfies midpoint indifference. (trichotomy)

¹This property is introduced by Herstein and Milnor (1953) + (=) (1953)

Independence: Incompatibility

Independence is **incompatible** with intransitive indifference.

Proposition (Fishburn (1968))

Let R be a semiorder on L. If R satisfies the independence axiom, then I is transitive.

Proof.

Suppose
$$\exists p, q, r \in L$$
 such that $p \ I \ q \ I \ r$ but $p \ P \ r$.
 $\implies \forall \alpha \in (0, 1), p \ P \ [\alpha p + (1 - \alpha)r] \ P \ r$
 $\implies p \ P \ [\alpha p + (1 - \alpha)r] \ P \ r \ I \ q \ (\mathbf{PPI} \Rightarrow \mathbf{P})$
 $\implies p \ P \ q \rightarrow \leftarrow$

Remark: Midpoint indifference is **compatible** with intransitive indifference.

Expected Scott-Suppes Representation

Definition

Let *R* be a reflexive binary relation on $X, u : X \longrightarrow \mathbb{R}$ be a function, and $k \in \mathbb{R}_{++}$. The pair (u, k) is an **Expected SS Representation** of *R* if for each $x, y \in X$,

$$x P y \iff \mathbb{E}[u(x)]) > \mathbb{E}[u(y)] + k$$
$$x I y \iff |\mathbb{E}[u(x)] - \mathbb{E}[u(y)]| \le k$$

Open Problem Fishburn (1968)

- When is it possible to have a **Expected Scott-Suppes Representation** for a semiorder *R* on *L*?
 - an **analog** of the Expected Utility Theorem of von Neumann and Morgenstern (1944).
- Equivalently, when is $u: L \to \mathbb{R}$ linear? if (u,k) is an SS representation of R on L.

Open Problem Fishburn (1968)

361

SEMIORDERS AND RISKY CHOICES

To illustrate, we recall from Scott and Suppes (1958) that if \prec on \mathscr{P} is a semiorder and if \mathscr{P} is a finite set then there is a real-valued function u on \mathscr{P} such that, for all P and Q in \mathscr{P} ,

 $P \prec Q$ if and only if u(P) + 1 < u(Q).

Proofs of this are given by Scott (1964), Scott and Suppes (1958), and Suppes and Zinnes (1963). Its obvious counterpart in the risky-choice setting is

 $P \prec Q$ if and only if $E(u, P) + 1 \leq E(u, Q)$, (1)

which generally violates A3 and A4. However, each of the following axioms, the first three of which are independence axioms, with A8 a typical Archimedean condition, is implied by (1).

A5. If
$$P < Q$$
 and $0 < \alpha < 1$ then not $\alpha Q + (1 - \alpha)R < \alpha P + (1 - \alpha)R$.
A6. If $P < Q$, $R < S$, and $0 < \alpha < 1$ then $\alpha P + (1 - \alpha)R < \alpha Q + (1 - \alpha)R$.
A7. If $P \sim Q$, $R \sim S$, and $0 < \alpha < 1$ then $\alpha P + (1 - \alpha)R \sim \alpha Q + (1 - \alpha)S$.
A8. If $P < Q$ and $Q < R$ then $\alpha P + (1 - \alpha)R < \alpha and Q < \beta P + (1 - \beta)S$.

for some α , β strictly between 0 and 1.

Note also that (1) implies A1, A2, and the third Scott-Suppes semiorder condition.

Thus, we have identified two main routes for the preservation of intransitive indifference with risky choices: first, retain A3–A4 and weaken A2; second, retain A2 and use independence axioms like A5–A7 but no A3–A4. Both routes await further exploration.

REFERENCES

- FISHBURN, P. C. Bounded expected utility. Annals of Mathematical Statistics, 1967, 38, 1054– 1060.
- FRIEDMAN, M. AND SAVAGE, L. J. The expected-utility hypothesis and the measurability of utility. Journal of Political Economy, 1952, 60, 463–474.
- JESSEN, N. E. An introduction to Bernoullian utility theory. I. utility functions. Swedish Journal of Economics, 1967, 69, 163–183.
- LUCE, R. D. Semiorders and a theory of utility discrimination. *Econometrica*, 1956, 24, 178-191.
 SAMULSION, P. A. Probability, utility, and the independence axiom. *Econometrica*, 1952, 20, 670-678.
- SAVAGE, L. J. The foundations of statistics. New York: Wiley, 1954.
- Scorr, D. Measurement structures and linear inequalities. Journal of Mathematical Psychology, 1964, 1, 233–247.
- SCOTT, D. AND SUPPER, P. Foundational aspects of theories of measurement. Journal of Symbolic Lonic, 1958, 23, 113-128.
- SUPPES, P. AND ZINNES, J. L. Basic measurement theory. In R. D. Luce, R. R. Bush, and E. Galanter (Eds.), Handbook of mathematical psychology, Vol. 1. New York: Wiley, 1963.

RECEIVED: September 13, 1967

· ◆ ≧ ▶ ◆ ≧ ▶ ≧ ∽ Q (~ 31 / 51

A Linear Representation with a Threshold Function

Theorem (Vincke(1980))

Let (P, I) be a pair of binary relations on L. Then,

- (P, I) is a semiorder,
- R₀ is mixture-continuous and satisfies midpoint indifference,
- $L \setminus M_R$ has maximal indifference elements in L with respect to R

if and only if there exist a linear function $u: L \longrightarrow \mathbb{R}$ and a non-negative function $\sigma: L \longrightarrow \mathbb{R}_+$ such that for each $p, q \in L$, we have

- p P q if and only if u(p) > u(q) + σ(q),
 p I q if and only if u(p) + σ(p) ≥ u(q) and u(q) + σ(q) ≥ u(p),
- **3** $p I_0 q$ if and only if u(p) = u(q),
- **6** u(p) = u(q) implies $\sigma(p) = \sigma(q)$.

イロト 不同下 イヨト イヨト ヨー ろくつ

A Linear Representation with a Threshold Function

Theorem (Herstein and Milnor (1953))

 R_0 on L is a **weak order** that is **mixture-continuous** and satisfies **midpoint indifference** if and only if there exist a **linear** function $u: L \longrightarrow \mathbb{R}$ such that for each $p, q \in L$, we have

$$p R_0 q \iff u(p) \ge u(q)$$

Definition

Let *R* be a semiorder on *X* and $S \subseteq X$. We say *S* has **maximal indifference elements** in *X* with respect to *R* if for each $s \in S$, there exists $s' \in X$ such that

- s I s' and
- for each $y \in X$, $y P_0 s'$ implies y P s.

Vincke (1980)'s construction

34/51

- We say $x \in X$ is **maximal** with respect to R if for each $y \in X$, x R y.
 - We denote the set of all maximal elements of X with respect to R as M_R .

Construction of the threshold function $\sigma: L \longrightarrow \mathbb{R}_+$:

$$\sigma(p) := \begin{cases} u(p') - u(p) & p \in L \backslash M_R \\ \sup_{q \in L} u(q) - u(p) & p \in M_R \end{cases}$$

where p' is the maximal indifference element of p.

Regularity

Definition

A reflexive binary relation R on X is **non-trivial** if there exist $x, y \in X$ such that x P y.

Definition

A reflexive binary relation R on L is **regular** if there are no $p, q \in L$ and no sequences $(p_n), (q_n) \in L^{\mathbb{N}}$ such that for each $n \in \mathbb{N}$, we have $p P p_n$ and $p_{n+1} P p_n$ or for each $n \in \mathbb{N}$, we have $q_n P q$ and $q_n P q_{n+1}$.

That is, a binary relation is regular if its asymmetric part has no infinite up or infinite down chain with an upper or lower bound, respectively.

Mixture Symmetry

Definition (Nakamura(1988))

A reflexive binary relation R on L is **mixture-symmetric** if for each $p, q \in L$ and each $\alpha \in [0, 1]$,

$$p I \left[\alpha p + (1 - \alpha) q \right] \implies q I \left[\alpha q + (1 - \alpha) p \right]$$

The Main Result

Theorem (Expected Scott-Suppes Utility Representation) Let R be a non-trivial semiorder on L. Then,

- *R* is regular and mixture-symmetric,
- R_0 is mixture-continuous and midpoint indifference,
- $L \setminus M_R$ has maximal indifference elements in L with respect to R

if and only if there exists a linear function $u: L \longrightarrow \mathbb{R}$ and $k \in \mathbb{R}_{++}$ such that (u, k) is an **Expected Scott-Suppes** representation of R. *i.e.*, for each $p, q \in L$ we have

 $p \ R \ q \Leftrightarrow \mathbb{E}[u(p)]) \geqslant \mathbb{E}[u(q)] + k.$

Uniqueness

Proposition

Let (u, k) be an expected Scott-Suppes utility representation of a semiorder R on L, $\alpha \in \mathbb{R}_{++}$, and $\beta \in \mathbb{R}$. If $v : L \longrightarrow \mathbb{R}$ is such that for each $p \in L$, $v(p) = \alpha u(p) + \beta$, then $(v, \alpha k)$ is also an expected Scott-Suppes utility representation of R.

Equilibrium

- Let $\langle N, (A_i)_{i \in N}, (R_i)_{i \in N} \rangle$ be a normal form game such that:
 - R_i is a non-trivial semiorder on Δ(A) which satisfies reg, mix-sym, mix-cont, mid indiff, max indiff.

Definition

A (possibly mixed) action profile $\sigma^* = (\sigma_i^*, \sigma_{-i}^*) \in \Delta(A)$ is an **equilibrium** of $\langle N, (A_i)_{i \in N}, (R_i)_{i \in N} \rangle$ if for each $i \in N$ there **does not** exist $a_i \in A_i$ such that

$$(a_i, \sigma^*_{-i}) P_i \sigma^*.$$

Epsilon Equilibrium

Definition

A (possibly mixed) action profile $\sigma^* = (\sigma_i^*, \sigma_{-i}^*) \in \Delta(A)$ is an **equilibrium** of $\langle N, (A_i)_{i \in N}, (R_i)_{i \in N} \rangle$ if for each $i \in N$ there **does not** exist $a_i \in A_i$ such that

$$u_i((a_i, \sigma_{-i}^*)) > u_i(\sigma^*) + k_i.$$

Definition

A (possibly mixed) action profile $\sigma^* = (\sigma_i^*, \sigma_{-i}^*) \in \Delta(A)$ is an **equilibrium** of $\langle N, (A_i)_{i \in N}, (R_i)_{i \in N} \rangle$ if for each $i \in N$ and for each $a_i \in A_i$ we have

$$v_i(\sigma^*) \ge v_i((a_i, \sigma^*_{-i})) - \epsilon.$$

◆□ → < □ → < 亘 → < 亘 → < 亘 → < 亘 → ○ Q (~ 40 / 51

On Epsilon Equilibrium

- This is the **same** definition given by Radner (1980) for epsilon equilibrium. A **reinterpretation** for the concept of epsilon equilibrium:
 - In most of the applications, economists construct preferences of agents after observing their choice behavior.
 - The reason why preferences are constructed as weak orders is mainly due to **tractability**, i.e., to have **measurable utility**.
 - However, it is possible that the underlying preferences exhibit **intransitive indifference** and because of missing choice data (and due to the weak order convention), we might be observing outcomes that look like an epsilon equilibrium.
 - It might also be the case that the revealed preferences of agents look like a weak order over deterministic outcomes. But, this **does not have to be the case for lotteries** over these outcomes – especially when respective probabilities are close to each other.

Independence of the Axioms

Let R be a non-trivial semiorder on L.

- R is regular (**reg**),
- *R* is mixture-symmetric (**mix-sym**),
- R_0 is mixture-continuous (**mix-cont**),
- R_0 satisfies midpoint indifference (mid indiff),
- $L \setminus M_R$ has maximal indifference elements in L with respect to R (max indiff).

[Reg, Mix-sym, Mix-cont, Mid indiff, Max indiff]

Example

Let L be the set of lotteries on $X := \{x_1, x_2, x_3\}, p, q \in L$, and $\epsilon \in (0, 0.5]$. We define R on L such that:

•
$$p P q$$
 if $p_1 > q_1 + \epsilon$,

•
$$p I q$$
 if $|p_1 - q_1| \leq \epsilon$.

$[\text{Reg, Mix-sym, Mix-cont, Mid indiff} \Rightarrow Max indiff]$

Example

Let L be the set of lotteries on $X := \{x_1, x_2, x_3\}, p, q \in L$, and $\epsilon \in (0, 0.5]$. We define R on L such that:

イロト 不同下 イヨト イヨト ヨー ろくつ

- p P q if $p_1 \ge q_1 + \epsilon$,
- p I q if $|p_1 q_1| < \epsilon$.

[Reg, Mix-sym, Mix-cont, Max indiff \Rightarrow Mid indiff]

Example

Let L be the set of lotteries on $X := \{x_1, x_2\}$ and $p, q \in L$. We define R on L such that:

イロト 不同下 イヨト イヨト ヨー ろくつ

- p P q if $p_1 > q_1 + 0.6$,
- p I q if $|p_1 q_1| \leq 0.6$.

[Reg, Mix-sym, Mid indiff, Max indiff \Rightarrow Mix-cont]

Example

Let L be the set of lotteries on $X := \{x_1, x_2\}$ and $p, q \in L$. We define R on L such that:

- p P q if $p_1 = 1$ and $q_1 = 0$,
- p I q if $\neg (p P q)$ and $\neg (q P p)$.

$[\operatorname{Reg}, \operatorname{Mix-cont}, \operatorname{Mid} \operatorname{indiff}, \operatorname{Max} \operatorname{indiff} \\ \Rightarrow \operatorname{Mix-sym}]$

Example

Let L be the set of lotteries on $X := \{x_1, x_2\}$ and $p, q \in L$. We define R on L such that:

- p P q if $2p_1 > 3q_1 + 0.5$,
- p I q if $|2p_1 3q_1| \leq 0.5$.

$\begin{bmatrix} \text{Mix-sym, Mix-cont, Mid indiff, Max} \\ \text{indiff} \Rightarrow \mathbf{Reg} \end{bmatrix}$

Example

Let L be the set of lotteries on $X := \{x_1, x_2\}$ and $p, q \in L$. We define R on L such that:

- p P q if $p_1 > q_1$,
- p I q if $p_1 = q_1$.

Conclusion

- We studied decision making under uncertainty with a semiordered choice model.
- "A consumer choice model with semi-ordered rather than weak-ordered preferences is not only more realistic, but it also allows for the comparison of utility differences across individuals." (Argenziano and Gilboa (2017))
- We characterized an Expected Scott-Suppes Utility Representation Theorem.
- This was an open problem pointed out by Fishburn (1968).
- Our characterization gives a reinterpretation for the concept of epsilon equilibrium.
- Intransitive indifference seems **inescapable**.

Thank you!

The physical continuum is like a nebula whose elements cannot be perceived, even with the most sophisticated instruments; of course, with a good balance (instead of human sensation), it would be possible to distinguish 11 grams from 10 and 12 grams, so that we could write A < B, B < C, A < C. But one could always find other elements D and E such that A = D, D = B, A < B, B = E, E = C, B < C, and the difficulty would be the same; only the mind can resolve it and the answer is the mathematical continuum.

....